Supporting information

Reduction of sulfoxides and pyridine-N-oxides over iron powder with water as hydrogen source promoted by carbon dioxide

Ran Ma,^a An-Hua Liu,^a Cheng-Bin Huang,^a Xue-Dong Li^a and Liang-Nian He^{*a}

State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of

China

Fax: (+86)-22-2350-3878; E-mail: heln@nankai.edu.cn

Contents Table

- 1. General procedure for the reduction of sulfoxides
- 2. General procedure for the reduction of pyridine-N-oxides
- 3. Analytic data of the substrate and products
- 4. NMR and GC-MS spectra of the substrate and products
- 5. References

1. General procedure for the reduction of sulfoxides

A mixture of sulfoxides (1 mmol), Fe (2 mmol, 0.1117 g), H₂O (2 mL) was placed in a 50 mL stainless steel autoclave equipped with an inner glass tube at room temperature. The vessel was sealed and CO₂ was subsequently introduced into the autoclave. The system was heated under the predetermined reaction temperature for 25 min to reach the equilibration, then the final pressure was adjusted to the desired pressure by introducing the correct amount of CO₂. After the reaction was finished, the vessel was cooled within an ice-bath and the pressure was released slowly to atmospheric pressure. The products were diluted with ethyl acetate and analyzed by GC. The residue was purified by column chromatography on silica gel (200-300 mesh, eluting with *n*-hexane) to afford the desired product. The isolated products were further identified with NMR spectra and GC-MS, which are consistent with those reported in the literature.

2. General procedure for the reduction of pyridine-N-oxides

A mixture of pyridine-N-oxides (1 mmol), Fe (2 mmol, 0.1117 g), H₂O (2 mL) was placed in a 50 mL stainless steel autoclave equipped with an inner glass tube at room temperature. The vessel was sealed and CO₂ was subsequently introduced into the autoclave. The system was heated under the predetermined reaction temperature for 25 min to reach the equilibration, then the final pressure was adjusted to the desired pressure by introducing the correct amount of CO₂. After the reaction was finished, the vessel was cooled with an ice-bath and the pressure was released slowly to atmospheric pressure. The products were diluted with diethyl ether or acetone and analyzed by GC. The residue was purified by column chromatography on silica gel (200-300 mesh, eluting with *n*-hexane and ethyl acetate or methanol) to afford the desired product. The isolated products were further identified with NMR spectra and GC-MS, which are consistent with those reported in the literature.

3. Analytic data of the substrate and products

p-Tolyl methyl sulfoxide.¹ The product was obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl3) δ (ppm): 7.52 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 2.69 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm):142.44, 141.48, 130.02, 123.52, 43.96, 21.37.

4-Methoxyphenyl methyl sulfoxide.¹ The product was obtained as a pale yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ (ppm):7.60 – 7.48 (m, 2H), 6.97 (d, *J* = 8.8 Hz, 2H), 3.79 (s, 3H), 2.64 (s, 3H).¹³C NMR (100.6 MHz, CDCl₃) δ (ppm): 161.96, 136.51, 125.46, 114.85, 55.53, 43.96.

p-Chlorophenyl methyl sulfoxide. ¹ The product was obtained as a yellow solid. ¹H NMR (400 MHz, CDCl3) δ (ppm):7.58 – 7.52 (m, 2H), 7.49 – 7.43 (m, 2H), 2.68 (s, 3H). ¹³C NMR (100.6 MHz, CDCl3) δ (ppm):144.14, 137.22, 129.64, 124.98, 43.99.

Phenyl vinyl sulfoxide.² The product was obtained as a pale yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ (ppm):7.67 – 7.40 (m, 5H), 6.58 (dd, *J* = 16.5, 9.6 Hz, 1H), 6.19 (d, *J* = 16.5 Hz, 1H), 5.88 (d, *J* = 9.6 Hz, 1H).¹³C NMR (100.6 MHz, CDCl₃) δ (ppm):143.17, 142.86, 131.30, 129.48, 124.69, 120.80.

Diphenyl sulfide.³ The product was obtained as a pale yellow liquid (0.169g, 90.9% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm):7.39 (d, J = 7.4 Hz, 4H), 7.34 (dd, J = 9.9, 4.8 Hz, 4H), 7.28 (dd, J = 7.6, 5.1 Hz, 2H). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm):135.86, 131.10, 129.25, 127.10. EI-MS, m/z (%): 186 (100) [M⁺].

Phenyl methyl sulfide.³ The product was obtained as a pale yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ (ppm):7.32 – 7.20 (m, 4H), 7.17 – 7.07 (m, 1H), 2.47 (s, 3H).¹³C NMR (100.6 MHz, CDCl₃) δ (ppm):138.40, 128.80, 126.61, 125.00, 15.83. EI-MS, *m*/*z* (%): 124 (100) [M⁺].

p-Tolyl methyl sulfide.⁴ The product was obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ (ppm):7.24 – 7.16 (m, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 2.48 (s, 3H), 2.33 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm):135.03, 134.68, 129.59, 127.27, 20.91, 16.51. EI-MS, *m/z* (%): 138 (100) [M⁺].

