Supporting Information

K₂CO₃ Promoted Direct Sulfenylation of Indoles: A Facile

Approach of 3-Sulfenylindoles

Peng Sang,^a Zhengkai Chen,^a Jianwei Zou,^{a,b} and Yuhong Zhang^{*a,c}

^a Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University,

Hangzhou 310027, China.

^b Ningbo Institute of Technology, Zhejiang University, Ningbo 315104, China.

^c State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.

Email : <u>yhzhang@zju.edu.cn</u>

Table of contents

General experimental procedures	S2
General procedure for synthesis of 3-sulfenylindoles (3)	S 2
Characterization data of compounds 3a-3v	.S2
References	.S12
The ¹ H and ¹³ C NMR spectra of compounds 3a-3v	.S13

General experimental procedures

Unless otherwise stated, all reactions were carried out under air, all reagents and solvents were obtained from commercial sources and used without any further purification. ¹H NMR spectra were recorded at 400 MHz using TMS as internal standard. ¹³C NMR spectra were recorded at 100 MHz using TMS as internal standard. The multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), triplet (t), quartet (q), multiplet (m). Coupling constants are reported in Hertz (Hz). Mass spectroscopy data were collected on HRMS-EI and HRMS-ESI instrument.

General procedure for synthesis of 3-sulfenylindoles (3)

A 25 mL flask equipped with a magnetic stirring bar was charged with substituted indoles (1, 0.5 mmol), disulfides (2, 0.5 mmol) and K_2CO_3 (0.25 mmol) in DMSO (2 mL). The mixture was allowed to stir under open atmosphere at 100 °C for 9 h. Saturated aqueous NaCl (20 mL), and EtOAc (20 mL) were added to the cooled reaction mixture successively. The organic phase was separated, and the aqueous phase was further extracted with EtOAc (2 × 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel using petroleum ether/ ethyl acetate (10:1) as eluent to provide the desired products.

Characterization data of compounds 3a-3v

3-(Phenylthio)-1*H***-indole (3a).¹** Eluent: petroleum ether / ethyl acetate (10:1). White solid. ¹H NMR (DMSO-d6, 400 MHz) δ 11.76 (s, 1H), 7.81 (d, 1H, *J* = 1.2 Hz), 7.55 (d, 1H, *J* = 8.0 Hz), 7.46 (d, 1H, *J* = 8.0 Hz), 7.16-7.22 (m, 3H), 7.03-7.10 (m, 4H). ¹³C NMR (DMSO-d6, 100 MHz) δ 139.3, 136.8, 132.4, 128.8, 128.7, 125.3, 124.7, 122.1, 120.1, 118.3, 112.4, 99.3.

4-Methyl-3-(phenylthio)-1*H***-indole (3b) [New compound].** Eluent: petroleum ether / ethyl acetate (20:1). Brown oil. ¹H NMR (CDCl₃, 400 MHz) δ 8.23 (s, 1H), 7.26 (d, 1H, *J* = 2.4 Hz), 7.08-7.16 (m, 4H), 6.98-7.04 (m, 3H), 6.86 (d, 1H, *J* = 7.2 Hz), 2.62 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 141.7, 137.1, 132.1, 129.0, 127.1, 125.3, 124.7, 123.2, 122.6, 109.8, 102.1, 18.8. HRMS (EI) Calcd for C₁₅H₁₃NS (M) ⁺ 239.0769; Found, 239.0769.

3c

5-methyl-3-(phenylthio)-1*H***-indole (3c).⁴** Eluent: petroleum ether / ethyl acetate (10:1). White solid. ¹H NMR (DMSO-d6, 400 MHz) δ 11.64 (s, 1H), 7.74 (s, 1H), 7.43 (d, 1H, *J* = 8.4 Hz), 7.26 (s, 1H), 7.16-7.19 (m, 2H), 7.02-7.05 (m, 4H), 2.34 (s, 3H). ¹³C NMR (DMSO-d6, 100 MHz) δ 139.5, 135.1, 132.5, 129.0, 128.8, 128.8, 125.1, 124.6, 123.8, 117.8, 112.1, 98.5, 21.2.

6-Methyl-3-(phenylthio)-1*H***-indole (3d).⁵** Eluent: petroleum ether / ethyl acetate (10:1). White solid. ¹H NMR (DMSO-d6, 400 MHz) δ 11.59 (s, 1H), 7.70 (s, 1H), 7.30-7.33 (m, 2H), 7.15-7.19 (m, 2H), 7.04 (d, 3H, J = 7.2 Hz), 6.91 (d, 1H, J = 8.0

Hz), 2.41 (s, 3H). ¹³C NMR (DMSO-d6, 100 MHz) δ 139.4, 137.2, 131.7, 131.4, 128.7, 126.6, 125.2, 124.6, 121.9, 118.1, 112.1, 99.1, 21.3.

