Supporting information

CeO₂ as a versatile and reusable catalyst for transesterification of esters with alcohols under solvent-free conditions

Masazumi Tamura,^a S. M. A. Hakim Siddiki,^b Ken-ichi Shimizu^{*b,c}

^{*a*} Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.

^b Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto

615-8520, Japan

^c Catalysis Research Center, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan

Figure S1. Yield of *n*-octyl benzoate *vs* time in the gram scale transesterification of methyl benzoate (12.5 mmol), *n*-octyl alcohol (15.4 mmol) by CaO or $CeO_2(50 \text{ mg})$ at 160 °C under open system.

Figure S2. *In-situ* IR spectra of adsorption complexes formed by introduction of 1 μ L of (a) methyl acetate or (b) methanol to CeO₂, followed by purging with He flow for 600 s at 30 °C.

Figure S3. Effect of the *n*-octyl alcohol concentration on the reaction rate (*V*). Reaction conditions: methyl benzoate (1.0 mmol), *n*-octyl alcohol (0.25 - 2 mmol), metal oxide (50 mg), *o*-xylene (0.5 g), reflux.

Figure S4. Effect of the concentration of methyl benzoate on the reaction rate (V). Reaction conditions: methyl benzoate (0.25 - 2 mmol), *n*-octyl alcohol (1 mmol), metal oxide (50 mg), *o*-xylene (0.5 g), reflux.

NMR and GC/MS analysis

¹H and ¹³C NMR spectra for trans-esters of Table-3 and Table-4 were assigned and reproduced to the corresponding literature. ¹H and ¹³C NMR spectra were recorded using at ambient temperature on JEOL-ECX 600 operating at 600.17 and 150.92 MHz, respectively with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. All chemical shifts are reported relative to tetramethylsilane and *d*-solvent peaks (77.00 ppm, chloroform), respectively. Abbreviations used in the NMR experiments: s, singlet d, doublet; t, triplet; q, quartet; m, multiplet. GC-MS spectra was taken by SHIMADZU QP2010.

Data for Table-3

Octyl benzoate (**Product of T-3-Entry-1**)¹: ¹H NMR (CDCl₃) δ 8.04 (d, J = 8.28 Hz, 2H), 7.54 (t, J = 8.28 Hz, 1H), 7.43 (t, J = 7.5Hz, 2H), 4.31 (t, J = 6.84 Hz, 2H), 1.76 (m, 2H), 1.44 (m, 2H),

1.36-1.25 (m, 8H), 0.88 (t, J = 7.20 Hz, 3H); ¹³C NMR (CDCl₃) δ 166.64, 132.74, 130.47, 129.48(C×2), 128.26(C×2), 65.09, 29.22(C×2), 29.16, 28.67, 26.01, 22.61, 14.06; GC-MS m/e 234.200.

Octyl 4-fluorobenzoate (Product of T-3-Entry-2)²: ¹H NMR (CDCl₃) δ 8.06 (m, 2H), 7.11 (t like, 2H), 4.30 (t, J = 6.9 Hz, 2H), 1.76 (m, 2H), 1.42 (m, 2H), 1.39-1.22 (m, 8H), 0.89 (t, J = 7.20 Hz, 3H); ¹³C NMR (CDCl₃) δ 165.70, 165.64 (d, J = 254.31Hz, 4-F-C), 132.01(d, J = 8.66 Hz,

meta to 4-F, C×2), 126.70, 115.40 (d, J = 21.67 Hz, ortho to 4-F, C×2), 65.26, 31.75, 29.21, 29.16, 28.66, 25.99, 22.61, 14.06; GC-MS *m/e* 252.200.

Octyl 2-phenylacetate (Product of T-3-Entry-3)³: ¹H NMR (CDCl₃) δ 7.13-7.28 (m, 5H), 4.07 (t, J = 6.48 Hz, 2H), 3.61 (s, 2H), 1.63 (m, 2H), 1.42-1.22 (m, 10H), 0.88 (t, J = 6.9 Hz, 3H); ¹³C NMR (CDCl₃) δ 171.66, 134.15, 129.20(C×2), 128.48(C×2), 126.97, 64.99, 41.44, 31.72,

29.11(C×2), 28.50, 25.78, 22.60, 14.06; GC-MS *m/e* 248.200.

