Supplementary Information

Biocatalysis: Fungi mediated Selective 12β or 17β-Hydroxylation on the Basic Limonoid Skeleton

Saikat Haldar,¹ Swati P. Kolet ¹ and Thulasiram H. V.*^{1,2}

¹Chemistry-Biology Unit, Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune-411008, India.² CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi-110007, India. hv.thulasiram@ncl.res.in

Table of Contents:

Section A.	
Synthetic procedures	S 2
References	S 3
Section B.	
HPLC and TLC profiles	S 4
Analytical data of substrates and metabolites	S5
Section C.	
Copies of NMR and LC-MS spectra	S21

Section A. Synthetic procedures:

2.1. Synthesis of 1,2-Dihydroazadiradione (4) and 1,2-Dihydroepoxyazadiradione (12):¹

500 mg Azadiradione (1) (1.1 mmol) in 60 ml HPLC grade methanol was stirred with 45 mg 10% Pd on activated carbon under 2 atmosphere pressure of hydrogen. After 10 hours, the reaction mixture was filtered through celite bed and chromatographed on silica gel (230-400 mesh) column using a gradient mixture of methanol/dichloromethane as eluent to get 392 mg of desired 1,2-dihydroazadiradione (4) (0.87 mmol, yield ~ 78 %) (eluted at 0.6 % methanol in dichloromethane). Similarly, 1,2-Dihydroepoxyazadiradione (12) (436 mg, 0.93 mmol) was prepared from the hydrogenation of epoxyazadiradione (10) (500 mg, 1.07 mmol) with a yield of ~ 87 %.

2.2. Synthesis of Nimbocinol (14) and 7-Deacetylepoxyazadiradione (17):²

500 mg Azadiradione (1) (1.1. mmol), dissolved in minimum amount of methanol was added by 200 ml saturated solution of K₂CO₃ and stirred for 18 hours at room temperature. Since it was showing a complete consumption of azadiradione and formation of a more polar spot on TLC, the reaction mixture was neutralised to pH \sim 7.0 using 1(N) HCl and then methanol was concentrated in aspirator at 40°C. Further, the mass was partitioned between brine solution and EtOAc. The EtOAc layer was concentrated, dried over Na₂SO₄ and 290 mg of pure nimbocinol (14) (0.71 mmol, yield ~ 64 %) was obtained after purification over silica gel (230-400 mesh) column at 0.8% methanol in dichloromethane. Similarly 7deacetylepoxyazadiradione (17) (280 mg, 0.66 mmol) was synthesised from epoxyazadiradione (10) (500 mg, 1.07 mmol) with a yield of 62 %.

2.3. Synthesis of 1,2-Epoxyazadiradione (7):³

500 mg Azadiradione (1.1. mmol) in 65 ml methanol was stirred for 5 hours after addition of 20 drops of 5 % aqueous NaOH followed by 20 ml of 30 % H_2O_2 . The reaction mixture was concentrated in vaccum at 50°C and then extracted with dichloromethane (3 x 50 mL). The dichloromethane layer was dried over Na₂SO₄ and concentrated to get 498 mg 1,2-epoxyazadiradione (1.06 mmol, yield ~ 96 %).

2.4. Synthesis of Gedunin (19):¹

500 mg Epoxyazadiradione (**10**) (1.07 mmol) was taken in 10 ml HPLC grade dichloromethane and to that 615 mg (2.14 mmol) 60 % m-chloroperbenzoic acid and 180 mg (2.14 mmol) sodium bicarbonate was added sequentially. The reaction mixture was stirred at room temperature for 1 hour to observe the complete conversion of epoxyazadiradione to gedunin on TLC and then the organic reaction mixture was washed with saturated aqueous solution of sodium bicarbonate for thrice (1:3 v/v). Dichloromethane layer was further dried over Na₂SO₄, concentrated and 395 mg gedunin (**19**) (0.82 mmol, yield ~76 %) was purified from silica gel flash column chromatography using 0.4 % methanol/dichloromethane as an eluent.

References:

- (1) Lavie, D.; Levy, E. C.; Jain, M. K. Tetrahedron 1971, 27, 3927-&.
- (2) Siddiqui, B. S.; Rasheed, M.; Faizi, S.; Firdous; Ali, S. T.; Tariq, R. M.; Naqvi, S. *Helv. Chim. Acta* **2003**, *86*, 3342-3353.
- (3) Hallur, G.; Sivramakrishnan, A.; Bhat, S. V. J. Nat. Prod. 2002, 65, 1177-1179.

ESI-Fig.1 (a) HPLC separation of the biotransformation products obtained by incubating azadiradione (1) with *M881* for 8 days and coinjection studies: (i) Standard azadiradione, (ii) Purified 2, (iii) Purified 3, (iv) Fermented azadiradione (1) with *M881*, (v) Co-injection of 1 with (iv), (vi) Co-injection of 2 with (iv), (vii) Co-injection of 3 with (iv); (b) Thin-layer chromatography: lane (i) Standard azadiradione, lane (ii) Substrate control, lane (iii) Organism control, lane (iv) Fermented azadiradione with *M881*, lane (v) Purified 2, lane (vi) Purified 3.

Analytical data of substrates and metabolites

ESI-Table 1. ¹H and ¹³C NMR chemical shift values for C-12 and C-17 for substrates and metabolites

	C-12			C-17		
Compound	${}^{1}\mathbf{H} \delta_{\mathrm{H}}(\mathrm{ppm})(\mathbf{H-12})$	¹³ C	¹ H $\delta_{\rm H}(\rm ppm)$ (H -	¹³ C δ _C (ppm)		
Azadiradione (1)	a	$\frac{\delta_{\rm C}(\rm ppm)}{30.36}$	$\frac{17}{343(s)}$	60.76		
17β -hydroxyazadiradione (2)	_ _a	22 20	5.+5(s)	80.56		
12β -hydroxyazadiradione (3)	4.05 (br. d, $J=7.3$	68.37	4.31 (s)	52.38		
	112)					
1,2-dihydroazadiradione (4)		30.22	3.39(s)	60.57		
17β-hydroxy-1,2-	_a	22.03	\times^{o}	80.59		
dihydroazadiradione (5)		(2) 01				
12β -hydroxy-1,2-	4.03 (br. d, $J=6.7$	68.21	4.28 (s)	52.25		
dihydroazadiradione (6)	HZ)					
$1,2\alpha$ -epoxyazadiradione (7)	a	30.03	3.41 (s)	60.55		
17β -hydroxy-1,2 α -	a	21.88	× ^b	80.63		
epoxyazadiradione (8)						
12β-hydroxy-1,2α-	4.10 (dd, <i>J</i> = 7.3,	68.14	4.30 (s)	52.32		
epoxyazadiradione (9)	2.4 Hz)					
$E_{poxyazadiradione}$ (10)	_a	29.09	3.90(s)	50.94		
12β -hydroxyepoxyazadiradione (11)	3.95 (dd, <i>J</i> = 8.4,	70.66	4.48 (s)	44.89		
	4.9 Hz)					
1.2 dibudroon on varadinadiona (12)	а	79 66	2.99(a)	50.90		
1,2-diffydroepoxyazadifadione (12)	-3.03 (m)	28.00 70.67	5.88(s)	30.80 11 70		
dihydroepoxyazadiradione (13)	5.95 (III)	70.07	4.49 (8)	44.79		
uniyuroepoxyazadiradione (13)						
Nimbocinol (14)		30.29	$3.43_{L}(s)$	60.68		
17β -hydroxynimbocinol (15)		22.14	× ^v	80.76		
7-Deacetylepoxyazadiradione (17)	_a	29.69	3.90 (s)	51.23		
12β-hydroxy-7-	3.93 (m)	71.14	4.50 (s)	45.08		
deacetylepoxyazadiradione (18)						
Gedunin (19)	_a	26.02	5.62(s)	78 26		
12B-hydroxygedunin (20)	3.94 (br. d. <i>J</i> = 7.6	69.22	6.18 (s)	75.57		
r J ()	Hz)		(-)			

