Electronic Supplementary Information (ESI)

Rhodium-catalyzed hydrogenation of olefins in γ-valerolactonebased ionic liquids

Andrea Strádi.ª Márk Molnár. ª Mihály Óvári. ª Gábor Dibó. ª Frank U. Richter ^b and László T. Mika ^{c.*}

 ^a Eötvös Loránd University. Institute of Chemistry. Pázmány Péter s. 1/a. Budapest. Hungary. H-1117.
^b BayerMaterialscience AG. D-51368 Leverkusen. Germany
^c Budapest University of Technology and Economics. Department of Chemical and Environmental Process Engineering. Budafoki str. 8. Budapest. Hungary. H-1111. Tel: +36 463 1263. Fax: +36 1463 3197. e-mail: <u>laszlo.t.mika@mail.bme.hu</u>

Table of contents

Viscosity values of ionic liquids2	
The activation energies (E_a) for viscous flow of the ionic liquids2	
Experimental details of hydrogenation of alkenes4	,
Results and conditions of catalyst recycling6	1
Analytical data of the hydrogenation products7	
¹ H-NMR and ¹³ C-NMR spectra of the ionic liquids8	1
Removal of GVL content from [TBA][4HV]14	,

	???????????????????????????????????????	??B?????????	22B2222MeO22	22B222EtO22	
Т					
(°C)	η	η	η	η	
	(mPa∙s)	(mPa∙s)	(mPa·s)	(mPa·s)	
20	1380	2060	1170	1310	
22	1170	1690	982	1100	
25.1	911	1250	748	835	
30.1	612	783	490	544	
35.1	426	508	332	367	
40.1	304	342	232	255	
45.1	221	237	166	182	
50.1	165	168	122	133	
55.1	125	123	91.3	99.2	
60.1	96.7	92	69.8	75.4	
65.1	75.9	70.2	54.5	58.6	
70.1	60.4	54.6	43.3	46.4	

ESI – Table S1. Viscosity values of ionic liquids

The activation energies (E_a) for viscous flow of the ionic liquids

ESI-FIG S1. Activation energy (*E*_a) of [THA][4HV]

ESI-FIG S2. Activation energy (E_a) of [TBA][4HV]

ESI-FIG S3. Activation energy (*E*_a) of [TBA][4MeOV]

ESI-FIG S4. Activation energy (E_a) of [TBA][4EtOV]

Entry	Substrate	n _{substrate}	Solvent	Reaction time	Reaction time	Yield of	m _{catalyst}	$n_{catalyst} \times 10^3$	TOF
Linuy	Substrate	(mmol)	Solvent	(h)	(min)	alkane (%)	(mg)	(mmol)	(h⁻¹)
1	hex-1-ene	9.70	[BMIM][CI]	2.00	120	0	1.62	3.99	0
2	hex-1-ene	10.30	[TBA][4HV]	2.00	120	>99.9	1.56	3.84	1339
3	hex-1-ene	10.21	[THA][4HV]	0.50	30	>99.9	1.65	4.06	5022
4	hex-1-ene	10.41	[TMA][4MV]	2.00	120	17	1.80	4.43	200
5	hex-1-ene	10.14	[TMA][4EV]	2.00	120	70	1.70	4.19	847
6	hex-1-ene	9.71	[TBA][4MV]	0.34	20	>99.9	2.16	5.32	5360
7	hex-1-ene	9.26	[TBA][4EV]	0.25	15	>99.9	1.98	4.88	7588
8	oct-1-ene	8.44	[BMIM][CI]	2.00	120	0	1.82	4.48	0
9	oct-1-ene	8.34	[TBA][4HV]	2.00	120	>99.9	1.69	4.16	1001
10	oct-1-ene	9.29	[THA][4HV]	1.50	90	>99.9	1.50	3.68	1679
11	oct-1-ene	8.08	[TMA][4MV]	2.00	120	20	1.70	4.19	193
12	oct-1-ene	7.49	[TMA][4EV]	2.00	120	35	1.70	4.19	313
13	oct-1-ene	9.30	[TBA][4MV]	0.34	20	>99.9	1.60	3.94	6933
14	oct-1-ene	7.97	[TBA][4EV]	0.25	15	>99.9	1.70	4.19	7605
15	dec-1-ene	6.73	[BMIM][CI]	4.00	240	0	1.44	3.55	0
16	dec-1-ene	6.85	[TBA][4HV]	4.00	240	>99.9	1.50	3.69	463
17	dec-1-ene	6.03	[THA][4HV]	0.75	45	97	1.80	4.43	1759
18	dec-1-ene	5.74	[TMA][4MV]	2.00	120	52	1.60	3.94	379
19	dec-1-ene	6.30	[TMA][4EV]	2.00	120	50.2	1.60	3.94	401
20	dec-1-ene	6.04	[TBA][4MV]	2.00	120	>99.9	1.70	4.19	721
21	dec-1-ene	6.63	[TBA][4EV]	1.00	60	97	1.70	4.19	1536
22	cyclohexene	9.16	[BMIM][CI]	3.00	180	0	1.80	4.43	0
23	cyclohexene	12.06	[TBA][4HV]	3.00	180	56	1.80	4.43	508