Octyl dodecanoate (Product of T-3-entry-4)⁴: ¹H NMR (CDCl₃) δ 4.06 (t, J = 6.9 Hz, 2H), 2.29 (m, 2H), 1.71-1.53 (m, 4H), 1.41-1.23 (m, 26H), 0.89-0.88 (m, 6H); ¹³C NMR (CDCl₃) δ 174.02, 64.38, 31.89, 29.58(C×4), 29.45(C×3), 29.31, 29.26, 29.19, 29.17, 29.14, 25.91, 22.62(C×2), 14.07 (C×2); GC-MS *m/e* 298.350.

Hexyl dodecanoate (Product of T-3-Entry-5)⁵: ¹H NMR (CDCl₃) δ 4.05 (t, J = 6.84 Hz, 2H), 2.29 (m, 2H), 1.57 (m, 4H), 1.31-1.19 (m, 22 H), 0.89-0.87 (m, 6H); ¹³C NMR (CDCl₃) δ 174.03, 64.38,

34.39, 31.89(C×2), 31.76, 31.42, 29.58(C×2), 29.45, 29.32, 29.26, 29.20, 29.14, 28.62, 28.59, 14.10, 13.98; GC-MS *m/e* 284.350.

Hexyl hexanoate (Product of T-3-Entry-6)⁶: ¹H NMR (CDCl₃) δ 4.05 (t, J = 6.84 Hz, 2H), 2.29 (m, 2H), 1.55-1.51 (m, 4H), 1.38-1.29 (m, 10H), 0.89-0.88 (m, 6H); ¹³C NMR (CDCl₃) δ 173.96, 64.33, 34.31, 31.38, 31.28, 28.56, 25.55, 24.66, 22.50, 22.28, 13.94, 13.86; GC-MS *m/e* 186.200.

Octyl picolinate (Product of T-3-Entry-7)⁷: ¹H NMR (CDCl₃) δ 8.77 (d, J = 4.8 Hz, 1H), 8.13 (d, J = 7.56 Hz, 1H), 7.85 (t like, 1H), 7.48 (t like, 1H), 4.41 (t, J = 6.9 Hz, 2H), 1.83 (m, 2H), 1.43 (m, 2H), 1.38-1.22 (m, 8H), 0.87 (t, J = 6.9 Hz, 3H); ¹³C NMR (CDCl₃) δ 165.24, 149.85, 148.24,

136.91, 126.74, 125.04, 66.09, 31.73, 29.19, 29.11, 28.61, 25.85, 22.58, 14.04; GC-MS *m/e* 235.150.

Octyl picolinate (Product of T-3-Entry-8)⁷: ¹H NMR (CDCl₃) δ 8.77 (d, J = 4.8 Hz, 1H), 8.13 (d, J = 7.56 Hz, 1H), 7.85 (t like, 1H), 7.48 (t like, 1H), 4.41 (t, J = 6.9 Hz, 2H), 1.82 (m, 2H), 1.43 (m, 2H), 1.36-1.22 (m, 8H), 0.87 (t, J = 6.9 Hz, 3H); ¹³C NMR (CDCl₃) δ 165.24, 149.85, 148.24,

136.91, 126.74, 125.04, 66.09, 31.73, 29.19, 29.11, 28.61, 25.85, 22.58, 14.04; GC-MS *m/e* 235.150.

Octyl pyrazine-2-carboxylate (Product of T-3-Entry-9)⁸: ¹H NMR (CDCl₃) δ 9.31 (s, 1H), 8.77 (d like, 1H), 8.75 (d like, 1H), 4.45 (t, *J* = 6.9 Hz, 2H), 1.83 (m, 2H), 1.44 (m, 2H), 1.36-1.22 (m, 8H), 0.88 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (CDCl₃) δ 163.94, 147.53, 146.22, 144.42, 143.58, 66.50,

31.71, 29.14, 29.10, 28.54, 25.82, 25.58, 14.04; GC-MS *m/e* 236.150.