^{*a*} Chemical shift is less than 2.8 ppm and appears in the overlapping region. ^{*b*} Quaternary carbon.

Azadiradione (1):

White solid; $[\alpha]^{28}_{D} = +29.6 (c \ 2.00, \text{CHCl}_3)$; UV (Me₂CO) $\lambda_{\text{max}} = 211 \text{ nm}$.

LC-ESI-MS (m/z): 473.2 ([M+Na]⁺), 451.2 ([M+H]⁺), 391.2 ([M-OAc]⁺).

MALDI-TOF (m/z): 473.2273 ([M+Na]⁺) (Calculated: 473.2303).

IR (CHCl₃) v_{max} (cm⁻¹): 1738(Acetate carbonyl), 1702 (D ring ketone), 1668 (A ring ketone), 1598 (D ring tri-substituted double bond), 1383 (A ring geminal methyls), 1240 (Acetate C-O), 1148, 1027, 874 (Furan ring).

¹**H NMR (400 MHz, CDCl₃); δ(ppm):** 7.48 (1H, m, H-21), 7.44 (1H, m, H-23), 7.14 (1H, d, J=10.18Hz, H-1), 6.28 (1H, m, H-22), 5.90 (1H, d, J=10.18 Hz, H-2), 5.89 (1H, s, H-15), 5.33 (1H, m, H-7), 3.43 (1H, s, H-17), 2.50 (1H, m, H-9), 2.21 (1H, m, H-5), 1.96 (3H, s, CO<u>C</u>H₃), 1.35 (3H, s, H-30), 1.26 (3H, s, H-19), 1.11 (3H, s, H-29), 1.10 (3H, s, H-28), 1.04 (3H, s, H-18).

¹³C NMR (100 MHz, CDCl₃); δ(ppm): 204.96 (C-16), 203.96 (C-3), 192.24 (C-14), 169.58 (C-<u>C</u>OCH₃), 156.67 (C-1), 142.80 (C-23), 141.67 (C-21), 125.96 (C-2), 123.33 (C-15), 118.44 (C-20), 111.13 (C-22), 73.92 (C-7), 60.76 (C-17), 47.97 (C-13), 46.15 (C-5), 44.56 (C-8), 44.09 (C-4), 40.01 (C-10), 38.23 (C-9), 30.36 (C-12), 27.00 (C-28), 26.45 (C-18), 26.30 (C-30), 23.46 (C-6), 21.28 (C-29), 20.95 (C-CO<u>C</u>H₃), 19.02 (C-19), 15.83 (C-11).

<u>17β-Hydroxyazadiradione (2):</u>

White solid; $[\alpha]_{D}^{28} = +64.7 \ (c \ 3.25, \text{CHCl}_{3}); \text{UV} \ (\text{Me}_{2}\text{CO}) \ \lambda_{\text{max}} = 210 \text{ nm}.$

LC-ESI-MS (m/z): 489.3 ([M+Na]⁺), 467.3 ([M+H]⁺), 449.2 ([M-OH]⁺), 407.2 ([M-OAc]⁺).

MALDI-TOF (m/z): 489.2254 ([M+Na]⁺) (Calculated: 489.2252).

IR (CHCl₃) v_{max} (cm⁻¹): 3448 (-OH), 1736 (Acetate carbonyl), 1706 (D ring ketone), 1665 (A ring ketone), 1598 (D ring tri-substituted double bond), 1383 (A ring geminal methyls), 1243 (Acetate C-O), 1216, 1160, 1029, 874 (Furan ring).

Position	$\delta_{\rm H}({\rm ppm}), J({\rm in~Hz})$	δ _C (ppm)	HMBC (H→C)	NOESY (H→H)
1	7.14 (d,10.04)	157.21	3,5,9,10,19	19,2,9
2	5.86 (d,10.04)	125.71	4,10	1
3	-	204.19		
4	-	43.97		
5	2.17 (m)	45.89	4,7,10,19,28,29	28,9
6	1.79-2.06 (m)	23.39		
7	5.29 (m)	74.04	5,9,8,30, - <u>C</u> OCH ₃	30,15
8	-	44.75		
9	2.3 (m)	38.62	1,8,10,11,14,19,30	18,5,1
10	-	39.85		
11	1.79-2.06 (m)	15.77		
12	β2.56 (m), α1.57(m)	22.20	β 11,13,17,18	(β) 30,12α
13	-	50.24		
14	-	193.66		
15	5.74 (s)	122.40	8,13,14,16,17	30,7
16	-	206.02		
17	-	80.56		
18	0.94 (s)	30.76	12,13,14,17	12α,9,22,21
19	1.22 (s)	19.03	1,5,9,10	29,1,30
20	-	120.17		
21	7.52 (m)	141.31	20,22,23	18
22	6.37 (m)	109.52	17,20,21,23	18,12α,23
23	7.38 (m)	142.62	20,21	22
28	1.05 (s)	26.92	29	5
29	1.07 (s)	21.15	3,4,5,28	19
30	1.34 (s)	25.11	7,8,9,14	19,12β,7,15
-CO <u>C</u> H ₃	1.91 (s)	20.9	- <u>C</u> OCH ₃	
- <u>C</u> OCH ₃	-	169.67		

<u>12β-Hydroxyazadiradione (3):</u>

White solid; $[\alpha]_{D}^{28} = -3.3$ (*c* 2.35, CHCl₃); UV (Me₂CO) $\lambda_{max} = 210$ nm.

LC-ESI-MS (m/z): 489.3 $([M+Na]^+)$, 467.2 $([M+H]^+)$, 449.2 $([M-OH]^+)$, 407.3 $([M-OAc]^+)$.

MALDI-TOF (m/z): 489.2286 ([M+Na]⁺) (Calculated: 489.2252).

IR (CHCl₃) v_{max} (cm⁻¹): 3448 (-OH), 1735 (Acetate carbonyl), 1719 (A ring double bond), 1691(D ring ketone), 1670 (A ring ketone), 1600 (D ring tri-substituted double bond), 1384 (A ring geminal methyls), 1243 (Acetate C-O), 1216, 1152, 1027, 874 (Furan ring).

