Electronic Supplementary Information for

# Quantitative structure-property relationships prediction of some physico-chemical properties of glycerol based solvents.

José I. García,\*<sup>*a*</sup> Héctor García-Marín,<sup>*a*</sup> José A. Mayoral,<sup>*a,b*</sup> and Pascual Pérez<sup>*c*</sup>

<sup>a</sup> Instituto de Síntesis Química y Catálisis Homogénea, Facultad de Ciencias, CSIC-Univ. de Zaragoza, Pedro Cerbuna, 12, E-50009 Zaragoza, Spain. Tel: +34 976762271; E-mail: jig@unizar.es.

<sup>b</sup> Dept. Organic Chemistry, Facultad de Ciencias, Univ. de Zaragoza, Pedro Cerbuna, 12, E-50009 Zaragoza, Spain. E-mail: <u>mayoral@unizar.es</u>.

<sup>c</sup> Dept. Physical Chemistry, Facultad de Ciencias, Univ. de Zaragoza, Pedro Cerbuna, 12, E-50009 Zaragoza, Spain. E-mail: <u>pascual@unizar.es</u>.

## Content

| 1. Definition of the topological parameters                                                                                                                                                                                           | <b>S</b> 2                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 2. Table S1, Topological parameters of 62 glycerol based solvents                                                                                                                                                                     | <b>S</b> 5                 |
| 3. Table S2, DARC/PELCO parameters of 62 glycerol based solvents                                                                                                                                                                      | <b>S</b> 7                 |
| 4. Table S3. Pearson bivariate correlations between all the descriptors used in this wor                                                                                                                                              | rk <mark>S</mark> 8        |
| 5. Figure S1. Predicted <i>vs.</i> experimental values of $E_T^N$ , viscosity, and boiling point for the solvent test set using MLR analysis with topological parameters (equations 2–4 in the main text).                            | n<br>S9                    |
| 6. Figure S2. Predicted <i>vs.</i> experimental values of $E_T^N$ , viscosity, and boiling point for the selected solvent test set using PLS analysis with topological parameters.                                                    | <b>S</b> 9                 |
| 7. Figure S3. Predicted <i>vs.</i> experimental values of $E_T^N$ , viscosity, and boiling point for the selected solvent test set using MLR analysis with DARC/PELCO descriptors (equations 5-the text).                             | -7 in<br><b>S10</b>        |
| 8. Figure S4. Predicted <i>vs.</i> experimental values of $E_T^N$ , viscosity, and boiling point for the selected solvent test set using MLR analysis with mixed topological and DARC/PELCO descriptors (equations 8–10 in the text). | S10                        |
| 9. <b>Table S4.</b> Comparison between MLR and PLS analyses with DARC/PELCO description for the three solvent properties studied.                                                                                                     | ptors<br><mark>S1</mark> 1 |
| 10. <b>Table S5.</b> Comparison between MLR and PLS analyses with mixed topological and DARC/PELCO descriptors for the three solvent properties studied.                                                                              | d<br>S12                   |
| 10. <b>Table S6.</b> Summary of MLR and PLS results with topological and DARC/PELCO descriptors for the three solvent properties studied.                                                                                             | S13                        |

### Definition of the topological parameters

Topological indices are usually obtained from two-dimensional molecular structures (molecular graphs, G), mostly through the connectivity adjacency (A(G)) and topological distance matrices (D(G)), and the vertex degree vector ( $\delta$ (G)):



Topological indices are calculated from different invariant features of the molecular graph, and contain information about molecular size, molecular shape, branching, molecular flexibility, etc. The exact definition of the indices used in this work are given below.

Balaban indices (JX, JY):15, 23

Balaban index is defined as:

$$J = \frac{M}{M - N + 2} \sum \frac{1}{\sqrt{s_i^a s_j^a}}$$

where M is the number of bonds, N is the number of atoms in the molecule, and  $s_i$  is calculated as the sum of terms from a modified topological distance matrix. In this modified distance matrix, each bond contributes with 1/b to the total connectivity, with b=1 for single bonds, b=2 for double bonds, b=3 for triple bonds, and b=1.5 for aromatic bonds:

$$s_i = \sum_{i=1}^N d_{ij}$$

Corrections for heteroatoms have been introduced through contributions for the modification of the electronegativity (X) and the atomic radii (Y):

$$X = 0,4196 - 0,0078i + 0,1567G_i$$
  
$$Y = 1,1191 - 0,0160i + 0,0537G_i$$

where i is the atomic number and  $G_i$  is the group number in the Periodic Table of the elements. From these corrections, the  $s_i^a$  values are defined as:

 $s_i^a = X \cdot s_i$  (for JX index)  $s_i^a = Y \cdot s_i$  (for JY index)

Wiener index (W):16, 24

The Wiener index is defined as the sum of the lengths of the shortest paths between all pairs of vertices in the chemical graph representing the non-hydrogen atoms in the molecule. It is easily computed from the topological distance matrix:

$$W = \frac{1}{2} \sum_{i} \sum_{j} d_{ij}$$

This index is a measure of the centrality of the graph, and hence it is related with the molecular compactness.

Zagreb index:17

It is defined as the sum of squares of the difference between the number of electrons participating in covalent bonds and the number of hydrogen atoms bonded to the same atom. This is equivalent to the sum of the squares of the vertices degrees,  $\delta_i$ :

$$Zagreb = \sum_{i} \delta_{i}^{2} = \sum_{i} (\sigma_{i} - h_{i})^{2}$$

Randic and Kier & Hall connectivity indices  $(\chi)$ :18

 $\chi$  indices were first proposed by Randic25 from the vertices degrees, as:

 $=\sum_{B}\frac{1}{\delta_{i}\cdot\delta_{i}}$ , extended to all bonds in the molecule (B).

Kier and Hall extended the definition by including the number of edges of a given sub-graph (h), and different kinds of sub-graphs (r):

$${}^{n}_{r}(G) = \sum_{i=1}^{\sigma_{n}} \left( \prod_{j=1}^{h+1} \sqrt{\frac{1}{\delta_{i}}} \right)$$

where  $\sigma_n$  is the number of sub-graph of length h and  $\delta$  is the vertex degree.

There are four kinds of sub-graphs, known as *path* (linear chains), *cluster* (branched chains), *path/cluster*, and *chain* (cycles), each one emphasizing a particular aspect of the molecular connectivity. The n superindex refers to the number of bonds considered to calculate the topological index. Thus, n=0 refers to individual atoms, n=1 refers to directly connected atoms, n=2 refers to three atoms connected through two consecutive bonds, and so on.

$${}^{n}P_{(sub)} = \frac{1}{\sqrt{(\delta_{i} \times \delta_{j} \times ... \times \delta_{n})}} = \prod_{i=1}^{n} \frac{1}{\sqrt{\delta_{i}}}, \text{ and hence}$$
$${}^{n}\chi_{s} = Chi(n)(sub) = \sum {}^{n}P_{(sub)}$$

A further refinement *10d*, *18* can be included to the  $\chi$  indices by considering the atom valences, thus allowing distinguishing the presence of heteroatoms in the structure. This is accomplished by calculating s "corrected" d value, using the atomic number and the number of valence electrons of the vertex atoms:

$$\delta^{\nu} = \frac{\left(Z^{\nu} - h\right)}{\left(Z - Z^{\nu} - 1\right)}$$

Where  $Z_v$  is the number of valence electrons, Z is the atomic number and h is the number of hydrogen atoms bonded to the vertex atom. The resulting "valence-corrected" indices are named as  $\chi_v$ .

#### Kier & Hall count indices (SC):

SC is the count of sub-graphs of a given length present in the molecules. Thus, SC=0 is the number of atoms, SC=1, the number of chemical bonds, SC=2, the number of pair bonds, and so on. For longer sub-graphs, *path*, *cluster*, *path/cluster* and *chain* types can be also considered.