7-Methyl-3-(phenylthio)-1*H***-indole (3e).⁶** Eluent: petroleum ether / ethyl acetate (10:1). Brown oil. ¹H NMR (CDCl₃, 400 MHz) δ 8.12 (s, 1H), 7.44 (d, 1H, *J* = 7.2 Hz), 7.28 (s, 1H), 7.06-7.12 (m, 4H), 7.00-7.05 (m, 3H), 2.40 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 139.5, 136.2, 130.7, 128.9, 128.8, 126.0, 124.9, 123.7, 121.2, 121.1, 117.4, 103.0, 16.6.

5-Methoxy-3-(phenylthio)-1*H***-indole (3f).¹** Eluent: petroleum ether / ethyl acetate (5:1). Brown oil. ¹H NMR (CDCl₃, 400 MHz) δ 8.37 (s, 1H), 7.30 (s, 1H), 7.20 (s, 1H, *J* = 8.8 Hz), 7.07-7.16 (m, 4H), 7.00-7.04 (m, 2H), 6.88 (d, 1H, *J* = 8.8 Hz), 3.72 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 155.1, 139.5, 131.7, 131.5, 130.0, 128.9, 125.8, 124.9, 113.6, 112.7, 101.9, 100.9, 55.9.

5-Nitro-3-(phenylthio)-1*H***-indole (3g) [New compound].** Eluent: petroleum ether / ethyl acetate (5:1). Yellow solid. ¹H NMR (DMSO-d6, 400 MHz) δ 12.42 (s, 1H), 8.27 (s, 1H), 8.06 (d, 2H, *J* = 9.2 Hz), 7.68 (d, 1H, *J* = 9.2 Hz), 7.17-7.21 (m, 2H), 7.06 (d, 3H, *J* = 7.2 Hz). ¹³C NMR (DMSO-d6, 100 MHz) δ 141.5, 140.0, 138.0, 136.4, 129.0, 128.2, 125.7, 125.2, 117.5, 114.8, 113.1, 102.8. HRMS (EI) Calcd for C₁₄H₁₀N₂O₂S (M)⁺ 270.0463; Found, 270.0466.

3-(Phenylthio)-1*H***-indole-5-carbonitrile (3h).³** Eluent: petroleum ether / ethyl acetate (5:1). Yellow solid. ¹H NMR (DMSO-d6, 400 MHz) δ 12.29 (s, 1H), 8.02 (d, 1H, *J* = 1.6 Hz), 7.86 (s, 1H), 7.70 (d, 1H, *J* = 8.4 Hz), 7.54 (d, 1H, *J* = 8.4 Hz), 7.19 (t, 2H, *J* = 7.6 Hz), 7.07 (t, 3H, *J* = 7.6 Hz). ¹³C NMR (DMSO-d6, 100 MHz) δ 138.6, 138.2, 135.2, 128.9, 128.6, 125.8, 125.2, 125.0, 123.6, 120.2, 113.8, 102.5, 101.2.

5-Fluoro-3-(phenylthio)-1*H***-indole (3i) [New compound].** Eluent: petroleum ether / ethyl acetate (10:1). White solid.¹H NMR (DMSO-d6, 400 MHz) δ 11.88 (s, 1H), 7.88 (s, 1H), 7.53-7.56 (dt, 1H, J = 4.4 Hz, 4.4 Hz), 7.17-7.20 (t, 2H, J = 7.6 Hz), 7.13 (d, 1H, J = 9.2 Hz), 7.04-7.07 (m, 4H). ¹³C NMR (DMSO-d6, 100 MHz) δ 157.7 ($J_{CF} = 233.4$ Hz), 138.8, 134.4, 133.3, 129.4 ($J_{CF} = 9.8$ Hz), 128.8, 125.4, 124.9, 112.1 ($J_{CF} = 310.6$ Hz), 112.0 ($J_{CF} = 326.9$ Hz), 103.0 ($J_{CF} = 24.5$ Hz), 99.6 ($J_{CF} = 4.3$ Hz). HRMS (EI) Calcd for C₁₄H₁₀NOF (M)⁺ 243.0518; Found, 243.0516.