Position	$\delta_{\rm H}({\rm ppm}), J({\rm in~Hz})$	δ _C (ppm)	HMBC (H→C)	NOESY (H→H)
1	7.11 (d,10.38)	156.48	19,9,10,5,3	19,9,2
2	5.87 (d,10.07)	126.05	10,4	1
3	-	204.06		
4	-	44.13		
5	2.18 (m)	46.31	19,29,28,10,4,7	28,9
6	1.90 (m),2.03 (m)	23.43		
7	5.31 (m)	74.55	5,8,9,30, <u>C</u> OCH ₃	30,15
8	-	44.43		
9	2.49 (m)	37.92	19,11,10,14,30,8	18,5,1
10	-	39.76		
11	α 2.53 (m),β 1.90 (m)	28.31	(α) 9	(α) 12,11β
12	4.05 (br. d, 7.32)	68.37	18,9,11,13,14	18,11α,17,22
13	-	52.73		
14	-	189.97		
15	5.90 (m)	125.02	17,14,16,8,13	30,7
16	-	205.76		
17	4.31 (s)	52.38	18,13,12,22,20,21,16	12,22,21
18	0.99 (s)	25.22	13,12,14	12,22,9,21
19	1.24 (s)	19.26	1,9,10,5	1,29,30
20	-	118.50		
21	7.46 (m)	141.98	20,22,23	18,17
22	6.27 (m)	111.28	20,21,17	18,12,17,23
23	7.40 (m)	142.87	20,21	22
28	1.07 (s)	26.94	29	5
29	1.08 (s)	21.21	28,4,5,3	19
30	1.48 (s)	25.49	9,8,7,14	7,15,19
-CO <u>C</u> H ₃	1.94 (s)	21.02	<u>C</u> OCH ₃	
- <u>C</u> OCH ₃	-	169.58		

<u>1,2-Dihydroazadiradione (4) :</u>

White solid; $[\alpha]^{28}_{D} = -24.0 \ (c \ 3.10, \text{CHCl}_3)$; UV (Me₂CO) $\lambda_{\text{max}} = 209 \text{ nm}$.

LC-ESI-MS (m/z): 475.2 ([M+Na]⁺), 453.2 ([M+H]⁺), 393.2 ([M-OAc]⁺).

MALDI-TOF (m/z): 475.2476 ([M+Na]⁺) (Calculated:475.2460).

IR (CHCl₃) v_{max} (cm⁻¹): 1735 (Acetate carbonyl), 1701 (D ring ketone and A ring ketone), 1598 (D ring tri-substituted double bond), 1381 (A ring geminal methyl), 1241 (Acetate C-O), 1165, 1149, 1029, 874 (Furan ring).

¹**H NMR (200 MHz, CDCl₃); δ(ppm):** 7.45 (1H, m, H-21), 7.41 (1H, m, H-23), 6.25 (1H, m, H-22), 5.86 (1H, s, H-15), 5.29 (1H, m, H-7), 3.39 (1H, s, H-17), 2.58 (1H, m, H-2β), 2.45 (1H, m, H-2α), 2.28 (1H, m, H-9), 1.94 (3H, s, CO<u>C</u>H₃), 1.30 (3H, s, H-30), 1.11 (3H, s, H-19), 1.05 (3H, s, H-29), 1.01 (6H, s, H-28,18).

¹³C NMR (50 MHz, CDCl₃); δ(ppm): 215.90 (C-3), 205.24 (C-16), 192.87 (C-14), 169.62 (C-<u>C</u>OCH₃), 142.66 (C-23), 141.54 (C-21), 123.23 (C-15), 118.46 (C-20), 111.10 (C-22), 74.32 (C-7), 60.57 (C-17), 48.07 (C-5), 48.03 (C-13), 46.79 (C-4), 43.85 (C-8), 42.42 (C-9), 38.35 (C-1), 37.09 (C-10), 33.72 (C-2), 30.22 (C-12), 26.17 (C-18), 25.87, 25.73 (C-28,30), 23.84 (C-6), 20.99, 20.97 (C- 29, CO<u>C</u>H₃), 15.69 (C-11), 14.93 (C-19).

<u>17β-Hydroxy-1,2-dihydroazadiadione (5)</u> :

White solid; $[\alpha]_{D}^{28} = +44.2$ (*c* 2.50, CHCl₃); UV (Me₂CO) $\lambda_{max} = 208$ nm.

LC-ESI-MS (m/z): 491.2 ([M+Na]⁺), 469.2 ([M+H]⁺), 451.4 ([M-OH)⁺], 409.2 ([M-OAc]⁺).

MALDI-TOF (m/z): 491.2388 ([M+Na]⁺) (Calculated: 491.2409).

IR (CHCl₃) v_{max} (cm⁻¹): 3446 (-OH), 1733 (Acetate carbonyl), 1705 (D ring ketone and A ring ketone), 1598 (D ring tri-substituted double bond), 1381 (A ring geminal methyls), 1242 (Acetate C-O), 1158, 1030, 873 (Furan ring).

¹**H NMR (500 MHz, CDCl₃); δ(ppm):** 7.58 (1H, m, H-21),7.42 (1H, m, H-23), 6.40 (1H, m, H-22), 5.78 (1H, s, H-15), 5.31 (1H, m, H-7), 2.61 (1H, m, H-2β), 2.44 (1H, m, H-2α), 2.15

(1H, m, H-9), 1.95 (3H, s, CO<u>C</u>H₃), 1.33 (3H, s, H-30), 1.12 (3H, s, H-19), 1.06 (3H, s, H-29), 1.03 (3H, s, H-28), 0.97 (3H, s, H-18).

¹³C NMR (125 MHz, CDCl₃); δ(ppm): 216.08 (C-3), 205.98 (C-16), 194.18 (C-14), 169.73 (C-<u>C</u>OCH₃), 142.78 (C-23), 141.43 (C-21), 122.53 (C-20), 120.19 (C-15), 109.53 (C-22), 80.59 (C-17), 74.49 (C-7), 50.32 (C-13), 48.03 (C-5), 46.85 (C-4), 44.22 (C-8), 42.96 (C-9), 38.47 (C-1), 37.20 (C-10), 33.78 (C-2), 30.40 (C-18), 25.80 (C-28), 24.89 (C-30), 23.96 (C-6), 22.03 (C-12), 21.03, 21.02 (C-29, CO<u>C</u>H₃), 15.67 (C-11), 15.14 (C-19).

<u>12β-Hydroxy-1,2-dihydroazadiadione (6)</u> :

White solid; $[\alpha]_{D}^{28} = -42.6 \ (c \ 3.50, \text{CHCl}_3); \text{UV} \ (\text{Me}_2\text{CO}) \ \lambda = 220, 201 \ \text{nm}.$

LC-ESI-MS (m/z): 491.3 ([M+Na]⁺), 469.3 ([M+H]⁺), 409.3 ([M-OAc]⁺).

MALDI-TOF (m/z): 491.2388 ([M+Na]⁺) (Calculated: 491.2409).