Octyl furan-2-carboxylate (Product of T-3-Entry-10)⁹: ¹H NMR (CDCl₃) δ 7.57 (s, 1H), 7.17 (d, J = 3.42 Hz, 1H), 6.50 (m, 1H), 4.30 (t, J = 6.78 Hz, 2H), 1.73 (m, 2H), 1.40 (m, 2H), 1.38-1.22 (m, 8H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃) δ 158.84, 146.12, 144.84, 117.64, 111.73, 65.08,

31.73, 29.16, 29.12, 28.63, 25.85, 22.59, 14.04; GC-MS *m/e* 224.140.

Thiophene-2-carboxylic acid octyl ester (Product of T-3-Entry-11)¹⁰: ¹H NMR (CDCl₃) δ \circ 7.80 (d, J = 4.14 Hz, 1H), 7.54 (d, J = 4.80 Hz, 1H), 7.09 (t, J = 4.3 Hz, 1H), 4.28 (t, J = 6.54 Hz, 2H), 1.75-1.72 (m, 2H), 1.42-1.38 (m, 2H), 1.34-1.26 (m, 8H), 0.88 (t, J = 6.87 Hz, 3H); ¹³C NMR (CDCl₃)

δ 162.30, 134.06, 133.16, 132.10, 127.63, 65.26, 31.74, 29.17, 29.14, 28.63, 25.90, 22.60, 14.05; GC-MS *m/e* 240.100.

Hexanoic acid octyl ester (Product of T-3-Entry 12)²⁰: ¹H NMR (CDCl₃) δ 4.05 (t, J = 6.51, Hz, 2H), 2.29 (t, J = 7.53 Hz, 2H), 1.63-1.60 (m, 4H), 1.31-1.28 (m, 14H), 0.89-0.87 (m, 6H); ¹³C NMR (CDCl₃) δ 173.97, 64.36, 34.33, 31.74, 31.29, 29.18, 29.16, 28.61, 25.89, 24.68, 22.60, 22.29, 14.04, 13.88; GC-MS *m/e* 228.380.

Hexanoic acid 1-methyl-heptyl ester (Product of T-3-Entry 13)²⁰: ¹H NMR (CDCl₃) δ 4.89 (m, 1H), 2.26 (t, J = 7.56 Hz, 2H), 1.63-1.55 (m, 3H), 1.46 (m, 1H), 1.36-1.22 (m, 12 H), 1.19 (d, J = 6.84 Hz, 3H), 0.89-0.87 (m, 6H); ¹³C NMR (CDCl₃) δ 173.54, 70.67, 35.93, 34.68, 31.72, 31.29, 29.07, 25.34, 24.76, 22.54, 22.30, 19.99, 14.02, 13.88; GC-MS *m/e* 228.360.

Octyl benzoate (Product of T-3-Entry-14)¹: ¹H NMR (CDCl₃) δ ¹H NMR (CDCl₃) δ 8.04 (d, J = 8.28 Hz, 2H), 7.54 (t, J = 8.28 Hz, 1H), 7.43 (t, J = 7.5 Hz, 2H), 4.31 (t, J = 6.84 Hz, 2H), 1.76 (m, 2H), 1.44 (m, 2H), 1.36-1.25 (m, 8H), 0.88 (t, J = 7.20 Hz, 3H); ¹³C NMR (CDCl₃) δ 166.64, 132.74, 130.47, 129.48(C×2),

128.26(C×2), 65.09, 29.22(C×2), 29.16, 28.67, 26.01, 22.61, 14.06; GC-MS *m/e* 234.200.

Benzoic acid 1-methyl-heptyl ester (Product of T-3-Entry-15) ³: ¹H NMR (CDCl₃) δ 8.04 (d, *J* = 8.26 Hz, 2H), 7.53 (t, *J* = 7.54 Hz, 1H), 7.33 (t, *J* = 7.54 Hz, 2H), 5.14 (m, 1H), 1.73 (m, 1H), 1.60 (m, 1H). 1.45- 1.26 (m, 11H), 0.87 (t, J = 7.25 Hz, 3H); ¹³C NMR (CDCl₃) δ 166.13, 132.59, 130.86, 129.43, 128.19, 71.64, 36.01, 31.68, 29.10,

25.35, 22.52, 20.01, 14.01; GC-MS m/e 234.200.