5-Chloro-3-(phenylthio)-1*H***-indole (3j).⁴** Eluent: petroleum ether / ethyl acetate (10:1). White solid. ¹H NMR (DMSO-d6, 400 MHz) δ 11.95 (s, 1H), 7.89 (s, 1H), 7.56 (d, 1H, J = 8.4 Hz), 7.40 (s, 1H), 7.17-7.21 (m, 3H), 7.03-7.08 (m, 3H). ¹³C NMR (DMSO-d6, 100 MHz) δ 138.7, 135.2, 134.2, 130.0, 128.9, 125.4, 125.0, 124.9, 122.2, 117.4, 114.1, 99.3.

5-Bromo-3-(phenylthio)-1*H***-indole (3k).¹** Eluent: petroleum ether / ethyl acetate (10:1). White solid. ¹H NMR (DMSO-d6, 400 MHz) δ 11.97 (s, 1H), 7.87 (s, 1H), 7.56 (s, 1H), 7.51 (d, 1H, J = 8.4 Hz), 7.31 (d, 1H, J = 8.4 Hz), 7.17-7.20 (m, 2H), 7.03-7.07 (m, 3H). ¹³C NMR (DMSO-d6, 100 MHz) δ 138.7, 135.5, 134.1, 130.6, 128.9, 125.4, 124.9, 124.8, 120.4, 114.5, 113.0, 99.2.

2-Methyl-3-(phenylthio)-1*H***-indole (3l).¹** Eluent: petroleum ether / ethyl acetate (10:1). Brown solid. ¹H NMR (DMSO-d6, 400 MHz) δ 11.71 (s, 1H), 7.45 (d, 1H, *J* = 8.4 Hz), 7.40 (d, 1H, *J* = 7.6 Hz), 7.12-7.18 (m, 3H), 7.00-7.06 (m, 4H), 2.50 (s, 3H).

¹³C NMR (DMSO-d6, 100 MHz) δ 142.1, 139.2, 135.7, 129.7, 128.8, 125.0, 124.5, 121.4, 119.9, 117.7, 111.3, 96.4, 11.7.

3m

Ethyl 3-(phenylthio)-1*H***-indole-2-carboxylate** (**3m**).² Eluent: petroleum ether / ethyl acetate (10:1). White solid. ¹H NMR (DMSO-d6, 400 MHz) δ 9.73 (s, 1H), 7.62 (d, 1H, *J* = 8.0 Hz), 7.44 (d, 1H, *J* = 8.4 Hz), 7.33 (t, 1H, *J* = 7.6 Hz), 7.06-7.17 (m, 6H), 4.40 (q, 2H, *J* = 7.2 Hz), 1.29 (t, 3H, *J* = 7.2 Hz). ¹³C NMR (DMSO-d6, 100 MHz) δ 161.7, 138.1, 136.0, 130.1, 128.9, 128.8, 127.2, 126.1, 125.3, 121.7, 121.5, 112.3, 110.4, 61.6, 14.2.

2-Phenyl-3-(phenylthio)-1*H***-indole (3n).² Eluent: petroleum ether / ethyl acetate (10:1). yellow oil.¹H NMR (CDCl₃, 400 MHz) \delta 8.74 (s, 1H), 7.60-7.65 (m, 3H), 7.28-7.32 (m, 4H), 7.18 (d, 1H, J = 6.4 Hz), 7.07-7.10 (m, 5H), 6.97 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) \delta 142.3, 139.5, 136.1, 131.5, 131.3, 129.0, 128.8, 128.4, 128.4, 125.7, 124.8, 123.4, 121.2, 120.0, 111.5, 99.1.**

30

2-(Naphthalen-2-yl)-3-(phenylthio)-1*H***-indole (30) [New compound].** Eluent: petroleum ether / ethyl acetate (10:1). White solid. ¹H NMR (DMSO-d6, 400 MHz) δ 12.36 (s, 1H), 8.50 (s, 1H), 8.16 (d, 1H, *J* = 8.4 Hz), 7.99 (d, 1H, *J* = 8.8 Hz), 7.92 (d, 2H, *J* = 4.0 Hz), 7.68 (d, 1H, *J* = 8.0 Hz), 7.60 (d, 1H, *J* = 8.0 Hz), 7.52-7.54 (m, 2H), 7.30 (t, 1H, *J* = 7.6 Hz), 7.13-7.22 (m, 5H), 7.05 (t, 1H, *J* = 6.8 Hz). ¹³C NMR (DMSO-d6, 100 MHz) δ 142.0, 139.1, 136.5, 132.7, 132.6, 130.8, 129.0, 128.9, 128.1, 128.0, 127.6, 127.4, 126.7, 126.7, 125.9, 125.2, 124.8, 122.9, 120.6, 118.8, 112.1, 97.3. HRMS (EI) Calcd for C₂₄H₁₇NS (M)⁺ 351.1082; Found, 351.1086.