IR (CHCl₃) v_{max} (cm⁻¹): 3462 (-OH), 1736 (Acetate carbonyl), 1700 (D ring ketone and A ring ketone), 1600 (D ring tri-substituted double bond), 1381 (A ring geminal methyls), 1242 (Acetate C-O), 1154, 1028, 874 (Furan ring).

¹**H NMR (500 MHz, CDCl₃); δ(ppm):** 7.46 (1H, m, H-21), 7.42 (1H, m, H-23), 6.27 (1H, m, H-22), 5.91 (1H, s, H-15), 5.30 (1H, m, H-7), 4.28 (1H, s, H-17), 4.03 (1H, br. d, J= 6.7 Hz, H-12), 2.61 (1H, m, H-2β), 2.44 (1H, m, H-2α), 2.29 (2H, m, H-9,11α), 1.95 (3H, s, CO<u>C</u>H₃),1.46 (3H, s, H-30), 1.11 (3H, s, H-19), 1.06 (3H, s, H-29), 1.02 (3H, s, H-28), 1.01 (3H, s, H-18).

¹³C NMR (125 MHz, CDCl₃); δ(ppm): 216.09 (C-3), 206.16 (C-16), 190.70 (C-14), 169.69 (C-<u>C</u>OCH₃), 142.73 (C-23), 141.86 (C-21), 125.02 (C-15), 118.60 (C-20), 111.26 (C-22), 75.06 (C-7), 68.21 (C-12), 52.86 (C-13), 52.25 (C-17), 48.27 (C-5), 46.87 (C-4), 43.78 (C-8), 42.21 (C-9), 38.48 (C-1), 36.91 (C-10), 33.70 (C-2), 28.29 (C-11), 25.80 (C-28), 24.98 (C-30), 24.87 (C-18), 23.88 (C-6), 21.02(C- CO<u>C</u>H₃), 20.93 (C- 29), 15.23 (C-19).

<u>1,2α-Epoxyazadiradione (7)</u>:

White solid; $[\alpha]_{D}^{28} = +46.8$ (*c* 2.20, CHCl₃); UV (Me₂CO) $\lambda = 218, 207$ nm.

LC-ESI-MS (m/z): 489.3 ([M+Na]⁺), 467.1 ([M+H]⁺), 407.2 ([M-OAc]⁺).

MALDI-TOF (m/z): 489.2254 ([M+Na]⁺) (Calculated: 489.2252).

IR (CHCl₃) v_{max} (cm⁻¹): 1735 (Acetate carbonyl), 1701 (D ring ketone and A ring ketone), 1599 (D ring tri-substituted double bond), 1381 (A ring geminal methyls), 1240 (Acetate C-O), 1165, 1036, 874 (Furan ring).

¹**H NMR (200 MHz, CDCl₃); δ(ppm):** 7.45 (1H, m, H-21), 7.42 (1H, m, H-23), 6.26 (1H, m, H-22), 5.87 (1H, s, H-15), 5.27 (1H, m, H-7), 3.58 (1H, d, J=4.55 Hz, H-1), 3.41 (1H, s, H-17), 3.41 (1H, d, J=4.55 Hz, H-2), 2.75 (1H, m, H-9), 2.43 (1H, dd, J=11.87, 4.8 Hz, H-5), 1.98 (3H, s, CO<u>C</u>H₃), 1.29 (3H, s, H-30), 1.05, 1.04 (9H, s, H-18,19,28), 0.99 (3H, s, H-29).

¹³C NMR (50 MHz, CDCl₃); δ(ppm): 211.22 (C-3), 205.28 (C-16), 192.31 (C-14), 169.82 (C-<u>C</u>OCH₃), 142.72 (C-23), 141.54 (C-21), 123.14 (C-15), 118.31 (C-20), 111.06 (C-22), 73.64 (C-7), 62.72 (C-1), 60.55 (C-17), 56.41 (C-2), 47.99 (C-13), 44.07, 44.02 (C-8,4), 38.77 (C-10), 38.66 (C-5), 36.80 (C-9), 30.03 (C-12), 27.36 (C-28), 26.17, 25.99 (C-30, 18), 23.10 (C-6), 20.95 (C- CO<u>C</u>H₃), 20.65 (C-29), 16.03 (C-11), 14.91 (C-19).

<u>17 β -Hydroxy-1,2 α -Epoxyazadiradione (8) :</u>

White solid; $[\alpha]^{28}_{D} = +132.4$ (*c* 1.50, CHCl₃); UV (Me₂CO) $\lambda = 220, 204$ nm.

LC-ESI-MS (m/z): 505.2 ([M+Na]⁺), 483.2 ([M+H]⁺), 465.4 ([M-OH]⁺), 423.2 ([M-OAc]⁺).

MALDI-TOF (m/z): 505.2164 ([M+Na]⁺) (Calculated: 505.2202).

IR (CHCl₃) v_{max} (cm⁻¹): 3448 (-OH), 1738 (Acetate carbonyl), 1701 (D ring ketone and A ring ketone), 1598 (D ring tri-substituted double bond), 1381 (A ring geminal methyls), 1242 (Acetate C-O), 1159, 1033, 874 (Furan ring).

¹**H NMR (500 MHz, CDCl₃); δ(ppm):** 7.60 (1H, m, H-21), 7.43 (1H, m, H-23), 6.41 (1H, m, H-22), 5.78 (1H, s, H-15), 5.29 (1H, m, H-7), 3.61 (1H, d, J=4.58 Hz, H-1), 3.43 (1H, d, J=4.58 Hz, H-2), 2.62 (1H, m, H-9), 2.55 (1H, m, H-12β), 2.46 (1H, m, H-5), 1.65 (1

12α), 1.99 (3H, s, CO<u>C</u>H₃), 1.34 (3H, s, H-30), 1.07 (3H, s, H-19), 1.06 (3H, s, H-18), 1.03 (3H, s, H-28), 1.01 (3H, s, H-29).

¹³C NMR (125 MHz, CDCl₃); δ(ppm): 211.24 (C-3), 205.80 (C-16), 193.31 (C-14), 169.84 (C-<u>C</u>OCH₃), 142.88 (C-23), 141.50 (C-21), 122.44 (C-20), 120.09 (C-15), 109.50 (C-22), 80.63 (C-17), 73.83 (C-7), 62.90 (C-1), 56.55 (C-2), 50.28 (C-13), 44.38,44.17 (C-4,8), 38.88 (C-10), 38.63 (C-5), 37.29 (C-9), 30.39 (C-18), 27.45 (C-28), 25.06 (C-30), 23.24 (C-6), 21.88 (C-12), 21.03 (C- CO<u>C</u>H₃), 20.73 (C-29), 16.04 (C-11), 15.07 (C-19).

<u>12β-Hydroxy-1,2α-Epoxyazadiradione (9)</u> :

White solid; $[\alpha]_{D}^{28} = +21.7 (c 2.50, CHCl_3)$; UV (Me₂CO) $\lambda = 217, 206 \text{ nm}.$

LC-ESI-MS (m/z): 505.4 ([M+Na]⁺), 483.2 ([M+H]⁺), 423.2 ([M-OAc]⁺).

MALDI-TOF (m/z): 505.2164 ([M+Na]⁺) (Calculated: 505.2202).