Data for Table-4

Octyl benzoate (Product of T-4-Entry-1)¹: ¹H NMR (CDCl₃) δ 8.04 (d, J = 8.28 Hz, 2H), 7.54 (t, J = 8.28 Hz, 1H), 7.43 (t, J = 7.5 Hz, 2H), 4.31 (t, J = 6.84 Hz, 2H), 1.76 (m, 2H), 1.44 (m, 2H), 1.36-1.25 (m, 8H), 0.88 (t, J = 7.20 Hz, 3H); ¹³C NMR (CDCl₃) δ 166.64, 132.74, 130.47,

129.48(C×2), 128.26(C×2), 65.09, 29.22(C×2), 29.16, 28.67, 26.01, 22.61, 14.06; GC-MS *m/e* 234.200.

Benzoic acid decyl ester (Product of T-4-Entry-2)¹¹: ¹H NMR (CDCl₃) δ 8.04 (d, J = 6.9 Hz, 2H), 7.55 (t, J = 7.56 Hz, 1H), 7.43 (t, J = 7.56 Hz, 2H), 4.31 (t, J = 6.48 Hz, 2H) 1.76 (m, 2H), 1.44 (m, 2H), 1.36-1.22 (m,

12H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃) δ 166.66,

132.75, 130.48, 129.48(C×2), 128.27(C×2), 65.11, 31.86, 29.50(C×2), 29.27, 29.26, 28.68, 26.01, 22.65, 14.09; GC-MS *m/e* 262.350.

Hexyl benzoate (Product of T-4-Entry-3)¹²: ¹H NMR (CDCl₃) δ 8.05 (d, J = 8.28 Hz, 2H), 7.54 (t, J = 7.56 Hz, 1H), 7.43 (t, J = 7.56 Hz, 2H), 4.30 (t, J = 6.9 Hz, 2H), 1.76 (m, 2H), 1.44 (m, 2H), 1.38-1.32 (m, 4H), 0.90 (t, J = 6.54 Hz, 3H); ¹³C NMR (CDCl₃) δ 166.64, 132.74, 130.47, 129.48(C×2),

128.26(C×2), 65.08, 31.43, 28.63, 25.67, 22.51, 13.98; GC-MS *m/e* 206.250.

Cyclohexylmethyl benzoate (Product of T-4-Entry-5)¹³: ¹H NMR (CDCl₃) δ 8.05 (d, J = 8.22Hz, 2H), 7.55 (t, J = 7.56 Hz, 1H), 7.43 (t, J = 7.56 Hz, 2H) 4.12 (t, J = 6.9Hz, 2H), 1.84 (m, 2H), 1.81-1.75 (m, 3H), 1.69 (m, 1H), 1.28 (m, 2H), 1.20(m, 1H), 1.07 (m, 2H), ; ¹³C NMR (CDCl₃) δ 166.63, 132.75, 130.49,

129.48(C×2), 128.28(C×2), 70.02, 37.22, 29.71(C×2), 26.33, 25.67(C×2); GC-MS *m/e* 218.250.

Cinnamyl benzoate (Product of T-4-Entry-6)¹⁴: ¹H NMR (CDCl₃) δ 8.09 (d, J = 7.86 Hz, 2H), 7.57-7.53 (m, 2H), 7.46-7.42 (m, 2H), 7.36-7.32 (m, 2H), 7.28-7.7.24 (m, 2H), 6.74 (d, J = 15.84 Hz, 1H), 6.41 (m, 1H), 4.99 (d, J = 6.18 Hz, 2H); ¹³C NMR (CDCl₃) δ 166.38, 136.22, 134.22, 132.98, 129.62(C×2),

128.58(C×2), 128.47, 128.33(C×2), 128.06, 126.60(C×2), 123.19, 65.52; GC-MS *m/e* 238.250.

Benzyl benzoate (Product of T-4-Entry-7)¹⁵: ¹H NMR (CDCl₃) δ 8.08 (d, J = 4.56 Hz, 2H), 7.54 (t, J = 7.56 Hz, 1H), 7.45-7.41 (m, 4H), 7.39-7.32 (m, 3H) 5.36 (s, 2H); ¹³C NMR (CDCl₃) δ 166.39, 135.99, 133.0, 130.06, 129.66(C×2), 128.56(C×2), 128.33(C×2), , 128.20, 128.12(C×2), 66.65; GC-MS *m/e*

212.200.