#### *Kier shape indices* $(\kappa_n)$ *:*

All the prededent topological indices are heavily influenced by the size of the molecular graph. Kier developed the  $\kappa$  indices to best discriminate between different shapes of the molecules. They are defined from sub-graphs of a given length, taking into account also the maximum and minimum connectivity of the molecule for the same length (a way to "normalize" the  $\kappa$  values, making them independent of the molecular size):

$$\kappa_n = K \cdot \frac{{}^{m} P_{\min} \cdot {}^{m} P_{\max}}{\left({}^{m} P_i\right)^2}$$

Where m is the length chosen of the sub-graph,  ${}^{m}P_{i}$  the number of sub-graphs of length m contained in the total graph, and  ${}^{m}P_{max}$  and  ${}^{m}P_{min}$  is the maximum and minimum number possible of sub-graphs of length m that can contain the total graph. Some examples are given below.

$$\kappa_{I}, K = 2:$$

$${}^{1}P_{\min} = N - 1$$

$${}^{1}P_{\max} = \frac{N(N+1)}{2}$$

$${}^{1}P_{i} = number\_of\_edges$$

$$\kappa_{2}, K = 2:$$

$${}^{2}P_{\min} = N - 2$$

$${}^{2}P_{\max} = \frac{(N-1)(N-2)}{2}$$

$${}^{2}P_{i} = number\_of\_adjacent\_edges$$

$$\kappa_{3}, K = 4:$$

S3

$${}^{3}P_{\min} = N - 3$$

$${}^{3}P_{\max} = \frac{(N-2)^{2}}{4}(N_{even})$$

$${}^{3}P_{\max} = \frac{(N-1)(N-3)}{4}(N_{odd})$$

$${}^{3}P_{e} = trios \quad of \quad adjacent \quad edges$$

Similarly to the  $\chi$  indices, a modification has been suggested for  $\kappa$  indices to account for the presence of heteroatoms in the molecular graph. 14, 26 In this modification, both the covalent radii and the hybridizations are considered. The  $\frac{\alpha}{n}$  indices are defined as the  $\kappa_n$  ones, but substituting N by N+ $\alpha$ , where a is defined as:

$$\alpha = \sum_{i} \left( \frac{r_i}{r_{Csp^3}} - 1 \right)$$

Where  $r_i$  is the covalent radium of atom i and  $r_{Csp}^3$  is taken as 0.77 Å (the covalent radius of a carbon atom with sp<sup>3</sup> hybridization).

### Molecular flexibility index $(\varphi)$ :14

The starting hypothesis to define f is that an infinitely long linear saturated hydrocarbon molecule (i.e. all-sp<sup>3</sup> C-C bonds) is infinitely flexible. Flexibility is reduced by the presence of a limited number of atoms, rings, branched chains, and the presence of atoms with covalent radii shorter than that of  $C_{sp}^{3}$ :

$$\varphi = \frac{\kappa_1^{\alpha} \kappa_2^{\alpha}}{N}$$

Table S1. Topological parameters of 62 glycerol based solvents.

