Supporting Information

Mesoporous Molecular Sieves K₂O/ Ba(Ca or Mg)-MCM-41 with Base Sites as Heterogeneous Catalysts for the Production of Liquid Hydrocarbon Fuel from Catalytic Cracking of Rubber Seed Oil

Lu Li, ^a Kejing Quan, ^a Junming Xu, ^b Fusheng Liu, ^{a*} Shiwei Liu, ^a Shitao Yu, ^{a*} Congxia Xie, ^c Baoquan Zhang, ^d Xiaoping Ge ^a

^aCollege of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

^b Institute of Chemical Industry of Forest Products, Research Institute of New Technology CAF, Nanjing 210042, China

^c Key Laboratory of Eco-Chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China ^dCollege of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Chin

XRD

Figure. S1 X-ray diffraction pattern of Ba-MCM-41, Ca-MCM-41 and Mg-MCM-41

Figure. S2 X-ray diffraction pattern of K₂O/Ba-MCM-41

Figure S3 X-ray of K₂O/Ba-MCM-41 and used of K₂O/Ba-MCM-41

N₂ adsorption-desorption

Figure S4 N₂ adsorption-desorption isotherms and BJH pore size distribution of Ba-MCM-41

Sample	Ba-MCM-41
d ₁₀₀ /(nm)	3.74
a ₀ */(nm)	4.32
BET Surface Area/ $(m^2 \cdot g^{-1})$	530
Average Pore Volume/(nm)	2.77
BJH Pore Volume/(cm ³ • g^{-1})	0.14

Table S1 The structural parameters of Ba-MCM-41

 a_0 (unit cell parameter)=2d_{100}/3^{1/2}

Figure S5 N₂ adsorption-desorption isotherms and BJH pore size distribution of Ca-MCM-41

Sample	Ca-MCM-41
d ₁₀₀ /(nm)	3.29
a ₀ */(nm)	3.80
BET Surface Area/ $(m^2 \cdot g^{-1})$	403
Average Pore Volume/(nm)	3.06
BJH Pore Volume/($cm^3 \cdot g^{-1}$)	0.29

Table S2 The structural parameters of Ca-MCM-41

*a₀(unit cell parameter)= $2d_{100}/3^{1/2}$

Figure S6 $N_{2}\,adsorption\mbox{-desorption}$ isotherms and BJH pore size distribution of Mg-MCM-41

Table S3 The structural	parameters	of Mg-MCM-41
-------------------------	------------	--------------

Sample	Mg-MCM-41
d ₁₀₀ /(nm)	2.38
a ₀ */(nm)	2.75
BET Surface Area/ $(m^2 \cdot g^{-1})$	211
Average Pore Volume/(nm)	2.02
BJH Pore Volume/(cm ³ • g ⁻¹)	0.21

* $a_0(unit cell parameter) = 2d_{100}/3^{1/2}$

TEM

Figure S6 TEM of Ba-MCM-41

Figure S7 TEM of Ca-MCM-41

Figure S8 TEM of Mg-MCM-41