IR (CHCl₃) v_{max} (cm⁻¹): 3482 (-OH), 1735 (Acetate carbonyl), 1701 (D ring ketone and A ring ketone), 1600 (D ring tri-substituted double bond), 1381 (A ring geminal methyls), 1243 (Acetate C-O), 1154, 1035, 874 (Furan ring).

¹**H NMR (500 MHz, CDCl₃); δ(ppm):** 7.48 (1H, m, H-21), 7.44 (1H, m, H-23), 6.28 (1H, m, H-22), 5.93 (1H, s, H-15), 5.28 (1H, m, H-7), 4.30 (1H, s, H-17), 4.10 (1H, dd, J= 7.3, 2.4 Hz, H-12), 3.55 (1H, d, J=4.58 Hz, H-1), 3.42 (1H, d, J=4.58 Hz, H-2), 2.78 (1H, m, H-9), 2.59 (1H, m, H-11α), 2.45 (1H, m, H-5), 1.99 (3H, s, CO<u>C</u>H₃), 1.47 (3H, s, H-30), 1.09 (3H, s, H-19), 1.07 (3H, s, H-18), 1.05 (3H, s, H-28), 1.01 (3H, s, H-29).

¹³C NMR (125 MHz, CDCl₃); δ(ppm): 211.15 (C-3), 205.88 (C-16), 189.87 (C-14), 169.79 (C-<u>C</u>OCH₃), 142.86 (C-23), 141.89 (C-21), 124.99 (C-15), 118.50 (C-20), 111.23 (C-22), 74.41 (C-7), 68.14 (C-12), 62.66 (C-1), 56.46 (C-2), 52.82 (C-13), 52.32 (C-17), 44.19, 44.01 (C-4, 8), 38.86 (C-5), 38.64 (C-10), 36.75 (C-9), 28.61 (C-11), 27.38 (C-28), 25.24 (C-30), 24.92 (C-18), 23.19 (C-6), 21.03 (C- CO<u>C</u>H₃), 20.69 (C-29), 15.17 (C-19).

Epoxyazadiradione (10):

White solid; $[\alpha]^{28}_{D} = +31.1$ (*c* 2.40, CHCl₃); UV (Me₂CO) $\lambda_{max} = 209$ nm.

LC-ESI-MS (m/z): 489.2 $([M+Na]^+)$, 467.3 $([M+H]^+)$, 407.3 $([M-OAc]^+)$.

MALDI-TOF (m/z): 489.2249 ([M+Na]⁺) (Calculated: 489.2252).

IR (CHCl₃) v_{max} (cm⁻¹): 1751 (Acetate carbonyl), 1734 (D ring ketone), 1670 (A ring ketone), 1375 (A ring geminal methyls), 1239 (Acetate C-O), 1129, 1029, 875 (Furan ring).

¹**H NMR (400 MHz, CDCl₃); δ(ppm):** 7.56 (1H, m, H-21), 7.40 (1H, m, H-23), 7.17 (1H, d, J=10.04 Hz, H-1), 6.24 (1H, m, H-22), 5.88 (1H, d, J=10.04 Hz, H-2), 4.73 (1H, m, H-7), 3.90 (1H, s, H-17), 3.41 (1H, s, H-15), 2.63 (1H, m, H-9), 2.20-2.15 (2H, m, H-5,12), 2.03 (3H, s, -CO<u>C</u>H₃), 1.22 (3H, s, H-19), 1.21 (3H, s, H-30), 1.08 (3H, s, H-29), 1.07 (3H, s, H-28), 1.04 (3H, s, H-18).

¹³C NMR (100 MHz, CDCl₃); δ(ppm): 208.40 (C-16), 204.21 (C-3), 169.74 (C-<u>C</u>OCH₃), 157.47 (C-1), 142.43 (C-23), 141.53 (C-21), 125.76 (C-2), 116.51 (C-20), 110.87 (C-22), 73.63 (C-7), 72.54 (C-14), 57.18 (C-15), 50.94 (C-17), 46.67 (C-5), 44.22 (C-4), 43.12 (C-8), 42.53 (C-13), 39.69 (C-9), 39.65 (C-10), 29.09 (C-12), 27.02 (C-28), 24.82 (C-18), 24.20 (C-6), 21.26 (C-CO<u>C</u>H₃), 20.99 (C-29), 19.82 (C-19), 19.39 (C-30), 16.06 (C-11).

<u>12β-Hydroxyepoxyazadiradione</u> (**11**):

White solid; $[\alpha]^{28}_{D} = +16.4$ (*c* 2.60, CHCl₃); UV (Me₂CO) $\lambda_{max} = 209$ nm.

LC-ESI-MS (m/z): 505.4 $([M+Na]^+)$, 483.3 $([M+H]^+)$, 423.4 $([M-OAc]^+)$.

MALDI-TOF (m/z): 505.2195 ([M+Na]⁺) (Calculated: 505.2202).

IR (CHCl₃) v_{max} (cm⁻¹): 3481 (-OH), 1749 (Acetate carbonyl and D ring ketone), 1669 (A ring ketone), 1376 (A ring geminal methyls), 1239 (Acetate C-O), 1133, 1026, 875 (Furan ring).

Position	δ _H (ppm),J(in Hz)	δ _C (ppm)	HMBC (H→C)	NOESY (H→H)
1	7.13 (d,10.3)	157.08	3,5,10	19,11α,2
2	5.88 (d,10.0)	125.87	4,10	1
3	-	204.22		
4	-	44.18		
5	2.14 (m)	46.59	4,9,28	9
6	1.96-1.85 (m)	24.18		
7	4.72 (m)	73.49	5,9, - <u>C</u> OCH ₃	15,6,30
8	-	43.00		
9	2.52 (m)	39.27	1,8,10,12,30	18,5
10	-	39.35		
11	α2.59 (m),β1.82 (m)	29.04		α 1,12
12	3.95 (dd,8.4,4.9)	70.66	13,14,18	18,11α,17,22
13	-	47.32		
14	-	71.24		
15	3.31 (s)	54.79	16,17	18,30,17,7, -CO <u>C</u> H ₃
16	-	208.09		
17	4.48 (s)	44.89	12,13,16,18,20,21,23	21,22,12,15,18
18	1.02 (s)	23.26	13,14,17	21,22,17,12,15,9, -CO <u>C</u> H ₃
19	1.21 (s)	19.85	1,5,10	1
20	-	116.40		
21	7.61 (m)	141.98	20,22,23	17,18
22	6.35 (m)	111.18	20,21	23,17,12,18
23	7.38 (m)	142.37	20,21	22
28	1.07 (s)	26.96	29	
29	1.08 (s)	20.88	28,3,4,5	
30	1.26 (s)	19.28	9,7,8,14	7,15
-CO <u>C</u> H ₃	2.02 (s)	21.23	- <u>C</u> OCH ₃	18,15
- <u>C</u> OCH ₃	-	169.69		

1,2-Dihydroepoxyazadiradione (12):

White solid; $[\alpha]_{D}^{28} = +0.94$ (*c* 2.40, CHCl₃); UV (Me₂CO) $\lambda_{max} = 218, 205$ nm.