| Code  | HBA | HBD | RB | φ     | Bal <sup>JX</sup> | Bal <sup>JY</sup> | W    | Ζ   | $\kappa_1^{am}$ | $\kappa_2^{am}$ | $\kappa_3^{am}$ | SC <sup>0</sup> | SC <sup>1</sup> | $SC_p^2$ | SC <sup>3</sup> | SC <sup>3</sup> | °x    | <sup>1</sup> X | <sup>2</sup> X | $^{3}\chi_{p}$ | ${}^{3}\chi_{cl}$ | $^{0}\chi^{vm}$ | $^{1}\chi^{vm}$ | $2^{2}\chi^{vm}$ | ${}^{3}\chi_{p}^{vm}$ | ${}^{3}\chi^{vm}_{cl}$ |
|-------|-----|-----|----|-------|-------------------|-------------------|------|-----|-----------------|-----------------|-----------------|-----------------|-----------------|----------|-----------------|-----------------|-------|----------------|----------------|----------------|-------------------|-----------------|-----------------|------------------|-----------------------|------------------------|
| 000   | 3   | 3   | 5  | 3.02  | 2.572             | 2.814             | 31   | 20  | 5.88            | 3.08            | 2.88            | 6               | 5               | 5        | 4               | 1               | 4.99  | 2.81           | 1.92           | 1.39           | 0.29              | 3.33            | 1.71            | 1.02             | 0.42                  | 0.13                   |
| 100   | 3   | 2   | 5  | 3.98  | 2.620             | 2.901             | 50   | 24  | 6.88            | 4.05            | 3.72            | 7               | 6               | 6        | 5               | 1               | 5.70  | 3.31           | 2.30           | 1.48           | 0.29              | 4.29            | 2.09            | 1.29             | 0.57                  | 0.13                   |
| 200   | 3   | 2   | 6  | 4.95  | 2.665             | 2.926             | 76   | 28  | 7.88            | 5.03            | 4.88            | 8               | 7               | 7        | 6               | 1               | 6.41  | 3.81           | 2.66           | 1.75           | 0.29              | 5.00            | 2.68            | 1.50             | 0.73                  | 0.13                   |
| 400   | 3   | 2   | 8  | 6.91  | 2.723             | 2.939             | 153  | 36  | 9.88            | 6.99            | 6.88            | 10              | 9               | 9        | 8               | 1               | 7.82  | 4.81           | 3.36           | 2.25           | 0.29              | 6.42            | 3.68            | 2.26             | 1.16                  | 0.13                   |
| 101   | 3   | 1   | 5  | 4.95  | 2.686             | 2.996             | 75   | 28  | 7.88            | 5.03            | 4.88            | 8               | 7               | 7        | 6               | 1               | 6.41  | 3.81           | 2.68           | 1.56           | 0.29              | 5.26            | 2.47            | 1.56             | 0.72                  | 0.13                   |
| 103i  | 3   | 1   | 6  | 5.58  | 2.915             | 3.193             | 143  | 38  | 9.88            | 5.65            | 6.88            | 10              | 9               | 10       | 8               | 2               | 7.98  | 4.66           | 3.87           | 2.02           | 0.70              | 6.83            | 3.45            | 2.49             | 0.98                  | 0.37                   |
| 104   | 3   | 1   | 8  | 7.89  | 2.788             | 3.033             | 202  | 40  | 10.88           | 7.98            | 7.78            | 11              | 10              | 10       | 9               | 1               | 8.53  | 5.31           | 3.74           | 2.33           | 0.29              | 7.38            | 4.06            | 2.54             | 1.31                  | 0.13                   |
| 104i  | 3   | 1   | 7  | 6.51  | 2.909             | 3.162             | 194  | 42  | 10.88           | 6.58            | 7.78            | 11              | 10              | 11       | 9               | 2               | 8.69  | 5.16           | 4.22           | 2.26           | 0.70              | 7.54            | 3.91            | 3.04             | 1.12                  | 0.54                   |
| 104t  | 3   | 1   | 6  | 4.65  | 3.173             | 3.444             | 180  | 46  | 10.88           | 4.70            | 7.78            | 11              | 10              | 13       | 9               | 5               | 8.91  | 4.96           | 4.99           | 2.17           | 1.85              | 7.76            | 3.76            | 3.53             | 1.07                  | 1.24                   |
| 403i  | 3   | 1   | 9  | 8.40  | 2.973             | 3.205             | 324  | 50  | 12.88           | 8.48            | 9.80            | 13              | 12              | 13       | 11              | 2               | 10.10 | 6.16           | 4.93           | 2.79           | 0.70              | 8.95            | 5.04            | 3.46             | 1.57                  | 0.37                   |
| 404   | 3   | 1   | 11 | 10.86 | 2.907             | 3.121             | 419  | 52  | 13.88           | 10.96           | 10.88           | 14              | 13              | 13       | 12              | 1               | 10.65 | 6.81           | 4.80           | 3.10           | 0.29              | 9.50            | 5.64            | 3.51             | 1.91                  | 0.13                   |
| 404t  | 3   | 1   | 9  | 7.15  | 3.152             | 3.380             | 388  | 58  | 13.88           | 7.21            | 10.88           | 14              | 13              | 16       | 12              | 5               | 11.03 | 6.46           | 6.05           | 2.94           | 1.85              | 9.88            | 5.35            | 4.51             | 1.66                  | 1.24                   |
| 404i  | 3   | 1   | 10 | 9.36  | 2.984             | 3.203             | 408  | 54  | 13.88           | 9.44            | 10.88           | 14              | 13              | 14       | 12              | 2               | 10.81 | 6.66           | 5.28           | 3.03           | 0.70              | 9.66            | 5.50            | 4.01             | 1.71                  | 0.54                   |
| 203i  | 3   | 1   | 7  | 6.51  | 2.950             | 3.214             | 192  | 42  | 10.88           | 6.58            | 7.78            | 11              | 10              | 11       | 9               | 2               | 8.69  | 5.16           | 4.22           | 2.29           | 0.70              | 7.54            | 4.04            | 2.70             | 1.14                  | 0.37                   |
| 204   | 3   | 1   | 9  | 8.88  | 2.845             | 3.082             | 262  | 44  | 11.88           | 8.97            | 8.88            | 12              | 11              | 11       | 10              | 1               | 9.23  | 5.81           | 4.10           | 2.60           | 0.29              | 8.08            | 4.64            | 2.74             | 1.47                  | 0.13                   |
| 204t  | 3   | 1   | 7  | 5.46  | 3.176             | 3.434             | 237  | 50  | 11.88           | 5.51            | 8.88            | 12              | 11              | 14       | 10              | 5               | 9.61  | 5.46           | 5.35           | 2.44           | 1.85              | 8.46            | 4.35            | 3.74             | 1.22                  | 1.24                   |
| 204i  | 3   | 1   | 8  | 7.45  | 2.950             | 3.193             | 253  | 46  | 11.88           | 7.53            | 8.88            | 12              | 11              | 12       | 10              | 2               | 9.40  | 5.66           | 4.57           | 2.53           | 0.70              | 8.25            | 4.50            | 3.25             | 1.28                  | 0.54                   |
| 3i03i | 3   | 1   | 7  | 6.34  | 3.079             | 3.334             | 243  | 48  | 11.88           | 6.40            | 8.88            | 12              | 11              | 13       | 10              | 3               | 9.56  | 5.52           | 5.05           | 2.47           | 1.11              | 8.41            | 4.43            | 3.42             | 1.24                  | 0.60                   |
| 3i04t | 3   | 1   | 7  | 5.53  | 3.273             | 3.522             | 296  | 56  | 12.88           | 5.58            | 9.80            | 13              | 12              | 16       | 11              | 6               | 10.48 | 5.81           | 6.18           | 2.62           | 2.26              | 9.33            | 4.75            | 4.46             | 1.33                  | 1.48                   |
| 3i04i | 3   | 1   | 8  | 7.23  | 3.068             | 3.305             | 314  | 52  | 12.88           | 7.30            | 9.80            | 13              | 12              | 14       | 11              | 3               | 10.27 | 6.02           | 5.40           | 2.72           | 1.11              | 9.12            | 4.89            | 3.97             | 1.38                  | 0.77                   |
| 3i03F | 6   | 1   | 7  | 6.06  | 3.115             | 3.499             | 378  | 60  | 13.67           | 6.21            | 10.67           | 14              | 13              | 17       | 12              | 6               | 11.19 | 6.31           | 6.53           | 2.86           | 2.26              | 8.17            | 4.25            | 3.17             | 1.20                  | 0.54                   |
| 403F  | 6   | 1   | 9  | 7.72  | 3.032             | 3.384             | 484  | 62  | 14.67           | 7.90            | 11.60           | 15              | 14              | 17       | 13              | 5               | 11.73 | 6.96           | 6.41           | 3.17           | 1.85              | 8.72            | 4.86            | 3.21             | 1.53                  | 0.31                   |
| 4t03F | 6   | 1   | 7  | 5.55  | 3.267             | 3.639             | 450  | 68  | 14.67           | 5.67            | 11.60           | 15              | 14              | 20       | 13              | 9               | 12.11 | 6.60           | 7.66           | 3.01           | 3.41              | 9.10            | 4.57            | 4.21             | 1.29                  | 1.42                   |
| 4i03F | 6   | 1   | 8  | 6.87  | 3.106             | 3.465             | 472  | 64  | 14.67           | 7.03            | 11.60           | 15              | 14              | 18       | 13              | 6               | 11.90 | 6.81           | 6.88           | 3.10           | 2.26              | 8.88            | 4.71            | 3.72             | 1.34                  | 0.72                   |
| 3F03F | 9   | 1   | 7  | 6.05  | 3.136             | 3.615             | 557  | 72  | 15.46           | 6.26            | 12.46           | 16              | 15              | 21       | 14              | 9               | 12.82 | 7.10           | 8.01           | 3.25           | 3.41              | 7.94            | 4.07            | 2.91             | 1.15                  | 0.49                   |
| 5F05F | 13  | 1   | 9  | 6.90  | 3.636             | 4.205             | 1283 | 108 | 21.18           | 7.17            | 6.88            | 22              | 21              | 33       | 32              | 17              | 17.82 | 9.60           | 11.16          | 7.06           | 4.70              | 10.45           | 5.33            | 4.09             | 2.02                  | 0.84                   |
| 7F07F | 17  | 1   | 11 | 8.01  | 4.071             | 4.718             | 2399 | 144 | 26.90           | 8.33            | 6.20            | 28              | 27              | 45       | 50              | 25              | 22.82 | 12.10          | 14.41          | 10.13          | 6.20              | 12.96           | 6.58            | 5.24             | 2.82                  | 1.17                   |
| 111   | 3   | 0   | 5  | 5.93  | 2.907             | 3.263             | 102  | 32  | 8.88            | 6.01            | 4.39            | 9               | 8               | 8        | 8               | 1               | 7.11  | 4.35           | 2.85           | 1.97           | 0.20              | 6.22            | 2.85            | 1.77             | 1.04                  | 0.12                   |
| 113i  | 3   | 0   | 6  | 6.51  | 3.111             | 3.431             | 182  | 42  | 10.88           | 6.58            | 6.28            | 11              | 10              | 11       | 10              | 2               | 8.69  | 5.20           | 4.03           | 2.43           | 0.61              | 7.79            | 3.84            | 2.70             | 1.30                  | 0.35                   |
| 143i  | 3   | 0   | 9  | 9.36  | 3.331             | 3.612             | 369  | 54  | 13.88           | 9.44            | 9.26            | 14              | 13              | 14       | 13              | 2               | 10.81 | 6.70           | 5.12           | 3.07           | 0.61              | 9.92            | 5.42            | 3.68             | 1.82                  | 0.35                   |
| 114t  | 3   | 0   | 6  | 5.46  | 3.341             | 3.652             | 225  | 50  | 11.88           | 5.51            | 7.32            | 12              | 11              | 14       | 11              | 5               | 9.61  | 5.49           | 5.16           | 2.58           | 1.77              | 8.72            | 4.15            | 3.74             | 1.39                  | 1.23                   |
| 144t  | 3   | 0   | 9  | 8.02  | 3.513             | 3.789             | 436  | 62  | 14.88           | 8.08            | 10.17           | 15              | 14              | 17       | 14              | 5               | 11.73 | 6.99           | 6.25           | 3.22           | 1.77              | 10.84           | 5.74            | 4.73             | 1.91                  | 1.23                   |
| 114   | 3   | 0   | 8  | 8.88  | 2.974             | 3.260             | 250  | 44  | 11.88           | 8.97            | 7.32            | 12              | 11              | 11       | 11              | 1               | 9.23  | 5.85           | 3.91           | 2.74           | 0.20              | 8.34            | 4.44            | 2.74             | 1.63                  | 0.12                   |
| 144   | 3   | 0   | 11 | 11.8  | 3.246             | 3.505             | 470  | 56  | 14.88           | 11.95           | 10.17           | 15              | 14              | 14       | 14              | 1               | 11.36 | 7.35           | 5.00           | 3.38           | 0.20              | 10.46           | 6.03            | 3.73             | 2.15                  | 0.12                   |
| 114i  | 3   | 0   | 7  | 7.46  | 3.089             | 3.383             | 241  | 46  | 11.88           | 7.53            | 7.32            | 12              | 11              | 12       | 11              | 2               | 9.40  | 5.70           | 4.39           | 2.67           | 0.61              | 8.50            | 4.30            | 3.24             | 1.44                  | 0.53                   |
| 144i  | 3   | 0   | 10 | 10.3  | 3.330             | 3.595             | 458  | 58  | 14.88           | 10.40           | 10.17           | 15              | 14              | 15       | 14              | 2               | 11.52 | 7.20           | 5.48           | 3.31           | 0.61              | 10.62           | 5.89            | 4.23             | 1.96                  | 0.53                   |
| 123i  | 3   | 0   | 7  | 7.45  | 3.240             | 3.552             | 232  | 46  | 11.88           | 7.53            | 7.32            | 12              | 11              | 12       | 11              | 2               | 9.40  | 5.70           | 4.42           | 2.55           | 0.61              | 8.50            | 4.42            | 2.92             | 1.37                  | 0.35                   |
| 213i  | 3   | 0   | 7  | 7.45  | 3.158             | 3.465             | 237  | 46  | 11.88           | 7.53            | 7.32            | 12              | 11              | 12       | 11              | 2               | 9.40  | 5.70           | 4.39           | 2.70           | 0.61              | 8.50            | 4.42            | 2.90             | 1.46                  | 0.35                   |
| 124t  | 3   | 0   | 7  | 6.29  | 3.450             | 3.753             | 282  | 54  | 12.88           | 6.35            | 8.22            | 13              | 12              | 15       | 12              | 5               | 10.32 | 5.99           | 5.54           | 2.70           | 1.77              | 9.42            | 4.74            | 3.96             | 1.46                  | 1.23                   |
| 214t  | 3   | 0   | 7  | 6.29  | 3.366             | 3.665             | 288  | 54  | 12.88           | 6.35            | 8.22            | 13              | 12              | 15       | 12              | 5               | 10.32 | 5.99           | 5.52           | 2.85           | 1.77              | 9.42            | 4.74            | 3.94             | 1.54                  | 1.23                   |
| 124   | 3   | 0   | 9  | 9.87  | 3.114             | 3.395             | 310  | 48  | 12.88           | 9.96            | 8.22            | 13              | 12              | 12       | 12              | 1               | 9.94  | 6.35           | 4.29           | 2.86           | 0.20              | 9.05            | 5.03            | 2.96             | 1.70                  | 0.12                   |