4-Methoxyphenyl methyl sulfide.⁴ The product was obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ (ppm):7.23 (d, J = 8.6 Hz, 2H), 6.81 (d, J = 8.6 Hz, 2H), 3.75 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm):158.21, 130.21, 128.78, 114.62, 55.37, 18.09. EI-MS, m/z (%): 154 (93) [M⁺].

CI

p-Chlorophenyl methyl sulfide.⁴ The product was obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ (ppm):7.24 (d, J = 8.5 Hz, 2H), 7.20 – 7.12 (m, 2H), 2.46 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm):136.99, 130.89, 128.90, 127.90, 16.09. EI-MS, m/z (%): 158 (100) [M⁺].

Phenyl vinyl sulfide.⁵ The product was obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ (ppm):7.50 (d, J = 7.5 Hz, 1H), 7.39 (d, J = 7.3 Hz, 2H), 7.36 – 7.30 (m, 3H), 6.55 (dd, J = 16.6, 9.6 Hz, 1H), 5.36 (dd, J = 13.1, 5.7 Hz, 2H). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm):134.26, 131.89, 130.52, 129.13, 127.52, 127.16, 127.13, 115.49. EI-MS, m/z 136 (77) [M⁺].

S C

4,4'-Dimethyldiphenylsulfide.⁶ The product was obtained as a white solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm):7.23 (d, *J* = 8.1 Hz, 4H), 7.10 (d, *J* = 8.0 Hz, 4H), 2.32 (s, 6H). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm):136.91, 132.66, 131.06, 129.91, 21.07. EI-MS, *m/z* (%): 214 (100) [M⁺].

4-CHLOROPHENYL SULFIDE.⁶ The product was obtained as a white solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm):7.36 – 7.13 (m, 8H). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm):133.93, 133.46, 132.30, 129.48. EI-MS, *m/z* 255 (14) [M⁺].

 \sim s

Di-N-butyl sulfide.⁶ The product was obtained as a pale yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ (ppm):2.56 – 2.44 (m, 4H), 1.56 (ddd, *J* = 12.5, 8.8, 7.2 Hz, 4H), 1.40 (dq, *J* = 14.3, 7.2 Hz, 4H), 0.91 (t, *J* = 7.3 Hz, 6H). ¹³C NMR (100.6 MHz, CDCl₃) δ

(ppm):31.85, 22.07, 13.72. EI-MS, *m*/*z* (%): 146 (43) [M⁺].

 $\langle \rangle$

Tetrahydrothiophene.⁷ The product was obtained as a pale yellow liquid.¹H NMR (400 MHz, CDCl₃) δ (ppm):2.95 – 2.64 (m, 4H), 2.03 – 1.78 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm):31.80, 31.08. EI-MS, *m/z* (%): 88 (74) [M⁺].

Pyridine.⁸ The product was obtained as a pale yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ (ppm):8.67 – 8.55 (m, 2H), 7.66 (dd, J = 10.7, 4.6 Hz, 1H), 7.34 – 7.22 (m, 2H). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm):149.86, 135.93, 123.72. EI-MS, m/z (%): 88 (74) [M⁺].

2-Methylpyridine.⁹ The product was obtained as a pale yellow liquid.¹H NMR (400 MHz, CDCl₃) δ (ppm):8.47 (d, J = 4.4 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.12 (d, J = 7.8 Hz, 1H), 7.09 – 6.99 (m, 1H), 2.53 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm):158.39, 149.14, 136.24, 123.25, 120.68, 24.48. EI-MS, m/z (%): 93 (100) [M⁺].

4-Methoxypyridine.¹⁰ The product was obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ (ppm):8.40 (d, J = 5.2 Hz, 2H), 6.79 (d, J = 6.2 Hz, 2H), 3.82 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm):165.59, 151.02, 109.87, 55.06. EI-MS, m/z (%): 109 (100) [M⁺].

2-Hydroxypyridine.¹¹ The product was obtained as a brown solid. ¹H NMR (400 MHz, MeOD) δ (ppm):7.74–7.26 (m, 2H), 6.71–6.22 (m, 2H). ¹³C NMR (100.6 MHz, MeOD) δ (ppm):165.84, 143.80, 136.05, 120.85, 108.59. EI-MS, *m/z* (%): 95 (100) [M⁺].

2-Chloropyridine.¹² The product was obtained as a pale yellow liquid. ¹H NMR (400 MHz, MeOD) δ (ppm):8.48 (dd, J = 6.4, 1.4 Hz, 1H), 7.80 (dd, J = 8.1, 1.9 Hz, 1H),

7.57 (td, J = 7.9, 1.5 Hz, 1H), 7.53–7.46 (m, 1H). ¹³C NMR (100.6 MHz, MeOD) δ (ppm):142.13, 140.39, 130.95, 129.22, 126.32. EI-MS, m/z (%): 113 (61) [M⁺].

