Supplementary Information

Selective aqueous phase oxidation of 5-hydroxymethylfurfural to

2,5-furandicarboxylic acid over Pt/C catalysts:

Influence of the base and effect of bismuth promotion.

Hicham AIT RASS, Nadine ESSAYEM, Michèle BESSON*

IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon, UMR5256 CNRS-Université Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France

*Corresponding author:

michele.besson@ircelyon.univ-lyon1.fr, phone +33(0)472445358, fax +33(0)472445399

Fig. S1 TEM images of (a) $3.3\% Pt_{ex}/C_{L3S}$, (b) $3.6\% Pt_{imp}/C_{L3S}$, (c) $3.6\%_{Ptimp}0.9\% Bi/C_{L3S}$, (d), $5.1\% Pt_{imp}/C_{3SW}$ and (e) $5.1\% Pt_{imp}1\% Bi/C_{3SW}$.

Fig. S2 Evolution of concentrations of HMF and products DFF, HMFCA, FFCA, and FDCA as a function of time over (a) $3.6\% Pt_{imp}/C_{L3S}$ after further reduction at $300^{\circ}C$ under H₂ in the presence of NaHCO₃ (NaHCO₃/HMF = 4).

♦ HMF, \triangle DFF, \Box HMFCA, ● FFCA, \ast FDCA, + molar balance, × TOC and --- pH

Fig. S3 Evolution of concentrations of HMF and products DFF, HMFCA, FFCA, and FDCA as a function of time over 5.1% Pt_{imp}/C_{3SW}, in the presence of NaHCO₃ (NaHCO₃/HMF = 2) \clubsuit HMF, \triangle DFF, \Box HMFCA, \clubsuit FFCA, \divideontimes FDCA, + molar balance, \times TOC and --- pH

Fig. S4 Evolution of concentrations of HMF and products DFF, HMFCA, FFCA, and FDCA as a function of time over 5.1% Pt_{imp}/C_{3SW} under base free conditions (C₀(HMF) = 0.02 mol.L⁻¹, HMF/Pt=100); \blacklozenge HMF, \triangle DFF, \Box HMFCA, \blacklozenge FFCA, # FDCA, + molar balance, \times TOC and --- pH

Fig. S5 XRD patterns of Pt and PtBi catalysts prepared by liquid impregnation method. (a) $3.6\% Pt_{imp}/C_{L3S}$, (b) $3.6\% Pt_{imp}0.9\% Bi/C_{L3S}$ reduced under liquid phase conditions, (c) $3.6\% Pt_{imp}/C_{L3S}$, (d) $3.6\% Pt_{imp}0.9\% Bi/C_{L3S}$ after further pre-treatment under hydrogen at $300^{\circ}C$