www.rsc.org/xxxxxx | XXXXXXXX

| 214   | 3 | 0 | 9  | 9.87  | 3.045 | 3.322 | 316 | 48 | 12.88 | 9.96  | 8.22  | 13 | 12 | 12 | 12 | 1 | 9.94  | 6.35 | 4.27 | 3.01 | 0.20 | 9.05  | 5.03 | 2.95 | 1.79 | 0.12 |
|-------|---|---|----|-------|-------|-------|-----|----|-------|-------|-------|----|----|----|----|---|-------|------|------|------|------|-------|------|------|------|------|
| 124i  | 3 | 0 | 8  | 8.40  | 3.219 | 3.507 | 300 | 50 | 12.88 | 8.48  | 8.22  | 13 | 12 | 13 | 12 | 2 | 10.10 | 6.20 | 4.77 | 2.79 | 0.61 | 9.21  | 4.89 | 3.46 | 1.51 | 0.53 |
| 214i  | 3 | 0 | 8  | 8.40  | 3.146 | 3.430 | 306 | 50 | 12.88 | 8.48  | 8.22  | 13 | 12 | 13 | 12 | 2 | 10.10 | 6.20 | 4.74 | 2.94 | 0.61 | 9.21  | 4.89 | 3.45 | 1.60 | 0.53 |
| 223i  | 3 | 0 | 8  | 8.40  | 3.304 | 3.604 | 294 | 50 | 12.88 | 8.48  | 8.22  | 13 | 12 | 13 | 12 | 2 | 10.10 | 6.20 | 4.77 | 2.82 | 0.61 | 9.21  | 5.01 | 3.12 | 1.53 | 0.35 |
| 224t  | 3 | 0 | 8  | 7.15  | 3.498 | 3.792 | 352 | 58 | 13.88 | 7.21  | 9.26  | 14 | 13 | 16 | 13 | 5 | 11.03 | 6.49 | 5.90 | 2.97 | 1.77 | 10.13 | 5.33 | 4.16 | 1.61 | 1.23 |
| 224   | 3 | 0 | 10 | 10.86 | 3.197 | 3.471 | 383 | 52 | 13.88 | 10.96 | 9.26  | 14 | 13 | 13 | 13 | 1 | 10.65 | 6.85 | 4.65 | 3.13 | 0.20 | 9.75  | 5.62 | 3.17 | 1.86 | 0.12 |
| 224i  | 3 | 0 | 9  | 9.36  | 3.292 | 3.572 | 372 | 54 | 13.88 | 9.44  | 9.26  | 14 | 13 | 14 | 13 | 2 | 10.81 | 6.70 | 5.12 | 3.06 | 0.61 | 9.92  | 5.47 | 3.67 | 1.67 | 0.53 |
| 413i  | 3 | 0 | 9  | 9.36  | 3.175 | 3.445 | 384 | 54 | 13.88 | 9.44  | 9.26  | 14 | 13 | 14 | 13 | 2 | 10.81 | 6.70 | 5.10 | 3.20 | 0.61 | 9.92  | 5.42 | 3.67 | 1.90 | 0.35 |
| 423i  | 3 | 0 | 10 | 10.32 | 3.329 | 3.598 | 458 | 58 | 14.88 | 10.40 | 10.17 | 15 | 14 | 15 | 14 | 2 | 11.52 | 7.20 | 5.48 | 3.32 | 0.61 | 10.62 | 6.01 | 3.89 | 1.96 | 0.35 |
| 414t  | 3 | 0 | 9  | 8.02  | 3.349 | 3.616 | 454 | 62 | 14.88 | 8.08  | 10.17 | 15 | 14 | 17 | 14 | 5 | 11.73 | 6.99 | 6.22 | 3.35 | 1.77 | 10.84 | 5.74 | 4.71 | 1.98 | 1.23 |
| 424t  | 3 | 0 | 10 | 8.90  | 3.500 | 3.765 | 535 | 66 | 15.88 | 8.97  | 11.21 | 16 | 15 | 18 | 15 | 5 | 12.44 | 7.49 | 6.60 | 3.47 | 1.77 | 11.55 | 6.33 | 4.93 | 2.05 | 1.23 |
| 414   | 3 | 0 | 11 | 11.86 | 3.105 | 3.357 | 488 | 56 | 14.88 | 11.95 | 10.17 | 15 | 14 | 14 | 14 | 1 | 11.36 | 7.35 | 4.97 | 3.51 | 0.20 | 10.46 | 6.03 | 3.72 | 2.23 | 0.12 |
| 414i  | 3 | 0 | 10 | 10.32 | 3.182 | 3.439 | 476 | 58 | 14.88 | 10.40 | 10.17 | 15 | 14 | 15 | 14 | 2 | 11.52 | 7.20 | 5.45 | 3.44 | 0.61 | 10.62 | 5.89 | 4.22 | 2.03 | 0.53 |
| 424i  | 3 | 0 | 11 | 11.28 | 3.339 | 3.595 | 559 | 62 | 15.88 | 11.37 | 11.21 | 16 | 15 | 16 | 15 | 2 | 12.23 | 7.70 | 5.83 | 3.56 | 0.61 | 11.33 | 6.47 | 4.44 | 2.10 | 0.53 |
| 3i13F | 6 | 0 | 7  | 6.87  | 3.304 | 3.723 | 444 | 64 | 14.67 | 7.03  | 9.96  | 15 | 14 | 18 | 14 | 6 | 11.90 | 6.85 | 6.70 | 3.27 | 2.17 | 9.14  | 4.64 | 3.37 | 1.52 | 0.53 |
| 4t13F | 6 | 0 | 7  | 6.28  | 3.457 | 3.864 | 522 | 72 | 15.67 | 6.42  | 11.00 | 16 | 15 | 21 | 15 | 9 | 12.82 | 7.14 | 7.83 | 3.42 | 3.33 | 10.06 | 4.95 | 4.41 | 1.61 | 1.41 |
| 444   | 3 | 0 | 14 | 14.84 | 3.443 | 3.683 | 789 | 68 | 17.88 | 14.94 | 13.17 | 18 | 17 | 17 | 17 | 1 | 13.48 | 8.85 | 6.06 | 4.15 | 0.20 | 12.58 | 7.62 | 4.70 | 2.74 | 0.12 |
| 413F  | 6 | 0 | 9  | 8.60  | 3.223 | 3.610 | 559 | 66 | 15.67 | 8.78  | 11.00 | 16 | 15 | 18 | 15 | 5 | 12.44 | 7.49 | 6.58 | 3.58 | 1.77 | 9.68  | 5.24 | 3.42 | 1.85 | 0.30 |
| 3F13F | 9 | 0 | 7  | 6.80  | 3.325 | 3.835 | 638 | 76 | 16.46 | 7.02  | 11.72 | 17 | 16 | 22 | 16 | 9 | 13.53 | 7.64 | 8.18 | 3.66 | 3.33 | 8.90  | 4.46 | 3.12 | 1.47 | 0.48 |
| 3F23F | 9 | 0 | 8  | 7.57  | 3.476 | 3.980 | 736 | 80 | 17.46 | 7.80  | 12.76 | 18 | 17 | 23 | 17 | 9 | 14.23 | 8.14 | 8.56 | 3.78 | 3.33 | 9.61  | 5.04 | 3.34 | 1.54 | 0.48 |
| 3F43F | 9 | 0 | 10 | 9.15  | 3.642 | 4.119 | 987 | 88 | 19.46 | 9.41  | 14.72 | 20 | 19 | 25 | 19 | 9 | 15.65 | 9.14 | 9.27 | 4.29 | 3.33 | 11.02 | 6.04 | 4.11 | 1.99 | 0.48 |