Isoquinoline.¹³ The product was obtained as a yellow liquid.¹H NMR (400 MHz, CDCl₃) δ (ppm):9.25 (s, 1H), 8.52 (d, J = 5.8 Hz, 1H), 7.96 (d, J = 8.2 Hz, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.73–7.52 (m, 3H). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm):152.51, 142.96, 135.79, 130.37, 128.68, 127.64, 127.26, 126.47, 120.48. EI-MS, m/z (%): 129 (100) [M⁺].

4-Phenylpyridine.¹¹ The product was obtained as a white solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm):8.67 (d, *J* = 5.3 Hz, 2H), 7.65 (d, *J* = 7.2 Hz, 2H), 7.59–7.40 (m, 5H). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm):150.19, 148.47, 138.11, 129.13, 127.01, 121.67. EI-MS, *m*/*z* (%): 155 (100) [M⁺].

4-methyl morpholine.¹⁴ The product was obtained as a pale yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ (ppm):3.90–3.59 (m, 4H), 2.39 (s, 4H), 2.28 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm): 66.95, 55.46, 46.47. EI-MS, *m/z* (%): 101 (100) [M⁺].

4. NMR and GC-MS spectra of the substrate and products

4.1 ¹H NMR and ¹³C NMR spectra of the substrate and products

1H NMR(400 MHz, CDCl3)

7.26 7.21 7.21 7.21 7.20 7.19 7.13 - 2.48 - 2.33

Electronic Supplementary Material (ESI) for Green Chemistry This journal is The Royal Society of Chemistry 2013

5.38 5.37 5.35 5.33 7.51 7.49 7.49 7.39 7.37 7.37 7.37 7.37 7.33 6.58 6.58 6.58 6.55

1H NMR(400 MHz, CDCl3)

Electronic Supplementary Material (ESI) for Green Chemistry This journal is The Royal Society of Chemistry 2013

8.62 8.61 8.61 8.61 7.69 7.65 7.65 7.65 7.65 7.29 7.29 7.29 7.28 7.28 7.28 7.28

13C NMR(100.6 MHz, CDCl3)

4.2 GC-MS Spectral of the Products.

2.2 GC-MS Spectral Data of the Pyridines

5. References

- 1. B. Yu, A.-H. Liu, L.-N. He, B. Li, Z.-F. Diao and Y.-N. Li, Green Chem, 2012, 14, 957-962.
- 2. S. P. Das, J. J. Boruah, H. Chetry and N. S. Islam, Tetrahedron Lett, 2012, 53, 1163-1168.
- 3. A. C. Fernandes, J. A. Fernandes, C. C. Romão, L. F. Veiros and M. J. Calhorda, Organometallics, 2010, 29, 5517-5525.
- 4. M. Arisawa, Y. Nihei, T. Suzuki and M. Yamaguchi, Org Lett, 2012, 14, 855-857.
- 5. R. V. C. Carr, R. V. Williams and L. A. Paquette, J Org Chem, 1983, 48, 4976-4986.
- N. García, P. García-García, M. A. Fernández-Rodríguez, R. Rubio, M. R. Pedrosa, F. J. Arnáiz and R. Sanz, Adv Synth Catal, 2012, 354, 321-327.
- 7. K. Smith, G. A. El-Hiti and A. J. Al-Zuhairi, Journal of Sulfur Chemistry, 2011, 32, 521-531.
- 8. P. Kircher, G. Huttner, K. Heinze, B. Schiemenz, L. Zsolnai, M. Büchner and A. Driess, Eur J Inorg Chem, 1998, 1998, 703-720.
- 9. N. B. Gowda, G. K. Rao and R. A. Ramakrishna, Tetrahedron Lett, 2010, 51, 5690-5693.
- 10. J. R. Hwu, W. N. Tseng, H. V. Patel, F. F. Wong, D.-N. Horng, B. R. Liaw and L. C. Lin, J Org Chem, 1999, 64, 2211-2218.
- 11. M. Toganoh, K. Fujino, S. Ikeda and H. Furuta, Tetrahedron Lett, 2008, 49, 1488-1491.
- 12. S. C. Schou, Journal of Labelled Compounds and Radiopharmaceuticals, 2009, 52, 376-381.

Electronic Supplementary Material (ESI) for Green Chemistry This journal is The Royal Society of Chemistry 2013

13. T. Tanaka, K.-i. Okunaga and M. Hayashi, Tetrahedron Lett, 2010, 51, 4633-4635.

14. S. Ouk, S. Thiébaud, E. Borredon and B. Chabaud, Synth Commun, 2005, 35, 3021-3026.