Supporting Information

An energy-efficient route to the rapid synthesis of organically-modified SBA-15 via ultrasonic template removal

Cyril Pirez,*^{a,b} Karen Wilson^c and Adam F. Lee*^{b,d}

^{a,b}Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, UK.
 ^bDepartment of Chemistry, University of Warwick, Coventry CV4 7AL, UK
 ^cEuropean Bioenergy Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
 ^dSchool of Chemistry, Monash University, Victoria 3800, Australia.
 E-mail: A.F.Lee@warwick.ac.uk

Structural characterisation

Fig. S1 Thermogravimetric analysis (TGA) profiles of $PrSO_3H$ -SBA-15: (a) as-synthesised (unextracted); (b) extracted by MeOH reflux (2 x 50 cm³); and (c) extracted by 5 min MeOH ultrasonication

Fig. S2 Thermogravimetric analysis (TGA) profiles of SBA-15: (a) as-synthesised (unextracted); (b) extracted by 5 min MeOH ultrasonication; and (c) extracted by MeOH reflux $(2 \times 50 \text{ cm}^3)$

NB. The greater mass losses in the SBA-15 sample extracted by ultrasonication compared to that extracted with MeOH may reflect the requirement for thermal activation to overcome H-bonding interactions between the P123 template and isolated silanol groups (c.f. DRIFT spectra in Fig. 5).

Material	Extraction method	Solvent extraction (50 cm ³ per 100 mg)	Duration	P123 / % wt loss ^a	%P123 ^b removed
SBA-15	As-synthesised	-	-	49	0
SBA-15	Calcination	-	-	1	98
SBA-15	Reflux	Toluene	24 h	32	35
SBA-15	Reflux	THF	24 h	10	80
SBA-15	Reflux	Acetone	24 h	12	76
SBA-15	Reflux	EtOH	24 h	11.8	76
SBA-15	Reflux	MeOH	24 h	10	80
SBA-15	Reflux ^c	MeOH*2	24 h	5	90
SBA-15	Ultrasonication	MeOH	5 min	30	39
SBA-15	Ultrasonication	MeOH	30 min	27	45
SBA-15	Ultrasonication	MeOH	1 h	28	43
PrSO ₃ H-SBA- 15	As-synthesised	-	-	35	0
PrSO ₃ H-SBA- 15	Reflux	Toluene	24 h	13.4	62
PrSO ₃ H-SBA- 15	Reflux	THF	24 h	11	69
PrSO ₃ H-SBA- 15	Reflux	Acetone	24 h	11.1	68
PrSO ₃ H-SBA- 15	Reflux	EtOH	24 h	9.8	72
PrSO ₃ H-SBA- 15	Reflux	MeOH	24 h	9.1	74
PrSO ₃ H-SBA- 15	Reflux	MeOH*2	24 h	4	89
PrSO ₃ H-SBA- 15	Ultrasonication	МеОН	5 min	3.8	89
PrSO ₃ H-SBA- 15	Ultrasonication	MeOH	1 h	3.6	90
PrSO ₃ H-SBA- 15	Ultrasonication ^d	MeOH*	5 min	3.6	90

- 1 and 0 1 1 1 1 1 1 1 2 2 1 1 0 1 $$	Table S	1 Comparison	of P123 extraction	from SBA-15	vs PrSO ₂ F	I-SBA-15
---	----------------	--------------	--------------------	-------------	------------------------	----------

^{*a*}TGA weight loss between 150-350 °C; ^{*b*}Proportion of template removed relative to as-synthesised SBA-15 and assynthesised PrSO₃H-SBA-15; ^{*c*}two consecutive 50 cm³ reflux cycles; ^{*d*}10 cm³ per 100 mg.

Porosimetry

Fig. S3 BJH pore-size distributions of PrSO₃H-SBA-15 extracted by: (a) MeOH reflux; and (b) MeOH ultrasonication

X-ray photoelectron spectroscopy

Elemental quantification was undertaken using the entire element region and associated instrumental response factors are per standard analytical protocols (e.g. for sulfur both S $2p_{1/2}$ and S $2p_{3/2}$ spin-orbit components were utilised to estimate the mass% and wt%). A common Gaussian-Lorentzian lineshape (30% Lorentzian) was adopted for all elements.

Extraction method	Element	Binding energy ^a	Atom%	Wt% ^b
		/ eV		
As-synthesised	O 1s	532.3 (1.7)	51.1	48.6
	C 1s	284.5 (1.5)	12.5	8.9
		286.1	19.6	14.0
	S 2p _{3/2}	168.5 (2.1)	1.4	2.6
	Si 2p _{3/2}	102.9 (1.5)	15.5	25.9
Reflux	O 1s	532.4 (1.7)	62.9	55.0
	C 1s	284.5 (1.5)	7.6	5.0
		285.7 (1.5)	4.3	2.8
		286.7 (1.5)	2.1	1.4
	S 2p _{3/2}	168.7 (2.1)	1.7	3.0
	Si 2p _{3/2}	103.0 (1.5)	21.4	32.8
Ultrasonication	O 1s	532.5 (1.7)	63.0	54.9
	C 1s	284.5 (1.5)	8.0	5.2
		285.6 (1.5)	4.2	2.8
		286.6 (1.5)	2.1	1.4
	S 2p _{3/2}	168.8 (2.1)	1.9	3.1
	Si 2p _{3/2}	103.1 (1.5)	21.7	33.2

 Table S2 Surface elemental analysis of PrSO₃H-SBA-15 by XPS

^aFWHM shown in parentheses; ^bfor element A, wt%^A = (mass%^A x RMM^A)/ $\sum_{i=A,B,C.}$ mass%ⁱ x RMMⁱ where i=A, B, C.. etc. for all elements in material.

S 2p

Fig. S5 Bright-field TEM images of $PrSO_3H$ -SBA-15 after (A) 48 h extraction by MeOH reflux (2 x 50cm³) or (B) 5 min MeOH ultrasonication

Solution NMR spectra of extract after MeOH vacuum removal

¹H and ¹³C NMR spectra were recorded using a Bruker 500 Advance III Spectrometer. Typically, 128 scans were employed for ¹H experiments and 512 scans for ¹³C [¹H] experiments. P123 template, and the organic residue extracted from PrSO₃H-SBA-15 by 5 min ultrasonication in MeOH, were dissolved in CDCl₃.

Fig. S6 Solution state (A) ¹H NMR and (B) ¹³C NMR of pure P123 and the organic extract from $PrSO_3H$ -SBA-15 after 5 min MeOH ultrasonication