| Code  | A1 | A2 | <b>B1</b> | <b>B2</b> | FB2 | A11 | A21 | FA21 | B11 | B21 | FB21 |
|-------|----|----|-----------|-----------|-----|-----|-----|------|-----|-----|------|
| 000   | 0  | 0  | 0         | 0         | 0   | 0   | 0   | 0    | 0   | 0   | 0    |
| 100   | 0  | 1  | 0         | 0         | 0   | 0   | 0   | 0    | 0   | 0   | 0    |
| 200   | 0  | 1  | 0         | 1         | 0   | 0   | 0   | 0    | 0   | 0   | 0    |
| 400   | 0  | 1  | 0         | 1         | 0   | 0   | 1   | 0    | 0   | 1   | 0    |
| 101   | 0  | 2  | 0         | 0         | 0   | 0   | 0   | 0    | 0   | 0   | 0    |
| 103i  | 0  | 2  | 0         | 2         | 0   | 0   | 0   | 0    | 0   | 0   | 0    |
| 104   | 0  | 2  | 0         | 1         | 0   | 0   | 1   | 0    | 0   | 1   | 0    |
| 104i  | 0  | 2  | 0         | 1         | 0   | 0   | 2   | 0    | 0   | 0   | 0    |
| 104t  | 0  | 2  | 0         | 3         | 0   | 0   | 0   | 0    | 0   | 0   | 0    |
| 403i  | 0  | 2  | 0         | 3         | 0   | 0   | 1   | 0    | 0   | 1   | 0    |
| 404   | 0  | 2  | 0         | 2         | 0   | 0   | 2   | 0    | 0   | 2   | 0    |
| 404t  | 0  | 2  | 0         | 4         | 0   | 0   | 1   | 0    | 0   | 1   | 0    |
| 404i  | 0  | 2  | 0         | 2         | 0   | 0   | 3   | 0    | 0   | 1   | 0    |
| 203i  | 0  | 2  | 0         | 3         | 0   | 0   | 0   | 0    | 0   | 0   | 0    |
| 204   | 0  | 2  | 0         | 2         | 0   | 0   | 1   | 0    | 0   | 1   | 0    |
| 204t  | 0  | 2  | 0         | 4         | 0   | 0   | 0   | 0    | 0   | 0   | 0    |
| 204i  | 0  | 2  | 0         | 2         | 0   | 0   | 2   | 0    | 0   | 0   | 0    |
| 3i03i | 0  | 2  | 0         | 4         | 0   | 0   | 0   | 0    | 0   | 0   | 0    |
| 3i04t | 0  | 2  | 0         | 5         | 0   | 0   | 0   | 0    | 0   | 0   | 0    |
| 3i04i | 0  | 2  | 0         | 3         | 0   | 0   | 2   | 0    | 0   | 0   | 0    |
| 3i03F | 0  | 2  | 0         | 2         | 1   | 0   | 0   | 0    | 0   | 0   | 0    |
| 403F  | 0  | 2  | 0         | 1         | 1   | 0   | 1   | 0    | 0   | 1   | 0    |
| 4t03F | 0  | 2  | 0         | 3         | 1   | 0   | 0   | 0    | 0   | 0   | 0    |
| 4i03F | Õ  | 2  | Õ         | 1         | 1   | 0   | 2   | 0    | 0   | Ő   | Õ    |
| 3F03F | 0  | 2  | 0         | 0         | 2   | 0   | 0   | 0    | 0   | 0   | 0    |
| 5F05F | 0  | 2  | 0         | 0         | 2   | 0   | 0   | 2    | 0   | 0   | 0    |
| 7F07F | 0  | 2  | 0         | 0         | 2   | 0   | 0   | 2    | 0   | 0   | 2    |
| 111   | 1  | 2  | Ő         | Ő         | 0   | Õ   | Ő   | 0    | Õ   | Õ   | 0    |
| 113i  | 1  | 2  | 0         | 2         | 0   | 0   | 0   | 0    | 0   | 0   | 0    |
| 143i  | 1  | 2  | 1         | 2         | Õ   | 1   | Õ   | 0    | 1   | Ő   | Õ    |
| 114t  | 1  | 2  | 0         | 3         | 0   | 0   | 0   | 0    | 0   | 0   | 0    |
| 144t  | 1  | 2  | 1         | 3         | 0   | 1   | 0   | 0    | 1   | 0   | 0    |
| 114   | 1  | 2  | 0         | 1         | 0   | 0   | 1   | 0    | 0   | 1   | 0    |
| 144   | 1  | 2  | 1         | 1         | 0   | 1   | 1   | 0    | 1   | 1   | 0    |
| 114i  | 1  | 2  | 0         | 1         | 0   | 0   | 2   | 0    | 0   | 0   | 0    |
| 144i  | 1  | 2  | 1         | 1         | 0   | 1   | 2   | 0    | 1   | 0   | 0    |
| 123i  | 1  | 2  | 1         | 2         | 0   | 0   | 0   | 0    | 0   | 0   | 0    |
| 213i  | 1  | 2  | 0         | 3         | 0   | 0   | 0   | 0    | 0   | 0   | 0    |
| 124t  | 1  | 2  | 1         | 3         | 0   | 0   | 0   | 0    | 0   | 0   | 0    |
| 214t  | 1  | 2  | 0         | 4         | 0   | 0   | 0   | 0    | 0   | 0   | 0    |
| 124   | 1  | 2  | 1         | 1         | 0   | 0   | 1   | 0    | 0   | 1   | 0    |
| 214   | 1  | 2  | 0         | 2         | 0   | 0   | 1   | 0    | 0   | 1   | 0    |
| 124i  | 1  | 2  | 1         | 1         | 0   | 0   | 2   | 0    | 0   | 0   | 0    |
| 214i  | 1  | 2  | 0         | 2         | 0   | 0   | 2   | 0    | 0   | 0   | 0    |
| 223i  | 1  | 2  | 1         | 3         | 0   | 0   | 0   | 0    | 0   | 0   | 0    |
| 224t  | 1  | 2  | 1         | 4         | 0   | 0   | 0   | 0    | 0   | 0   | 0    |
| 224   | 1  | 2  | 1         | 2         | 0   | 0   | 1   | 0    | 0   | 1   | 0    |
| 224i  | 1  | 2  | 1         | 2         | Õ   | Õ   | 2   | Õ    | Õ   | 0   | Õ    |
| 413i  | 1  | 2  | 0         | 3         | 0   | 0   | 1   | 0    | 0   | 1   | 0    |
| 423i  | 1  | 2  | 1         | 3         | 0   | 0   | 1   | 0    | 0   | 1   | 0    |
| 414t  | 1  | 2  | 0         | 4         | Õ   | Õ   | 1   | Õ    | Õ   | 1   | Õ    |
| 424t  | 1  | 2  | 1         | 4         | 0   | 0   | 1   | 0    | 0   | 1   | 0    |
| 414   | 1  | 2  | 0         | 2         | õ   | õ   | 2   | õ    | õ   | 2   | õ    |
| 414i  | 1  | 2  | õ         | 2         | õ   | õ   | 3   | ő    | õ   | 1   | ŏ    |
| 424i  | 1  | 2  | ĩ         | 2         | õ   | õ   | 3   | ő    | õ   | 1   | ŏ    |
| 3i13F | 1  | 2  | 0         | 2         | 1   | õ   | 0   | Ő    | õ   | 0   | õ    |
| 4t13F | 1  | 2  | õ         | 3         | 1   | õ   | Ő   | Ő    | õ   | õ   | õ    |
| 444   | 1  | 2  | ĩ         | 2         | 0   | 1   | 2   | ő    | 1   | 2   | ŏ    |
| 413F  | 1  | 2  | 0         | 1         | 1   | 0   | 1   | Ő    | 0   | 1   | õ    |
| 3F13F | 1  | 2  | õ         | 0         | 2   | õ   | 0   | ő    | õ   | 0   | ŏ    |
| 3F23F | 1  | 2  | 1         | Ő         | 2   | õ   | Ő   | Ő    | õ   | õ   | õ    |
| 3F43F | 1  | 2  | 1         | Õ         | 2   | 1   | Õ   | 0    | 1   | Ū.  | 0    |

**Table S2.** DARC/PELCO parameters of 62 glycerol basedsolvents.

Table S3. Pearson bivariate correlations between all the descriptors used in this work.