3р

2-(Furan-2-yl)-3-(phenylthio)-1*H***-indole (3p) [New compound].** Eluent: petroleum ether / ethyl acetate (10:1). Brown solid. ¹H NMR (DMSO-d6, 400 MHz) δ 12.26 (s, 1H), 7.87 (s, 1H), 7.56 (d, 1H, *J* = 8.0 Hz), 7.51 (d, 1H, *J* = 8.0 Hz), 7.16-7.24 (m, 3H), 7.08-7.12 (m, 2H), 7.05 (d, 3H, *J* = 7.6 Hz), 6.63 (s, 1H). ¹³C NMR (DMSO-d6, 100 MHz) δ 145.7, 143.1, 138.0, 136.1, 133.0, 130.4, 129.0, 125.3, 124.9, 122.9, 120.7, 118.4, 112.3, 112.2, 109.7, 95.8. HRMS (EI) Calcd for C₁₈H₁₃NOS (M) ⁺ 291.0718; Found, 291.0714.

3-(Phenylthio)-1*H***-pyrrolo[2,3-***b***]pyridine (3q).⁷ Eluent: petroleum ether / ethyl acetate (2:1). White solid.¹H NMR (DMSO-d6, 400 MHz) \delta 12.35 (s, 1H), 8.32 (s,**

1H), 7.95 (s, 1H), 7.79 (d, 1H, J = 7.6 Hz), 7.15-7.18 (m, 2H), 7.08-7.11 (m, 1H), 7.04 (d, 3H, J = 8.0 Hz). ¹³C NMR (DMSO-d6, 100 MHz) δ 148.9, 143.6, 138.6, 133.2, 128.9, 126.7, 125.5, 125.0, 121.0, 116.6, 98.7.

3-(*p*-tolylthio)-1*H*-indole (3r).¹ Eluent: petroleum ether / ethyl acetate (10:1). White solid. ¹H NMR (DMSO-d6, 400 MHz) δ 11.71 (s, 1H), 7.77 (d, 1H, *J* = 2.4 Hz), 7.54 (d, 1H, *J* = 8.4 Hz), 7.45 (d, 1H, *J* = 7.6 Hz), 7.19 (t, 1H, *J* = 8.0 Hz), 7.07 (t, 1H, *J* = 7.2 Hz), 6.98 (s, 4H), 2.18 (s, 3H). ¹³C NMR (DMSO-d6, 100 MHz) δ 136.7, 135.5, 134.1, 132.1, 129.4, 128.7, 125.8, 122.1, 120.0, 118.4, 112.3, 100.1, 20.4.

3-(4-Chlorophenylthio)-1*H***-indole (3s).**¹ Eluent: petroleum ether / ethyl acetate (10:1). White solid. ¹H NMR (DMSO-d6, 400 MHz) δ 11.80 (s, 1H), 7.81 (s, 1H), 7.55 (d, 1H, J = 8.4 Hz), 7.43 (d, 1H, J = 7.6 Hz), 7.18-7.23 (m, 3H), 7.08 (t, 1H, J = 7.6 Hz), 7.03 (d, 2H, J = 8.0 Hz). ¹³C NMR (DMSO-d6, 100 MHz) δ 138.4, 136.8, 132.6, 129.3, 128.7, 128.4, 126.8, 122.2, 120.2, 118.2, 112.4, 98.8.

3-(3-Fluorophenylthio)-1*H***-indole (3t).⁸** Eluent: petroleum ether / ethyl acetate (10:1). White solid.¹H NMR (DMSO-d6, 400 MHz) δ 11.85 (s, 1H), 7.85 (s, 1H), 7.51 (d, 2H, J = 45.6 Hz), 6.78-7.22 (m, 6H). ¹³C NMR (DMSO-d6, 100 MHz) δ 162.5 ($J_{CF} = 244.6$ Hz), 142.4 ($J_{CF} = 6.2$ Hz), 136.8, 132.8, 130.5 ($J_{CF} = 9.1$ Hz), 128.5, 122.3, 121.1, 120.3, 118.2, 112.5, 111.6 ($J_{CF} = 36.6$ Hz), 111.5 ($J_{CF} = 7.1$ Hz), 98.3.