LC-ESI-MS (m/z): 491.3 ([M+Na]⁺), 469.2 ([M+H]⁺), 409.4 ([M-OAc]⁺).

MALDI-TOF (m/z): 491.2310 ([M+Na]⁺) (Calculated: 491.2409).

IR (CHCl₃) v_{max} (cm⁻¹): 1751 (Acetate carbonyl), 1734 (D ring ketone), 1701 (A ring ketone), 1375 (A ring geminal methyls), 1240 (Acetate C-O), 1031, 875 (Furan ring).

¹**H NMR (500 MHz, CDCl₃); δ(ppm):** 7.56 (1H, m, H-21), 7.40 (1H, m, H-23), 6.24 (1H, m, H-22), 4.71 (1H, m, H-7), 3.88 (1H, s, H-17), 3.40 (1H, s, H-15), 2.60 (1H, m, H-2β), 2.45-2.50 (2H, m, H-2α and 9), 2.05 (3H, s, -CO<u>C</u>H₃), 1.18 (3H, s, H-30), 1.09 (3H, s, H-19), 1.05 (3H, s, H-29), 1.04 (3H, s, H-28), 1.02 (3H, s, H-18).

¹³C NMR (125 MHz, CDCl₃); δ(ppm): 216.14 (C-3), 208.74 (C-16), 169.85 (C-<u>C</u>OCH₃), 142.39 (C-23), 141.55 (C-21), 116.64 (C-20), 110.96 (C-22), 74.08 (C-7), 72.68 (C-14), 57.40 (C-15), 50.80 (C-17), 48.30 (C-5), 46.83 (C-4), 43.99 (C-9), 42.69,42.24 (C-8,13), 39.34 (C-1), 37.10 (C-10), 33.75 (C-2), 28.66 (C-12), 25.99 (C-28), 24.58 (C-6), 24.34 (C-18), 21.34 (C-CO<u>C</u>H₃), 20.69 (C-29), 19.07 (C-30), 16.19 (C-19), 15.98 (C-11).

<u>12β-Hydroxy-1,2-Dihydroepoxyazadiradione (13)</u>:

White solid; $[\alpha]_{D}^{28} = -14.1$ (*c* 1.00, CHCl₃); UV (Me₂CO) $\lambda_{max} = 220, 204$ nm.

LC-ESI-MS (m/z): 507.3 ([M+Na]⁺), 485.3 ([M+H]⁺), 425.4 ([M-OAc]⁺).

MALDI-TOF (m/z): 507.2367 ([M+Na]⁺) (Calculated: 507.2358).

IR (CHCl₃) v_{max} (cm⁻¹): 3502 (-OH), 1748 (Acetate carbonyl), 1736 (D ring ketone), 1714 (A ring ketone), 1377 (A ring geminal methyls), 1240 (Acetate C-O), 1026, 875 (Furan ring).

¹**H NMR (500 MHz, CDCl₃); δ(ppm):** 7.63 (1H, m, H-21), 7.41 (1H, m, H-23), 6.35 (1H, m, H-22), 4.72 (1H, m, H-7), 4.49 (1H, s, H-17), 3.93 (1H, m, H-12), 3.32 (1H, s, H-15), 2.61 (1H, m, H-2β), 2.48 (1H, m, H-2α), 2.37-2.43 (2H, m, H-11α and 9), 2.05 (3H, s, -CO<u>C</u>H₃), 1.26 (3H, s, H-30), 1.10 (3H, s, H-19), 1.05 (3H, s, H-29), 1.04 (3H, s, H-28), 1.02 (3H, s, H-18).

¹³C NMR (125 MHz, CDCl₃); δ(ppm): 215.83 (C-3), 208.10 (C-16), 169.74 (C- <u>C</u>OCH₃), 142.46 (C-23), 142.02 (C-21), 116.42 (C-20), 111.18 (C-22), 73.92 (C-7), 71.23 (C-14), 70.67 (C-12), 54.91 (C-15), 48.21 (C-5), 47.24 (C-13), 46.79 (C-4), 44.79 (C-17), 43.78 (C-9), 42.14 (C-8), 39.26 (C-1), 36.89 (C-10), 33.63 (C-2), 29.25 (C-11), 25.97 (C-28), 24.59 (C-6), 22.79 (C-18), 21.34 (C- CO<u>C</u>H₃), 20.62 (C-29), 18.97 (C-30), 16.32 (C-19).

Nimbocinol (14):

White solid; $[\alpha]_{D}^{28} = +0.63$ (*c* 2.15, CHCl₃); UV (Me₂CO) $\lambda_{max} = 215$, 206 nm.

LC-ESI-MS (m/z): 431.2 ([M+Na]⁺), 409.1 ([M+H]⁺), 391.4 ([M-OH]⁺).

MALDI-TOF (m/z): 431.2209 ([M+Na]⁺) (Calculated: 431.2198).

IR (CHCl₃) v_{max} (cm⁻¹): 3481 (-OH), 1697 (D ring ketone), 1668 (A ring ketone), 1597 (D ring tri-substituted double bond), 1382 (A ring geminal methyls), 1149, 1027, 874 (Furan ring).

¹**H NMR (200 MHz, CDCl₃); δ(ppm):** 7.45 (1H, m, H-21), 7.41 (1H, m, H-23), 7.12 (1H, d, J=10.23 Hz, H-1), 6.25 (1H, m, H-22), 6.00 (1H, s, H-15), 5.85 (1H, d, J=10.23 Hz, H-2), 4.18 (1H, m, H-7), 3.43 (1H, s, H-17), 2.56 (1H, m, H-9), 2.45 (1H, m, H-5), 1.27 (3H, s, H-30), 1.21 (3H, s, H-19), 1.15 (3H, s, H-29), 1.10 (3H, s, H-28), 1.02 (3H, s, H-18).

¹³C NMR (50 MHz, CDCl₃); δ(ppm): 205.56 (C-16), 204.74 (C-3), 194.32 (C-14), 157.35 (C-1), 142.71 (C-23), 141.51 (C-21), 125.67 (C-2), 123.34 (C-15), 118.35 (C-20), 111.10 (C-22), 71.51 (C-7), 60.68 (C-17), 48.20 (C-13), 46.47 (C-8), 44.42 (C-5), 44.12 (C-4), 40.10 (C-10), 36.37 (C-9), 30.29 (C-12), 26.99 (C-28), 26.59 (C-30), 25.91 (C-18), 25.39 (C-6), 21.39 (C-29), 19.03 (C-19), 15.61 (C-11).

<u>17β-Hydroxynimbocinol (15)</u>:

White solid; $[\alpha]_{D}^{28} = +54.1$ (*c* 3.50, CHCl₃); UV (Me₂CO) $\lambda_{max} = 220, 201$ nm.

LC-ESI-MS (m/z): 447.4 ([M+Na]⁺), 425.3 ([M+H]⁺), 407.3 ([M-OH]⁺).

MALDI-TOF (m/z): 447.2223 ([M+Na]⁺) (Calculated: 447.2147).