|        | A1   | A2   | B1   | B2   | BF2  | C1    | C2   | CF2  | D1   | D2   | DF2  | HBA  | HBD  | RoB  | MFx   | BalJX | BalJY | w    | z    | К1   | K2   | КЗ   | SC0p  | SC1p | SC2p | SC3p | SC3cl | Ji0  | Ji1  | Ji2  | Ji3p | Ji3cl | Ji0v | Ji1v | Ji2v | Ji3pv | Ji3clv |
|--------|------|------|------|------|------|-------|------|------|------|------|------|------|------|------|-------|-------|-------|------|------|------|------|------|-------|------|------|------|-------|------|------|------|------|-------|------|------|------|-------|--------|
| A1     | 1    |      |      |      |      |       |      |      |      |      |      |      |      |      |       |       |       |      |      |      |      |      |       |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| A2     | .281 | 1    |      |      |      |       |      |      |      |      |      |      |      |      |       |       |       |      |      |      |      |      |       |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| B1     | .562 | .158 | 1    |      |      |       |      |      |      |      |      |      |      |      |       |       |       |      |      |      |      |      |       |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| B2     | .068 | .298 | .024 | 1    |      |       |      |      |      |      |      |      |      |      |       |       |       |      |      |      |      |      |       |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| BF2    | 088  | .119 | 085  | 473  | 1    |       |      |      |      |      |      |      |      |      |       |       |       |      |      |      |      |      |       |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| C1     | .287 | .081 | .512 | 115  | .014 | 1     |      |      |      |      |      |      |      |      |       |       |       |      |      |      |      |      |       |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| C2     | .083 | .159 | .069 | 049  | 304  | .015  | 1    |      |      |      |      |      |      |      |       |       |       |      |      |      |      |      |       |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| CF2    | 208  | .045 | 117  | 277  | .485 | 060   | 157  | 1    |      |      |      |      |      |      |       |       |       |      |      |      |      |      |       |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| D1     | .287 | .081 | .512 | 115  | .014 | 1.000 | .015 | 060  | 1    |      |      |      |      |      |       |       |       |      |      |      |      |      |       |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| D2     | .106 | .086 | .045 | .069 | 247  | .055  | .521 | 127  | .055 | 1    |      |      |      |      |       |       |       |      |      |      |      |      |       |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| DF2    | 146  | .032 | 082  | 194  | .340 | 042   | 110  | .701 | 042  | 089  | 1    |      |      |      |       |       |       |      |      |      |      |      |       |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| нва    | 148  | .105 | 109  | 457  | .925 | 014   | 285  | .758 | 014  | 231  | .629 | 1    |      |      |       |       |       |      |      |      |      |      |       |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| HBD    | 883  | 700  | 496  | 197  | .007 | 254   | 140  | .133 | 254  | 121  | .093 | .059 | 1    |      |       |       |       |      |      |      |      |      |       |      |      |      |       |      |      |      |      |       |      | ĺ    |      |       |        |
| RoB    | .265 | .331 | .426 | .053 | .042 | .435  | .569 | .191 | .435 | .709 | .206 | .122 | 360  | 1    |       |       |       |      |      |      |      |      |       |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| MFx    | .482 | .398 | .492 | .009 | 131  | .434  | .615 | 028  | .434 | .722 | .013 | 101  | 554  | .917 | 1     |       |       |      |      |      |      |      |       |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| BalJX  | .464 | .500 | .456 | .196 | .462 | .305  | 131  | .469 | .305 | 120  | .434 | .547 | 591  | .444 | .303  | 1     |       |      |      |      |      |      |       |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| BalJY  | .397 | .457 | .362 | .034 | .631 | .243  | 223  | .555 | .243 | 202  | .491 | .704 | 520  | .349 | .199  | .975  | 1     |      |      |      |      |      |       |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| w      | .037 | .248 | .117 | 245  | .677 | .181  | 011  | .792 | .181 | .061 | .771 | .855 | 149  | .531 | .296  | .744  | .807  | 1    |      |      |      |      |       |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| z      | .098 | .396 | .139 | 105  | .750 | .164  | 055  | .703 | .164 | 011  | .618 | .855 | 267  | .492 | .256  | .845  | .901  | .952 | 1    |      |      |      |       |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| К1     | .222 | .475 | .258 | 064  | .650 | .260  | .100 | .605 | .260 | .154 | .538 | .741 | 398  | .667 | .471  | .857  | .879  | .924 | .972 | 1    |      |      |       |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| К2     | .480 | .401 | .490 | 007  | 105  | .435  | .609 | 012  | .435 | .718 | .027 | 074  | 554  | .921 | 1.000 | .316  | .216  | .317 | .278 | .490 | 1    |      |       |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| КЗ     | .194 | .517 | .292 | .196 | .396 | .325  | .284 | 198  | .325 | .319 | 158  | .205 | 398  | .598 | .509  | .474  | .433  | .317 | .493 | .603 | .517 | 1    |       |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| SC0p   | .204 | .461 | .241 | 087  | .674 | .249  | .080 | .621 | .249 | .135 | .551 | .765 | 378  | .646 | .446  | .852  | .881  | .933 | .978 | .999 | .466 | .589 | 1     |      |      |      |       |      |      |      |      |       |      |      |      |       |        |
| SC1p   | .204 | .461 | .241 | 087  | .674 | .249  | .080 | .621 | .249 | .135 | .551 | .765 | 378  | .646 | .446  | .852  | .881  | .933 | .978 | .999 | .466 | .589 | 1.000 | 1    |      |      |       |      |      |      |      |       |      |      |      |       |        |
| SC2p   | .037 | .353 | .080 | 114  | .778 | .114  | 130  | .736 | .114 | 093  | .645 | .889 | 200  | .397 | .145  | .826  | .896  | .945 | .993 | .938 | .167 | .429 | .948  | .948 | 1    |      |       |      |      |      |      |       |      |      |      |       |        |
| SC3p   | .085 | .299 | .117 | 186  | .616 | .129  | 032  | .846 | .129 | .017 | .783 | .828 | 210  | .494 | .278  | .777  | .831  | .982 | .943 | .911 | .297 | .231 | .918  | .918 | .940 | 1    |       |      |      |      |      |       |      |      |      |       |        |
| SC3cl  | 150  | .178 | 108  | 140  | .800 | 046   | 357  | .772 | 046  | 320  | .668 | .920 | .025 | .072 | 208   | .692  | .800  | .842 | .886 | .751 | 186  | .195 | .771  | .771 | .933 | .846 | 1     |      |      |      |      |       |      |      |      |       |        |
| Ji0    | .159 | .437 | .198 | 093  | .710 | .213  | .024 | .660 | .213 | .070 | .583 | .807 | 333  | .583 | .366  | .854  | .894  | .946 | .993 | .993 | .387 | .551 | .996  | .996 | .972 | .934 | .824  | 1    |      |      |      |       |      |      |      |       |        |
| Ji1    | .277 | .486 | .306 | 080  | .601 | .300  | .168 | .562 | .300 | .237 | .504 | .686 | 445  | .737 | .568  | .835  | .845  | .902 | .939 | .993 | .587 | .623 | .990  | .990 | .893 | .886 | .674  | .973 | 1    |      |      |       |      |      |      |       |        |
| Ji2    | .023 | .378 | .078 | 077  | .805 | .116  | 138  | .667 | .116 | 115  | .572 | .877 | 202  | .375 | .119  | .823  | .893  | .907 | .985 | .930 | .141 | .508 | .939  | .939 | .992 | .892 | .927  | .964 | .881 | 1    |      |       |      |      |      |       |        |
| Ji3p   | .082 | .288 | .105 | 192  | .608 | .142  | .016 | .844 | .142 | .079 | .756 | .816 | 202  | .544 | .326  | .757  | .808. | .983 | .940 | .919 | .346 | .255 | .926  | .926 | .931 | .996 | .820  | .937 | .901 | .883 | 1    |       |      |      |      |       |        |
| Ji3cl  | 148  | .202 | 113  | 074  | .842 | 047   | 399  | .615 | 047  | 368  | .509 | .878 | .011 | 002  | 278   | .674  | .783  | .740 | .842 | .705 | 257  | .322 | .724  | .724 | .892 | .726 | .970  | .778 | .621 | .914 | .699 | 1     |      |      |      |       |        |
| Ji0v   | .463 | .631 | .448 | .301 | .216 | .359  | .313 | .283 | .359 | .332 | .290 | .289 | 654  | .803 | .700  | .842  | .751  | .653 | .736 | .854 | .707 | .682 | .834  | .834 | .666 | .666 | .392  | .797 | .879 | .666 | .681 | .364  | 1    |      |      |       |        |
| Ji1v   | .432 | .559 | .489 | .268 | .120 | .405  | .434 | .197 | .405 | .493 | .213 | .182 | 595  | .912 | .828  | .715  | .608  | .583 | .636 | .791 | .833 | .705 | .768  | .768 | .550 | .578 | .235  | .715 | .837 | .546 | .607 | .199  | .971 | 1    |      |       |        |
| Ji2v   | .265 | .570 | .301 | .485 | .171 | .286  | .253 | .257 | .286 | .178 | .264 | .245 | 477  | .632 | .449  | .815  | .710  | .571 | .695 | .764 | .453 | .656 | .746  | .746 | .654 | .586 | .463  | .729 | .756 | .673 | .591 | .472  | .922 | .854 | 1    |       |        |
| Ji3pv  | .474 | .494 | .403 | .112 | .164 | .401  | .376 | .357 | .401 | .527 | .366 | .286 | 595  | .902 | .828  | .718  | .639  | .688 | .684 | .823 | .835 | .543 | .804  | .804 | .604 | .695 | .307  | .756 | .872 | .571 | .725 | .221  | .936 | .953 | .774 | 1     |        |
| Ji3clv | 037  | .257 | 029  | .586 | .139 | 075   | 229  | .189 | 075  | 363  | .183 | .187 | 098  | 109  | 333   | .567  | .515  | .235 | .402 | .312 | 333  | .219 | .309  | .309 | .446 | .278 | .541  | .351 | .231 | .484 | .241 | .614  | .367 | .197 | .661 | .107  | 1      |