ESI - Table S2. Hydrogenation of olefins in different ionic liquids

Entry	Substrate	n _{substrate} (mmol)	Solvent	Reaction time (h)	Reaction time (min)	Yield of alkane (%)	m _{catalyst} (mg)	n _{catalyst} × 10 ³ (mmol)	TOF (h⁻¹)
24	cyclohexene	12.37	[THA][4HV]	3.00	180	70	1.90	4.68	617
25	cyclohexene	11.61	[TMA][4MV]	3.00	180	4.9	1.80	4.43	44
26	cyclohexene	11.16	[TMA][4EV]	3.00	180	4.8	1.90	4.68	39
27	cyclohexene	11.29	[TBA][4MV]	3.00	180	>99.9	1.60	3.94	941
28	cyclohexene	10.54	[TBA][4EV]	3.00	180	>99.9	1.70	4.19	898

Results and conditions of catalyst recycling

Cycle	m _{substrate} (g)	n _{substrate} (mol)	t (h)	Conversion (%)	Rh leaching (ppb)
1	1.3485	0.0161	3*	99.9	267
2	1.3372	0.0159	1.5	99.9	271
3	1.3321	0.0159	1	99.9	278
4	1.3487	0.0161	1	99.9	188
5	1.3266	0.0158	1	99.9	170
6	1.3181	0.0157	1	99.9	68
7	1.3669	0.0163	1	99.9	114
8	1.355	0.0161	1	99.9	101
9	1.371	0.0163	1	99.9	189
10	1.351	0.0161	1	99.9	101

ESI – Table S3. Catalyst recycling in the hydrogenation of hexe-1-ene in [TBA][4HV]

Conditions: 1.837 g (2 mL) [TBA][4HV]. 2.7 mg [Rh(cod)₂][BF₄]. 29.2 mg Bu-DPPDS (L3). 30 bar H_2 . 60 °C in biphasic system.

*At the start of the experiment no pre-hydrogenation was applied.

ESI – Ta	ble S4.	Catalyst recyc	ling in the	e hydrogenatio	on of cycloh	nex-2-en-1-	one in
[THA][4	HV]						

Cycle	m _{substrate} (g)	n _{substrate} (mol)	t (h)	Conversion (%)	Rh leaching (ppm)
1	1.3194	0.0137	6	13.3*	1.10
2	0.9978	0.0104	2	87.6	1.21
3	0.9951	0.0104	1.5	81.4	1.56
4	0.9818	0.0102	1.5	90.3	1.60
5	0.9461	0.0098	1.5	89.7	0.91
6	0.7928	0.0082	2	89.3	0.74
7	0.8969	0.0093	2	86.0	0.83
8	0.8355	0.0087	2	89.5	1.18
9	1.1562	0.0120	1.5	89.2	2.09
10	1.0268	0.0107	2	89.6	1.40

Conditions: 1.05 g (1 mL) [THA][4HV]. 1.80 mg $[Rh(cod)_2][BF_4]$. 12.70 mg Bu-DPPDS (L3). 30 bar H₂. 60 °C. in single phase system. The product was separated by extraction with 3x4 mL pentane.

*At the start of the experiment no pre-hydrogenation was applied.

ESI-FIG S5. GC-FID of the reaction mixture of hex-1-ene hydrogenation in [TBA][4HV] after 2 h

ESI-FIG S6. ¹H-NMR spectrum of the product mixture of the reduction of 2,3dimethyl-1,3-butadiene in [TBA][4HV]

¹H-NMR and ¹³C-NMR spectra of the ionic liquids

ESI-FIG S8. ¹³C-NMR spectrum of [THA][4HV]

ESI-FIG S10. ¹³C-NMR spectrum of [TMA][4MeOV]

ESI-FIG S12. ¹³C-NMR spectrum of [TBA][4MeOV]

ESI-FIG S14. ¹H-NMR spectrum of [TMA][4EtOV]

ESI-FIG S16. ¹H-NMR spectrum of [TBA][4EtOV]

ESI-FIG S18. HMBC NMR spectrum of [TBA][4EtOV]

Removal of GVL content from [TBA][4HV]