IR (CHCl₃) v_{max} (cm⁻¹): 3436 (-OH), 1698 (D ring ketone), 1664 (A ring ketone), 1595 (D ring tri-substituted double bond), 1383 (A ring geminal methyls), 1159, 1035, 873 (Furan ring).

¹H NMR (400 MHz, CDCl₃); δ(ppm): 7.59 (1H, m, H-21), 7.43 (1H, m, H-23), 7.15 (1H, d, J=10.23 Hz, H-1), 6.41 (1H, m, H-22), 5.91 (1H, s, H-15), 5.87 (1H, d, J=10.23 Hz, H-2),

4.19 (1H, m, H-7), 1.31 (3H, s, H-30), 1.23 (3H, s, H-19), 1.17 (3H, s, H-29), 1.12 (3H, s, H-28), 0.98 (3H, s, H-18).

¹³C NMR (100 MHz, CDCl₃); δ(ppm): 206.10 (C-16), 204.73 (C-3), 195.36 (C-14), 157.53 (C-1), 142.86 (C-23), 141.42 (C-21), 125.78 (C-2), 122.40 (C-20), 120.19 (C-15), 109.52 (C-22), 80.76 (C-17), 71.76 (C-7), 50.42 (C-13), 46.82 (C-8), 44.44 (C-5), 44.19 (C-4), 40.18 (C-10), 36.89 (C-9), 30.15 (C-18), 27.11 (C-28), 25.57 (C-30), 25.44 (C-6), 22.14 (C-12), 21.42 (C-29), 19.19 (C-19), 15.63 (C-11).

<u>17β-Hydroxy-7-oxonimbocinol (16)</u>:

White solid; $[\alpha]_{D}^{28} = +7.61 \ (c \ 3.25, \text{CHCl}_3); \text{UV} \ (\text{Me}_2\text{CO}) \ \lambda_{\text{max}} = 219, 204 \text{ nm}.$

LC-ESI-MS (m/z): 445.3 ([M+Na]⁺), 423.3 ([M+H]⁺), 405.3 ([M-OH]⁺).

MALDI-TOF (m/z): 445.1926 ([M+Na]⁺) (Calculated: 445.1990).

IR (CHCl₃) v_{max} (cm⁻¹): 3421 (-OH), 1708 (D ring ketone), 1673 (A ring ketone), 1595 (D ring tri-substituted double bond), 1379 (A ring geminal methyls), 1160, 1030, 874 (Furan ring).

¹**H NMR (400 MHz, CDCl₃); δ(ppm):** 7.58 (1H, m, H-21), 7.42 (1H, m, H-23), 7.15 (1H, d, J=10.04 Hz, H-1), 6.38 (2H, m, H-22,15), 5.94 (1H, d, J=10.29 Hz, H-2), 2.98 (1H, t, J=14.56 Hz, H-6β), 2.68 (2H, m, H-9,6α), 2.48 (1H, dd, J=14.05, 2.51 Hz, H-5), 1.59 (3H, s, H-30), 1.42 (3H, s, H-19), 1.18 (3H, s, H-29), 1.15 (3H, s, H-28), 0.94 (3H, s, H-18).

¹³C NMR (100 MHz, CDCl₃); δ(ppm): 206.80 (C-7), 206.07 (C-16), 203.07 (C-3), 185.34 (C-14), 155.57 (C-1), 142.84 (C-23), 141.53 (C-21), 126.76 (C-2), 126.32 (C-15), 122.40 (C-20), 109.40 (C-22), 80.27 (C-17), 54.23 (C-8), 52.79 (C-5), 50.62 (C-13), 45.33 (C-9), 44.80 (C-4), 39.72 (C-10), 36.01 (C-6), 32.03 (C-18), 26.73 (C-28), 25.86 (C-30), 23.47 (C-12), 20.94 (C-29), 18.80 (C-19), 16.99 (C-11).

7-Deacetylepoxyazadiradione (17):

White solid; $[\alpha]^{28}_{D} = +39.6 (c \ 1.90, \text{CHCl}_3)$; UV (Me₂CO) $\lambda_{\text{max}} = 210 \text{ nm}$.

LC-ESI-MS (m/z): 447.1 ([M+Na]⁺), 425.2 ([M+H]⁺), 407.1 ([M-OH]⁺).

MALDI-TOF (m/z): 447.2151 ([M+Na]⁺) (Calculated: 447.2148).

IR (CHCl₃) v_{max} (cm⁻¹): 3501 (-OH), 1749 (D ring ketone), 1652 (A ring ketone), 1390 (A ring geminal methyls), 1216, 1030, 875 (Furan ring).

¹**H NMR (400 MHz, CDCl₃); δ(ppm):** 7.53 (1H, m, H-21), 7.39 (1H, m, H-23), 7.18 (1H, d, J=10.38 Hz, H-1), 6.24 (1H, m, H-22), 5.86 (1H, d, J=10.38 Hz, H-2), 3.90 (1H, s, H-17), 3.64 (1H, m, H-7), 3.55 (1H, s, H-15), 2.66 (1H, m, H-9), 2.43 (1H, m, H-5), 1.19 (3H, s, H-19), 1.14 (3H, s, H-30), 1.12 (3H, s, H-29), 1.10 (3H, s, H-28), 1.05 (3H, s, H-18).

¹³C NMR (100 MHz, CDCl₃); δ(ppm): 209.32 (C-16), 204.86 (C-3), 158.25 (C-1), 142.33 (C-23), 141.50 (C-21), 125.55 (C-2), 116.85 (C-20), 111.05 (C-22), 73.24 (C-14), 71.17 (C-7), 57.64 (C-15), 51.23 (C-17), 45.28 (C-5), 44.44,44.38 (C-4,8), 42.59 (C-13), 39.83 (C-10), 38.29 (C-9), 29.69 (C-12), 27.79 (C-6), 27.15 (C-28), 25.07 (C-18), 21.24 (C-29), 19.94 (C-19), 19.61 (C-30), 16.16 (C-11).

<u>12β-Hydroxy-7-deacetylepoxyazadiradione (18):</u>

White solid; $[\alpha]^{28}_{D} = +27.6 (c \ 1.50, \text{CHCl}_3)$; UV (Me₂CO) $\lambda_{\text{max}} = 208 \text{ nm}$.

LC-ESI-MS (m/z): 463.0 ([M+Na]⁺), 441.1 ([M+H]⁺), 423.1 ([M-OH]⁺).

MALDI-TOF (m/z): 463.2124 ([M+Na]⁺) (Calculated: 463.2097).

IR (CHCl₃) v_{max} (cm⁻¹): 3525 (-OH), 1748 (D ring ketone), 1651 (A ring ketone), 1387 (A ring geminal methyls), 1215, 1024, 875 (Furan ring).