Note that most topological parameters are heavily correlated to each other, which indicates that they recover essentially the same structural information. Also, there are two pairs of parameters fully dependent (r=1.000): C1/D1,  $\kappa_2^{am}/\varphi$ .



**Figure S1.** Predicted *vs.* experimental values of E<sup>N</sup><sub>T</sub>, viscosity, and boiling point for the selected solvent test set using MLR analysis with topological <sup>5</sup> parameters (equations 2–4 in the main text).



Figure S2. Predicted vs. experimental values of E<sup>N</sup><sub>L</sub>, viscosity, and boiling point for the selected solvent test set using PLS analysis with topological parameters.



Figure S3. Predicted vs. experimental values of  $E_T^n$ , viscosity, and boiling point for the selected solvent test set using MLR analysis with DARC/PELCO descriptors (equations 5–7 in the text).

5



**Figure S4.** Predicted *vs.* experimental values of  $E_T^n$ , viscosity, and boiling point for the selected solvent test set using MLR analysis with mixed topological and DARC/PELCO descriptors (equations 8–10 in the text).

| Descriptor     | E      | 'N<br>'T         | Dynamic V | 'iscosity (cP)   | Boiling p | oint (°C)        |
|----------------|--------|------------------|-----------|------------------|-----------|------------------|
| Descriptor     | MLR    | PLS <sup>a</sup> | MLR       | PLS <sup>b</sup> | MLR       | PLS <sup>c</sup> |
| B0             | 0.851  | 0.796            | 70.79     | 71.800           | 278.2     | 279.3            |
| A1             | -0.278 | -0.268           | -3.52     | -4.588           | -6.1      | -8.4             |
| A2             | -0.160 | -0.116           | -32.50    | -34.448          | -55.6     | -55.7            |
| B1             | n.s.   | -0.045           | n.s.      | 0.083            | n.s.      | 5.0              |
| B2             | -0.026 | -0.034           | n.s.      | 0.546            | 7.9       | 7.7              |
| BF2            | 0.140  | 0.134            | n.s.      | 2.606            | 7.0       | 6.7              |
| C1             | n.s.   | 0.003            | n.s.      | 0.083            | 33.6      | 15.3             |
| C2             | -0.016 | -0.018           | n.s.      | 0.799            | 12.6      | 12.5             |
| CF2            | -0.059 | -0.055           | 6.90      | 2.816            | 12.0      | 9.5              |
| D1             | n.s.   | 0.003            | n.s.      | 0.083            | n.s.      | 15.3             |
| D2             | n.s.   | -0.015           | n.s.      | 0.799            | 19.1      | 18.9             |
| DF2            | n.s.   | -0.033           | n.s.      | 2.816            | n.s.      | 3.0              |
| Ν              | 46     | 46               | 17        | 17               | 62        | 62               |
| $\mathbf{R}^2$ | 0.972  | 0.968            | 0.981     | 0.991            | 0.933     | 0.935            |
| σ              | 0.036  | 0.036            | 2.08      | 1.28             | 6.9       | 6.3              |

 Table S4. Comparison between MLR and PLS model coefficients with DARC/PELCO descriptors for the three solvent properties studied.

<sup>a</sup> 4 latent variables. <sup>b</sup> 5 latent variables. <sup>c</sup> 6 latent variables.

<sup>5</sup> Given that C1 and D1 are linearly dependent (see Table S3), their behaviour differs in stepwise MLR and PLS analyses of the boiling point response. In the former case, the variable entering in the equation takes the full value (33.6), whereas in the "back-projection" of the PLS coefficients into the original variables, each coefficient takes half of the full value (15.3). Of course, the predictions within the solvent set used are therefore identical, given that all structures for which C1=1, have D1=1 too. Similar, but not the same behaviour is observed for other highly correlated parameters, such as CF2 and DF2.

10

B.I

Г

| Descriptor                                 | E      | T                | Dynamic V | iscosity (cP)    | Boiling | point (°C)       |
|--------------------------------------------|--------|------------------|-----------|------------------|---------|------------------|
| Descriptor                                 | MLR    | PLS <sup>a</sup> | MLR       | PLS <sup>b</sup> | MLR     | PLS <sup>c</sup> |
| B0                                         | 0.523  | 0.865            | 67.55     | 156.41           | 292.6   | 171.2            |
| A1                                         | -0.099 | -0.054           | -5.27     | 6.333            | n.s.    | 10.918           |
| A2                                         | n.s.   | -0.005           | -35.86    | -27.740          | -49.7   | -26.743          |
| B1                                         | n.s.   | -0.014           | n.s.      | 5.713            | n.s.    | -3.438           |
| B2                                         | n.s.   | -0.012           | n.s.      | -1.155           | n.s.    | 2.847            |
| BF2                                        | 0.177  | 0.007            | n.s.      | -0.224           | n.s.    | 1.900            |
| C1                                         | n.s.   | -0.004           | n.s.      | 5.713            | n.s.    | 4.677            |
| C2                                         | n.s.   | 0.024            | n.s.      | 0.904            | n.s.    | 5.368            |
| CF2                                        | n.s.   | 0.013            | n.s.      | -0.223           | n.s.    | -0.045           |
| D1                                         | n.s.   | -0.004           | n.s.      | 5.713            | n.s.    | 4.677            |
| D2                                         | n.s.   | 0.014            | n.s.      | 0.904            | n.s.    | 4.454            |
| DF2                                        | n.s.   | -0.006           | n.s.      | -0.223           | n.s.    | -3.253           |
| HBA                                        | n.s.   | 0.035            | n.s.      | -1.564           | n.s.    | -0.898           |
| HBD                                        | 0.140  | 0.060            | n.s.      | 21.407           | n.s.    | 15.825           |
| RB                                         | n.s.   | 0.032            | n.s.      | -14.793          | 12.9    | 15.721           |
| ф                                          | n.s.   | -0.014           | n.s.      | 7.672            | n.s.    | -0.395           |
| Bal <sup>JX</sup>                          | n.s.   | -0.013           | n.s.      | -30.362          | n.s.    | 0.272            |
| Bal <sup>JY</sup>                          | n.s.   | -0.014           | n.s.      | -18.803          | -26.0   | -0.564           |
| W                                          | n.s.   | 0.000            | n.s.      | -0.054           | n.s.    | -0.032           |
| Z                                          | n.s.   | -0.002           | n.s.      | 3.661            | n.s.    | 1.387            |
| κ1                                         | n.s.   | -0.009           | n.s.      | -5.738           | n.s.    | 0.526            |
| <b>κ</b> <sub>2</sub>                      | n.s.   | -0.013           | n.s.      | 8.699            | n.s.    | -0.765           |
| <b>K</b> <sub>3</sub>                      | n.s.   | 0.022            | n.s.      | -5.679           | n.s.    | -8.078           |
| SC <sup>0</sup> p                          | n.s.   | -0.007           | n.s.      | -5.848           | n.s.    | 0.463            |
| SC <sup>1</sup> <sub>p</sub>               | n.s.   | -0.007           | n.s.      | -5.848           | n.s.    | 0.463            |
| SC <sup>2</sup> <sub>p</sub>               | n.s.   | 0.006            | n.s.      | 7.678            | n.s.    | 0.231            |
| SC <sup>3</sup> p                          | n.s.   | -0.017           | n.s.      | -2.194           | n.s.    | -8.409           |
| SC <sup>3</sup> <sub>cl</sub>              | n.s.   | 0.012            | n.s.      | -3.522           | n.s.    | 0.869            |
| ×°                                         | n.s.   | -0.003           | 0.99      | 1.811            | n.s.    | 0.144            |
| <sup>1</sup> X                             | n.s.   | -0.007           | n.s.      | -3.813           | n.s.    | 0.412            |
| <sup>2</sup> X                             | n.s.   | 0.008            | n.s.      | 8.389            | n.s.    | -0.720           |
| <sup>3</sup> χ <sub>P</sub>                | n.s.   | 0.003            | n.s.      | -1.152           | n.s.    | 3.781            |
| <sup>3</sup> X cl                          | n.s.   | 0.002            | n.s.      | -7.165           | n.s.    | 2.006            |
| <sup>0</sup> X <sup>vm</sup>               | -0.026 | -0.039           | n.s.      | 3.486            | -8.3    | -3.314           |
| <sup>1</sup> X <sup>vm</sup>               | n.s.   | -0.009           | n.s.      | -6.006           | n.s.    | 2.333            |
| <sup>2</sup> χ <sup>vm</sup>               | n.s.   | -0.010           | n.s.      | 12.129           | 20.4    | 3.026            |
| <sup>3</sup> X <sup>p</sup> <sup>vm</sup>  | n.s.   | -0.009           | n.s.      | 5.831            | n.s.    | 2.857            |
| <sup>3</sup> χ <sub>cl</sub> <sup>νm</sup> | n.s.   | -0.009           | n.s.      | -10.869          | n.s.    | 1.690            |
| N                                          | 46     | 46               | 17        | 17               | 62      | 62               |
| $\mathbf{R}^2$                             | 0.968  | 0.968            | 0.989     | 0.999            | 0.932   | 0.935            |
| σ                                          | 0.036  | 0.036            | 1.46      | 0.20             | 6.8     | 6.3              |

