Electronic Supplementary Information (ESI)

One-pot Ionic Liquid Pretreatment and Saccharification of Switchgrass

Jian Shi^{1,2}, John M. Gladden^{1,2}, Noppadon Sathitsuksanoh¹, Pavan Kambam³, Lucas Sandavol³, Debjani Mitra³, Sonny Zhang¹, Steve W. Singer^{1,4}, Anthe George^{1,2}, Blake A. Simmons^{1,2}, and Seema Singh^{1,2,*}

¹Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA

²Biological and Materials Science Center, Sandia National Laboratories, Livermore, CA

³The Advanced Biofuels Process Demonstration Unit (ABPDU), Lawrence Berkeley National Laboratory, Emeryville, CA

⁴Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA

Label	$\delta_C / \delta_H \text{ (ppm)}$	Assignment
MeO (–OCH ₃)	55.6/3.73	C–H in methoxyls
A_{lpha}	70.9/4.71 and 4.83	C_{α} -H _{α} in β -O-4' substructure (A)
$A_{\beta(G)}$	83.4/4.27	$C_{\beta}\text{-}H_{\beta}$ in $\beta\text{-}O\text{-}4^{\prime}$ substructures (A) linked to a G unit
$A_{\beta(S)}$	85.9/4.10	$C_\beta – H_\beta$ in $\beta \text{-O-4'}$ substructures linked (A) to a S unit
D_{α}	83.3/4.81	$C_{\alpha}\text{-}H_{\alpha}$ in dibenzodioxocin substructures (D)
S _{2,6}	103.8/6.69	C_2 -H ₂ and C_6 -H ₆ in etherified syringyl units (S)
G ₂	110.9/6.99	C_2 - H_2 in guaiacyl units (G)
pCA_{β} and FA_{β}	113.5/6.27	C_{β} -H _{β} in <i>p</i> -coumarate (<i>p</i>CA) and ferulate (FA)
G ₅ /G ₆	114.9/6.72 and 6.94 118.7/6.77	C_5 - H_5 and C_6 - H_6 in guaiacyl units (G)
H _{2,6}	127.8/7.22	$C_{2,6}$ – $H_{2,6}$ in <i>p</i> -hydroxyphenyl units (H)
<i>p</i> CA _{2,6}	130.1/7.45	C_2 - H_2 and C_6 - H_6 in <i>p</i> -coumarate (<i>p</i>CA)
pCA_{α} and FA_{α}	144.7/7.41	C_{α} -H _{α} in <i>p</i> -coumarate (<i>p</i>CA) and ferulate (FA)

Table S1. Assignments of the lignin ¹³C-¹H correlation peaks in the 2D HSQC spectra of switchgrass cell wall and residual solids

Figure S1 Glucose and xylose release during 168h one-pot pretreatment and saccharification with different pretreatment conditions. JTherm loading: 5.75 mg/g starting biomass.

Figure S2 Elution profiles of lignin in remaining in the liquid stream and residual solids after one-pot ionic liquid pretreatment and saccharification of switchgrass.

Figure S3 Side chain (δ_C/δ_H 50-90/2.5-5.8) and aromatic/unsaturated (δ_C/δ_H 90-155/5.5-8.0)

regions in the 2D HSQC NMR spectra of untreated switchgrass (<u>A and B</u>) and residual (<u>C</u> and <u>D</u>).

IL recycle: We have demonstrated preliminary results for recycling [C₂mim][OAc] from "onepot" hydrolyzate and reuse of the recycled IL for the next batch of "one-pot" pretreatment and saccharification. Briefly, "one-pot" hydrolyzate was subjected to liquid-liquid sugar extraction using the boronic acid complex as described in manuscript. The pH of the sugar-extracted hydrolyzate was adjusted to 6.8 using 1M hydrochloric acid (HCl) and passed through sequential filtration including: 20 µm Steriflip filter unit (Millipore, Billerica, MA) \rightarrow 0.2 µm PTFE syringe filter (Nalgene) \rightarrow 50 kDa \rightarrow 10 kDa \rightarrow 3 kDa Amicon Ultra-15 Centrifugal Filter Units (Millipore, Billerica, MA). The filtered hydrolyzate was vacuum dried overnight with a lyophilizer (Labconco FreeZone 12, Kansas City, MO) and centrifuged at 3220 rcf for 10 min to remove any precipitates. IL recovery (%) was calculated based on the starting IL content in onepot hydrolyzate. Water content of recycled IL was measured as ~9.7% using Karl Fischer titration method (Metrohm USA, Riverview, FL) and has been taken account into the calculation. After sequential filtration and vacuum evaporation, 90.8% IL, [C₂mim][OAc] was recovered. Some of the IL might be lost due to wetting of the membranes we used or during transferring. Further improvements in technology developed during scale-up could generate cost-effective IL recycle technologies that are greater than 98% effective.

Proton (¹H) NMR spectra of neat and recycled [C₂mim][OAc] samples were acquired on a Bruker AV-500 NMR spectrometer with 16 scans for each sample at room temperature. DMSOd₆ was used for providing lock frequency and as an internal reference. ¹H NMR of recycled IL confirmed preservation of [C₂mim][OAc] in recycled IL as indicated by the presence of the triplet/quartet proton shift around 1.5 and 4.3ppm, as also showing in neat IL. The broadening of regions ~4ppm is probably due to the trace lignin or sugar residues in recycled IL (Figure S5). The recycled IL was used to pretreat switchgrass under identical conditions (160 °C, 3h, 10%

6

biomass loading) as with neat IL. Residual sugars in recycled IL have been subtracted during sugar yield calculation. Compared with neat IL, reuse of the recycled IL for the next batch of one-pot pretreatment and saccharification showed 93.5% and 89.2% of the original glucose and xylose yield, respectively (Figure S6).

Figure S4 Ionic liquid recycle from "one-pot" hydrolyzate after liquid-liquid sugar extraction

Figure S5. ¹H NMR for a) neat and b) recycled ionic liquid, $[C_2mim][OAc]$.

Figure S6. Sugar yields from one-pot pretreatment and saccharification using neat and recycled ionic liquid, [C₂mim][OAc].