3u

3-(3,5-Dichlorophenylthio)-1*H***-indole (3u) [New compound].** Eluent: petroleum ether / ethyl acetate (10:1). White solid. ¹H NMR (DMSO-d6, 400 MHz) δ 11.90 (s, 1H), 7.88 (d, 1H, *J* = 2.8 Hz), 7.56 (d, 1H, *J* = 8.0 Hz), 7.43 (d, 1H, *J* = 8.0 Hz), 7.28 (s, 1H), 7.24 (t, 1H, *J* = 7.6 Hz), 7.13 (t, 1H, *J* = 7.6 Hz), 6.99 (d, 2H, *J* = 1.6 Hz). ¹³C NMR (DMSO-d6, 100 MHz) δ 144.3, 136.8, 134.5, 133.3, 128.1, 124.3, 123.0, 122.4, 120.5, 118.0, 112.6, 97.0. HRMS (EI) Calcd for C₁₄H₉NSCl₂ (M) ⁺ 292.9833; Found, m/z (%) = 292.9834 ([M]⁺, 100), 294.9809 ([M+2]⁺, 70.44).

N-(2-(1*H*-indol-3-ylthio)phenyl)benzamide (3v) [New compound]. Eluent: petroleum ether / ethyl acetate (5:1). White solid. ¹H NMR (DMSO-d6, 400 MHz) δ 11.70 (s, 1H), 10.17 (s, 1H), 8.10 (d, 2H, *J* = 6.8 Hz), 7.75 (s, 1H), 7.57-7.62 (m, 3H), 7.51 (d, 1H, *J* = 8.0 Hz), 7.41 (t, 2H, *J* = 8.0 Hz), 7.19 (t, 1H, *J* = 8.0 Hz), 7.13 (t, 1H,

J = 7.2 Hz), 7.02-7.09 (m, 2H), 6.77 (d, 1H, J = 7.6 Hz). ¹³C NMR (DMSO-d6, 100 MHz) δ 165.6, 136.8, 136.6, 134.3, 132.4, 131.7, 128.7, 128.5, 127.7, 127.6, 126.7, 126.5, 125.1, 122.1, 120.0, 118.4, 112.3, 99.2. HRMS (EI) Calcd for C₂₁H₁₆N₂OS (M) ⁺ 344.0983; Found, 344.0988.

References

- (1) W. Ge and Y. Wei, Green Chemistry, 2012, 14, 2066-2070.
- (2) G. La Regina, V. Gatti, V. Famiglini, F. Piscitelli and R. Silvestri, ACS Combinatorial Science, 2012, 14, 258-262.
- (3) M. Tudge, M. Tamiya, C. Savarin and G. R. Humphrey, Organic Letters, 2006, 8, 565-568.
- (4) Y. Maeda, M. Koyabu, T. Nishimura and S. Uemura, The Journal of Organic Chemistry, 2004, 69, 7688-7693.
- (5) T. Wieland and K. Rühl, Chemische Berichte, 1963, 96, 260-265.
- (6) S. Ranjit, R. Lee, D. Heryadi, C. Shen, J. E. Wu, P. Zhang, K.-W. Huang and X. Liu, The Journal of Organic Chemistry, 2011, 76, 8999-9007.
- (7) J. Porter, S. Lumb, R. J. Franklin, J. M. Gascon-Simorte, M. Calmiano, K. L. Riche, B. Lallemand, J. Keyaerts, H. Edwards, A. Maloney, J. Delgado, L. King, A. Foley, F. Lecomte, J. Reuberson, C. Meier and M. Batchelor, Bioorganic & Medicinal Chemistry Letters, 2009, 19, 2780-2784.
- (8) X.-L. Fang, R.-Y. Tang, P. Zhong and J.-H. Li, Synthesis, 2009, 2009, 4183-4189.
- (9) D. H. R. Barton, X. Lusinchi and P. Milliet, Tetrahedron, 1985, 41, 4727-4738.
- (10) Z. Li, L. Hong, R. Liu, J. Shen and X. Zhou, *Tetrahedron Letters*, 2011, **52**, 1343-1347.

Electronic Supplementary Material (ESI) for Green Chemistry This journal is C The Royal Society of Chemistry 2013

¹³C NMR of product 3b

¹³C NMR of product 3c

¹³C NMR of product 3d

¹³C NMR of product 3e

¹³C NMR of product 3f

¹³C NMR of product 3g

¹³C NMR of product 3h

¹³C NMR of product 3i

¹³C NMR of product 3j

¹³C NMR of product 3k

¹³C NMR of product 3l

7,654 7,642 7,642 7,642 7,642 7,595 7,595 7,301 7,595 7,301 7,175 7,191 7,175 7,102 7,102 7,102 7,102 7,102 7,102 7,102 7,102 6,673 6,673

¹³C NMR of product 3p

¹³C NMR of product 3q

¹³C NMR of product 3r

¹³C NMR of product 3s

¹H NMR of product 3u

¹H NMR of product 3v

¹³C NMR of product 3v