4-methylbenzyl benzoate (Product of T-4-Entry-8)¹⁶: ¹H NMR (CDCl₃) δ 8.06 (d, J = 8.28 Hz, 2H), 7.54 (t, J = 7.92 Hz, 1H), 7.42 (t, J = 7.92 Hz, 2H), 7.35 (d, J = 8.22 Hz, 2H), 7.19 (d, J = 8.22 Hz, 2H), 5.32 (s, 2H), 2.35 (s, 3H); ¹³C NMR (CDCl₃) δ 166.45, 138.05, 132.98, 132.93, 130.15, 129.65(C×2), 129.23(C×2), 128.33(C×2), 128.30(C×2), 66.63, 21.19; GC-MS *m/e* 226.150.

4-methoxybenzyl benzoate (Product of T-4-Entry-9)¹⁷: ¹H NMR (CDCl₃) δ 8.05 (d, J = 7.56Hz, 2H), 7.58 (t, J = 7.56 Hz, 1H), 7.42-7.38 (m, 4H), 6.90 (d, J = 8.22Hz, 2H), 5.29 (s, 2H), 3.79 (s, 3H); ¹³C NMR (CDCl₃) δ 166.46, 159.57, 132.89, 130.17, 130.02(C×2), 129.60(C×2), 128.27 (C×2), 128.08, 113.89 (C×2), 66.48, 55.22; GC-MS *m/e* 242.200. **4-nitro benzoate (Product of T-4-Entry-10)**¹⁸: ¹H NMR (CDCl₃) δ 8.24 (d, J = 8.22 Hz, 2H), 8.09 (d, J = 7.56 Hz, 2H), 7.62-7.59 (m, 3H), 7.47 (t, J = 7.56 Hz, 2H), 5.46 (s, 2H); ¹³C NMR (CDCl₃) δ 166.06, 147.84, 143.29, 133.42, 129.66(C×2), 128.50(C×2), 128.25(C×2), 126.90, 123.79(C×2), 65.11; GC-MS *m/e* 257.150.

Benzoic acid 4-fluoro-benzyl ester (Product of T-4-Entry-11)¹⁹: ¹H NMR (CDCl₃) δ 8.06 (d, J = 7.56 Hz, 2H), 7.55 (t, J = 7.56Hz, 1H), 7.44-7.41 (m, 4H), 7.06 (t, J =8.58 Hz, 2H), 5.32 (s, 2H); ¹³C NMR (CDCl₃) δ 166.33, 162.61 (d, J =F 247.49 Hz, 4-F-C), 133.07, 131.84(C×2), 130.19, 130.14, 129.93,

129.63(C×2), 128.36(C×2), 115.48(d, *J* = 21.67 Hz, ortho to 4-F), 65.94; GC-MS *m/e* 230.150.

Benzoic acid 1-methyl-heptyl ester (Product of T-4-Entry-12) ³: ¹H NMR (CDCl₃) δ 8.04 (d, J = 8.26 Hz, 2H), 7.53 (t, J = 7.54 Hz, 1H), 7.33 (t, J = 7.54 Hz, 2H), 5.14 (m, 1H), 1.73 (m, 1H), 1.60 (m, 1H). 1.45- 1.26 (m, 11H), 0.87 (t, J = 7.25 Hz, 3H); ¹³C NMR (CDCl₃) δ 166.13, 132.59, 130.86, 129.43, 128.19, 71.64, 36.01, 31.68, 29.10,

25.35, 22.52, 20.01, 14.01; GC-MS *m/e* 234.200.

References:

1. C. Liu, J. Wang, L. Meng, Y. Deng, Y. Li, A. Lei. Angew. Chem. Int. Ed. 2011, 50, 5144.

2. (a) M. Tamura, T. Tonomura, K. Shimizu, A. Satsuma. *Green Chem.* **2012**, *14*, 984; (b) Joshi, Giri. *Journal of the Indian Chemical Society*, **1962**, 39, 495.