¹**H NMR (400 MHz, CDCl₃); δ(ppm):** 7.60 (1H, m, H-21), 7.40 (1H, m, H-23), 7.14 (1H, d, J=10.04 Hz, H-1), 6.36 (1H, m, H-22), 5.87 (1H, d, J=10.29 Hz, H-2), 4.50 (1H, s, H-17), 3.93 (1H, m, H-12), 3.67 (1H, m, H-7), 3.47 (1H, s, H-15), 2.57-2.60 (2H, m, H-9,11α), 2.41

(1H, m, H-5), 1.20 (3H, s, H-19), 1.18 (3H, s, H-30), 1.14 (3H, s, H-29), 1.10 (3H, s, H-28), 1.06 (3H, s, H-18).

¹³C NMR (100 MHz, CDCl₃); δ(ppm): 208.82 (C-16), 204.66 (C-3), 157.59 (C-1), 142.38,142.05 (C-23,21), 125.82 (C-2), 116.75 (C-20), 111.38 (C-22), 72.00 (C-14), 71.57 (C-7), 71.14 (C-12), 55.19 (C-15), 47.53 (C-13), 45.29,45.08 (C-17,5), 44.38,44.33 (C-4,8), 39.54 (C-10), 37.84 (C-9), 29.39 (C-11), 27.99 (C-6), 27.13 (C-28), 23.60 (C-18), 21.19 (C-29), 20.02 (C-19), 19.51 (C-20).

<u>Gedunin (19):</u>

White solid; $[\alpha]^{28}_{D} = +22.8$ (*c* 1.50, CHCl₃); UV (Me₂CO) $\lambda_{max} = 214$ nm.

LC-ESI-MS (m/z): 505.4 ([M+Na]⁺), 483.2 ([M+H]⁺), 423.5 ([M-OAc]⁺).

MALDI-TOF (m/z): 505.2216 ([M+Na]⁺) (Calculated: 505.2203).

IR (CHCl₃) v_{max} (cm⁻¹): 1739 (Acetate carbonyl and D ring ketone), 1670 (A ring ketone), 1387 (A ring geminal methyls), 1216 (Acetate C-O), 1030, 875 (Furan ring).

¹**H NMR (400 MHz, CDCl₃); δ(ppm):** 7.42 (2H, m, H-21,23), 7.10 (1H, d, J=10.07 Hz, H-1), 6.34 (1H, m, H-22), 5.87 (1H, d, J=10.38 Hz, H-2), 5.62 (1H, s, H-17), 4.56 (1H, m, H-7), 3.53 (1H, s, H-15), 2.50 (1H, m, H-9), 2.17 (1H, m, H-5), 2.11 (3H, s, -CO<u>C</u>H₃), 1.25 (3H, s, H-18), 1.23 (3H, s, H-19), 1.16 (3H, s, H-30), 1.08 (3H, s, H-29), 1.07 (3H, s, H-28).

¹³C NMR (100 MHz, CDCl₃); δ(ppm): 203.93 (C-3), 169.87 (C-<u>C</u>OCH₃), 167.42 (C-16), 156.90 (C-1), 143.08 (C-23), 141.20 (C-21), 126.01 (C-2), 120.44 (C-20), 109.86 (C-22), 78.26 (C-17), 73.24 (C-7), 69.76 (C-14), 56.89 (C-15), 46.05 (C-5), 44.05 (C-4), 42.64 (C-8), 40.04 (C-10), 39.54 (C-9), 38.74 (C-13), 27.16 (C-28), 26.02 (C-12), 23.26 (C-6), 21.18 (C-29), 21.05 (C-CO<u>C</u>H₃), 19.72 (C-19), 18.30 (C-30), 17.74 (C-18), 14.99 (C-11).

<u>12β-Hydroxygedunin (20):</u>

White solid; $[\alpha]^{28}_{D} = +11.6 (c \ 1.00, \text{CHCl}_3)$; UV (Me₂CO) $\lambda_{\text{max}} = 214 \text{ nm}$.

LC-ESI-MS (m/z): 521.2 ($[M+Na]^+$), 499.2 ($[M+H]^+$), 439.1 ($[M-OAc]^+$).

MALDI-TOF (m/z): 521.2167 ([M+Na]⁺) (Calculated: 521.2152).

IR (CHCl₃) v_{max} (cm⁻¹): 3393 (-OH), 1734 (Acetate carbonyl and D ring ketone), 1657 (A ring ketone), 1370 (A ring geminal methyls), 1216 (Acetate C-O), 1026, 874 (Furan ring).

¹**H NMR (400 MHz, CDCl₃); δ(ppm):** 7.51 (1H, m, H-21), 7.43 (1H, m, H-23), 7.04 (1H, d, J=10.29 Hz, H-1), 6.47 (1H, m, H-22), 6.18 (1H, s, H-17), 5.87 (1H, d, J=10.04 Hz, H-2), 4.57 (1H, m, H-7), 3.94 (1H, br. d, J= 7.6 Hz, H-12), 3.45 (1H, s, H-15), 2.46-2.56 (2H, m, H-9,11α), 2.17 (1H, m, H-5), 2.12 (3H, s, -CO<u>C</u>H₃), 1.34 (3H, s, H-18), 1.25 (3H, s, H-19), 1.17 (3H, s, H-30), 1.08 (3H, s, H-29), 1.07 (3H, s, H-28).

¹³C NMR (100 MHz, CDCl₃); δ(ppm): 203.90 (C-3), 169.89 (C-<u>C</u>OCH₃), 167.41 (C-16), 156.42 (C-1), 143.21 (C-23), 141.45 (C-21), 126.19 (C-2), 120.02 (C-20), 109.86 (C-22), 75.57 (C-17), 73.38 (C-7), 69.22 (C-12), 68.28 (C-14), 55.02 (C-15), 46.09 (C-5), 44.06 (C-4), 42.82,42.32 (C-8,13), 39.90 (C-10), 39.22 (C-9), 28.39 (C-11), 27.13 (C-28), 23.14 (C-6), 21.17 (C-29), 21.06 (C-CO<u>C</u>H₃), 19.87 (C-19), 18.16 (C-30), 15.75 (C-18).

Section C. Copies of NMR and LC-MS spectra

<u>17β-Hydroxyazadiradione</u>(2)

<u>12β-Hydroxyazadiradione</u>(**3**)

<u>17β-Hydroxy-1,2-Dihydroazadiradione</u>(5)

<u>12β-Hydroxy-1,2-Dihydroazadiradione (6)</u>

<u>17β-Hydroxy-1,2α-Epoxyazadiradione (8)</u>

<u>12β-Hydroxy-1,2α-Epoxyazadiradione (9)</u>

Epoxyazadiradione (10)

Electronic Supplementary Material (ESI) for Green Chemistry This journal is C The Royal Society of Chemistry 2013

<u>12β-Hydroxy-1,2-Dihydroepoxyazadiradione</u> (13)

Electronic Supplementary Material (ESI) for Green Chemistry This journal is O The Royal Society of Chemistry 2013

Nimbocinol (14)

Electronic Supplementary Material (ESI) for Green Chemistry This journal is C The Royal Society of Chemistry 2013

Chemical Shift (ppm)

<u>12β-Hydroxy-7-deacetylepoxyazadiradione</u> (18)

Electronic Supplementary Material (ESI) for Green Chemistry This journal is O The Royal Society of Chemistry 2013

<u>12β-Hydroxygedunin</u> (20)