Table S5. Comparison between MLR and PLS model coefficients with mixed topological and DARC/PELCO descriptors for the three solvent properties studied.

1

<sup>a</sup> 6 latent variables. <sup>b</sup> 13 latent variables. <sup>c</sup> 9 latent variables.

| D                             |        |        | E <sup>N</sup> T |        |       | Dynamic V | viscosity (cP | ')     |       | Boiling p | oint (°C) |       |
|-------------------------------|--------|--------|------------------|--------|-------|-----------|---------------|--------|-------|-----------|-----------|-------|
| Descriptor                    | MLR    | PLS    | MLR              | MLR    | MLR   | PLS       | MLR           | MLR    | MLR   | PLS       | MLR       | MLR   |
| B0                            | 0.206  | 1.000  | 0.851            | 0.523  |       | 30.97     | 70.79         | 67.55  | 111.1 | -111.3    | 278.2     | 292.6 |
| A1                            |        |        | -0.278           | -0.099 |       |           | -3.52         | -5.27  |       |           | -6.1      |       |
| A2                            |        |        | -0.160           |        |       |           | -32.50        | -35.86 |       |           | -55.6     | -49.7 |
| <b>B</b> 1                    |        |        |                  |        |       |           |               |        |       |           |           |       |
| B2                            |        |        | -0.026           |        |       |           |               |        |       |           | 7.9       |       |
| BF2                           |        |        | 0.140            | 0.177  |       |           |               |        |       |           | 7.0       |       |
| C1                            |        |        |                  |        |       |           |               |        |       |           | 33.6      |       |
| C2                            |        |        | -0.016           |        |       |           |               |        |       |           | 12.6      |       |
| CF2                           |        |        | -0.059           |        |       |           | 6.90          |        |       |           | 12.0      |       |
| D1                            |        |        |                  |        |       |           |               |        |       |           |           |       |
| D2                            |        |        |                  |        |       |           |               |        |       |           | 19.1      |       |
| DF2                           |        |        |                  |        |       |           |               |        |       |           |           |       |
| HBA                           | 0.073  | 0.014  |                  |        |       | 0.238     |               |        | -3.2  | 8.9       |           |       |
| HBD                           | 0.194  | 0.137  |                  | 0.140  | 14.50 | 9.387     |               |        | 24.7  | 46.7      |           |       |
| RB                            |        | 0.010  |                  |        |       | 0.713     |               |        | 11.8  | 6.4       |           | 12.9  |
| φ                             |        | -0.010 |                  |        |       | -0.001    |               |        |       | -2.4      |           |       |
| Bal <sup>JX</sup>             |        | -0.150 |                  |        |       | -3.210    |               |        |       | 31.1      |           |       |
| Bal <sup>JY</sup>             |        | -0.081 |                  |        |       | -2.638    |               |        |       | 35.4      |           | -26.0 |
| W                             |        | 0.000  |                  |        |       | 0.003     |               |        |       | 0.0       |           |       |
| Z                             |        | 0.001  |                  |        |       | 0.005     |               |        |       | -0.2      |           |       |
| $\kappa_1$                    |        | 0.003  |                  |        |       | -0.024    |               |        |       | 2.1       |           |       |
| κ <sub>2</sub>                |        | -0.009 |                  |        |       | 0.004     |               |        |       | -2.0      |           |       |
| κ <sub>3</sub>                |        | 0.023  |                  |        |       | -1.118    |               |        |       | -5.4      |           |       |
| SC <sup>0</sup> p             |        | 0.003  |                  |        |       | -0.013    |               |        |       | 2.3       |           |       |
| SC <sup>1</sup> p             |        | 0.003  |                  |        |       | -0.013    |               |        |       | 2.3       |           |       |
| SC <sup>2</sup> <sub>p</sub>  |        | 0.002  |                  |        |       | 0.025     |               |        |       | -1.7      |           |       |
| SC <sup>3</sup> <sub>p</sub>  | -0.019 | -0.001 |                  |        |       | 0.136     |               |        |       | -6.4      |           |       |
| SC <sup>3</sup> <sub>cl</sub> |        | 0.004  |                  |        |       | 0.105     |               |        |       | -7.7      |           |       |
| °χ                            |        | 0.004  |                  |        |       | 0.000     |               | 0.99   |       | 1.1       |           |       |
| <sup>1</sup> x                |        | 0.004  |                  |        |       | -0.034    |               |        |       | 10.8      |           |       |
| <sup>2</sup> X                |        | 0.010  |                  |        |       | -0.106    |               |        |       | -5.0      |           |       |
| <sup>3</sup> χ <sub>p</sub>   |        | -0.001 |                  |        |       | 0.819     |               |        |       | 0.9       |           |       |
| <sup>3</sup> Xcl              |        | 0.021  |                  |        |       | -0.188    |               |        |       | 2.6       |           |       |
| <sup>0</sup> x <sup>vm</sup>  |        | -0.019 |                  | -0.026 |       | -0.560    |               |        |       | -11.2     |           | -8.3  |
| <sup>1</sup> x <sup>vm</sup>  |        | -0.020 | 1                |        |       | -0.344    |               |        |       | -12.8     |           |       |

Table S6. Summary of MLR and PLS results with topological and DARC/PELCO descriptors for the three solvent properties studied.

| $^{2}\chi^{vm}$      |       | -0.024 |       |       |       | -1.185 |       |       |       | 17.0  |       | 20.4  |
|----------------------|-------|--------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|
| $^{3}\chi_{p}^{vm}$  |       | -0.080 |       |       |       | 0.445  |       |       |       | 109.8 |       |       |
| $^{3}\chi_{cl}^{vm}$ |       | -0.063 |       |       |       | -3.142 |       |       |       | 12.0  |       |       |
| Ν                    | 46    | 46     | 46    | 46    | 17    | 17     | 17    | 17    | 62    | 62    | 62    | 62    |
| $\mathbf{R}^2$       | 0.957 | 0.969  | 0.972 | 0.968 | 0.823 | 0.700  | 0.981 | 0.989 | 0.769 | 0.891 | 0.933 | 0.932 |
| σ                    | 0.044 | 0.036  | 0.036 | 0.036 | 7.51  | 7.29   | 2.08  | 1.46  | 12.2  | 8.1   | 6,9   | 6.8   |