- 3. A. K. Chakraborti, B. Singh, S. V. Chankeshwara, A. R. Patel. J. Org. Chem. 2009, 74, 5967.
- 4. H. P. Nguyen, S. Znifeche, M. Baboule'ne. Synth. Commun. 2004, 34, 2085.
- 5. D, Sarova, A. Kapoor, R. Narang, V. Judge, B. Narasimhan. Med. Chem. Res. 2011, 20, 769.
- 6. T. Ooi, T. Miura, Y. Itagaki, H. Ichikawa, K. Maruoka. Synthesis, 2002, 2, 279.

7. M. Gema, M. Muiioz, M. Fierroz, M. Isabel, R. France, S. Conde. *Tetrahedron*, **1994**, *50*, 6999.

8. S. Yamamoto, I. Toida, N. Watanabe, T. Ura. *Antimicrobial Agents and Chemotherapy*, **1995**, *39*, 2088.

9. J. Barry, G. Bram, G. Decodts, A. Loupy, C. Orange, A. Petit, J. Sansoulet, J. Synth.Commun. 1985, 15, 40.

10. N. Mori, H. Togo. Tetrahedron 2005, 61, 5915.

11. C. Behloul, D. Guijarro, M. Yus, Synthesis, 2006, 2, 309.

12. S. Gowrisankar, H. Neumann, M. Beller. Angew. Chem. Int. Ed. 2011, 50, 5139.

13. C. Yudong, D. Hai-Shan, R. P. Brian. J. Chem. Soc., Perkin Trans. 1, 2002, 2449.

14. C. Reuben, D. Philip. J. Org. Chem. 2001, 66, 7159.

15. K. Ishihara, M. Niwa, Y. Kosugi. Org. Lett. 2008, 10, 2187.

16. C. Liu, S. Tang, L. Zheng, D. Liu, H. Zhang, A. Lei. Angew. Chem. Int. Ed. 2012, 51, 5662.

17. A. M. Harned, H. H. Song, H. T. Patrick, L. F. Daniel, R. H. Paul. J. Am. Chem. Soc. 2005, 127, 52.

18. E. Nomura, H. Taniguchi, K. Kawaguchi, Y. Otsujit. J. Org. Chem. 1993, 58, 4709.

19. O. Ohno, M. Ye, T. Koyama, K. Yazawa, E. Mura, H. Matsumoto, T. Ichino, K. Yamada, K. Nakamura, T. Ohno, K. Yamaguchi, J. Ishida, A. Fukamizud, D. Uemuraa.

Bioorg. Med. Chem. 2008, 16, 7843.

20. J. P. Cesar de, R. Marcos, C. Nascimento, M. de. Graca. *Tetrahedron: Asymmetry*, **1995**, *6*, 63.

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

.

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

.

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

1

.

5 1.7			G	JEOL
			Filer Autho Expension Solve Creat Revis Curre	name = Exp-T-3-6-carbon-3.jd or = delta riment = single_pulse_dec le_id = Exp-T-3-6-carbon ent = CHLOROFORM-D tion_time = 29-NOV-2012 21:01:37 sion_time = 5-DEC-2012 20:32:00 ent_time = 5-DEC-2012 20:32:09
1.2 1.3			Conte Data Dim_s Dim_t Dim_t Dimer Site Spect	ant = Exp-T-3-6-carbon _format = 1D COMPLEX size = 26214 title = 13C - mits = [ppm] sions = X = ECA 600 trometer = DELTA2_NMR
7 0.8 0.9 1.0 1.1			Field X_acc X_dom X_free X_off X_pre X_res X_swe Irr_d Irr_f Clipy Mod Scame Total	A_strength = 14.09636928[T] (600[M y_duration = 0.69206016[s] main = 13C aq = 150.91343039[MHz] fast = 100[ppm] ints = 32768 sscans = 4 solution = 1.44496109[Hz] lomain = 1H freq = 600.1723046[MHz] offset = 5[ppm] ped = FALSE ceturn = 1 s = 66 _scans = 66
			X_90 X_acc X_arg X_atr X_atr Irr_s Irr_s Irr_s Irr_s Noc Noc Noc Noc Noc Recov Relax Repost Temp	<pre>width = 11.3[us] ytime = 0.69206016[s] yle = 30[deg]</pre>
0 0.1 0.2		14 a 13 lean (10 a 107) 24 14 107 a 10 (10 lean (1 de 10 a 1)	เป็นเป็น เป็นเป็นแรกเห็น และ ถู่น้ำและ ไป เป็นเป็นประเทศ เป็นเป็น เป็นเป็น เป็นเป็น เป็นเป็นเป็นเป็นเป็น เป็นเป็น เป็นเป็น เป็นเป็น เป็นเป็น เป็นเป็น เป็นเป็น เป็นเป็น เป็นเป็น เป็นเป็น	· ,
1	עיייקוייז איז איז איז איז איז איז איז איז איז	דעדעישו איזיינין איניעשראי איזייניער איזיין 60.0 50.0 40.0 30.0 20.0 1	1 ² ² ² ² ² τ ² ² τ	
	X : parts per Million : 13C			

-

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013 $\frac{1.5}{1.5}$

لمكالك المسالية الملاسية

	ØL	EDL
	Filename Author Experiment Sample_id Solvent Creation_time Current_time	<pre>= Exp-T-3-9-carbon-3.jd = delta = single_pulse_dec = Exp-T-3-9-carbon = CHLOROFORM-D = 29-NOV-2012 21:36:23 = 5-DEC-2012 20:38:32 = 5-DEC-2012 20:38:38</pre>
	Content Data_format Dim_size Dim_title Dim_units Dimensions Site Spectrometer	= ExD-T-3-9-carbon = 1D COMPLEX = 26214 = 13C = [ppm] = X = ECA 600 = DELTA2_NMR
•	Field_strength X_acq_duration X_freq X_offset X_points X_prescans X_resolution X_sweep Irr_domain Irr_freq Irr_offset Clipped Mod return	<pre>= 14.09636928[T] (600[M = 0.69206016[s] = 13C = 150.91343039[MHz] = 100[ppm] = 32768 = 4 = 1.44496109[Hz] = 47.34848485[kHz] = 1H = 600.1723046[MHz] = 5[ppm] = FALSE = 1</pre>
	Scans Total_scans X_90_width X_acq_time X_angle X_atn X_pulse Irr_atn_dec Irr_atn_dec Irr_atn_noe Irr_noise Decoupling Initial_wait Noe Noe_time Recvr_gain	<pre>= 67 = 67 = 67 = 0.69206016[s] = 30[deg] = 3.76666667[us] = 19.34784[dB] = 19.34784[dB] = WALTZ = TRUE = 1[s] = TRUE = 2[s] = 60</pre>
بۇرۇل مۇل يىلىرى بەر يەرىيە ئەرىكى ئىلىرىغ	Relaxation_delay Repetition_time Temp_get	= 2[s] = 2.69206016[s] = 20.1[dC]
feller for all the set of the first factor		

0 -10.0 -20.0

X : parts per Million : 13C

abundance

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is $\textcircled{\sc opt}{\sc opt}$ The Royal Society of Chemistry 2013

0.4			JEOL
		Filename Author Experiment Sample_id Solvent Creation_time Revision_time Current_time	<pre>≈ Exp-T-3-10-carbon-3.j = delta = single_pulse_dec = Exp-T-3-10-carbon = CHLOROFORM-D = 29-NOV-2012 21:46:04 ≈ 5-DEC-2012 21:37:25 = 5-DEC-2012 21:37:32</pre>
0.3		Content Data_format Dim_size Dim_title Dim_units Dimensions Site Spectrometer	= Exp-T-3-10-carbon = 1D COMPLEX = 26214 = 13C = [ppm] = X = ECA 600 = DELTA2_NMR
0.2		Field_strength X_acg_duration X_domain X_freq X_offset X_points X_prescans X_resolution X_sweep Irr_domain Irr_freq Irr_offset Clipped Mod_return Scans Total_scans	<pre>= 14.09636928[T] (600[M = 0.69206016[s] = 13C = 150.91343039[MHz] = 100[ppm] = 32768 = 4 = 1.44496109[Hz] = 47.34848485[kHz] = 1H = 600.1723046[MHz] = 5[ppm] = FALSE = 1 = 76 = 76</pre>
0.1		X_90_width X_acq_time X_angle X_atn X_pulse Irr_atn_noe Irr_noise Decoupling Initial_wait Noe Noe_time Recvr_gain Relaxation_delay Repetition_time Temp_get	<pre># 11.3[us] = 0.69206016[s] = 30[deg] = 8[dB] = 3.766666667[us] = 19.34784[dB] = 19.34784[dB] = WALTZ = TRUE = 1[s] = TRUE = 2[s] = 50 7 2[s] = 2.69206016[s] = 20[dC]</pre>
abundance 0	۲ - - - 		
	220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 160.0 90.0 80.0 X : parts per Million : 13C	0.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0	

•

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry

This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

.

.

.

Electronic Supplementary Material (ESI) for Green Chemistry This journal is O The Royal Society of Chemistry 2013

.

		Filename = Exp-T-4-3-carbon-3.jd Author = delta Experiment = single_pulse_dec Sample_id = Exp-T-4-3-carbon Solvent = CHLOROFORM-D Creation_time = 30-NOV-2012 19:31:12 Revision_time = 5-DEC-2012 20:46:08
7 18 19 2.0		Content = Exp-T-4-3-carbon Data_format = 1D COMPLEX Dim_size = 26214 Dim_title = 13C Dim_units = [ppm] Dimensions = X Site = ECA 600 Spectrometer = DELTA2_NMR
1.1 1.2 1.3 1.4 1.5 1.6 1.		Field_strength = 14.09636928[T] (600[M x_acq_duration = 0.69206016[s] x_domain = 13C X_freq = 150.91343039[MHz] X_offset = 100[ppm] X_points = 32768 X_prescans = 4 X_resolution = 1.44496109[Hz] X_sweep = 47.34848485[kHz] Irr_domain = 1H Irr_freq = 600.1723046[MHz] Irr_offset = 5[ppm] Clipped = FALSE Mod_return = 1 Scans = 57
4 0.5 0.6 0.7 0.8 0.9 1.0		<pre>X_90_width = 11.3[us] X_acq_time = 0.69206016[s] X_angle = 30[deg] X_atn = 8[dB] X_pulse = 3.76666667[us] Irr_atn_dec = 19.34784[dB] Irr_atn_noe = 19.34784[dB] Irr_noise = WALTZ Decoupling = TRUE Initial_wait = 1[s] Noe = TRUE Noe_time = 2[s] Recvr_gain = 60 Relaxation_delay = 2[s] Repetition_time = 2.69206016[s] Temp_get = 19.5[dC]</pre>
220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 14 X : parts per Million : 13C	.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0	

.

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

abundance

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

.

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

.

abundance

1.8 1.9 2.0			· · · · · · · · · · · · · · · · · · ·	Filename = Exp-129-2-carbon-5.jd = delta
1.6 1.7	Table 3, Product of e	entry 14		Experiment = single_pulse_dec Sample_id = Exp-129-2-carbon Solvent = CHLOROFORM-D Creation_time = 19-FEB-2013 18:29:32 Revision_time = 19-FEB-2013 18:31:00 Current_time = 19-FEB-2013 18:31:03
L3 1,4 1.5				Content = Exp-129-2-carbon Data_format = 1D COMPLEX Dim_size = 26214 Dim_title = 13C Dim_units = [ppm] Dimesions = X Site = ECA 600 Spectrometer = DELTA2_NMR
8 0.9 1.0 1.1 1.2]				Field_strength = 14.09636928[T] (600[M K_acq_duration = 0.69206016[s] K_domain = 13C K_freq = 150.91343039[MHz] K_offset = 100[ppm] K_points = 32768 K_prescans = 4 (resolution = 1.44496109[Hz] K_resolution = 1
0.4 0.5 0.6 0.7 0				<pre>K_90_width = 11.3[us] K_acq_time = 0.65206016[s] K_angle = 30[deg] K_atn = 8[dB] K_pulse = 3.76666667[us] Irr_atn_dec = 19.34784[dB] Irr_noe = 19.34784[dB] Irr_noise = WALTZ Decoupling = TRUE Initial_wait = 1[s] Noe = TRUE Noe_time = 2[s] Repetition_delay = 2[s] Repetition_time = 2.69206016[s] Femp_get = 20.7[dC]</pre>
0.1 0.2 0.3				
	220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130 X : parts per Million : 13C	.0 120.0 110.0 100.0 90.0 80.0	ана на рада на сала на село на Каја на село на 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 –10.0 –20.0	
	х			

.

.

