Supporting Information for

One-pot transformation of alkynes into alcohols and amines with formic acid

Jia Li,^[a] Chao Wang,^{*[a]} Dong Xue,^[a] Yawen, Wei,^[a] and Jianliang Xiao^{*[a,b]}

^a Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School

of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China

^b Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK

Contents

1. General information	S2
2. Transfer hydrogenation catalysts for alkyne hydration reaction	S2
3. Typical procedure for transforming alkynes to achiral alcohols	S3
4. Typical procedure for transforming alkynes to chiral alcohols	S3
5. Typical procedure for transforming alkynes to amines	
6. Analytic data for catalysts and products	S4-S12
7. References	
8. ¹ H and ¹³ C NMR spectra of catalysts and products	S14-S40
9. HPLC traces of chiral alcohols	S41-S44

1. General information

Unless otherwise specified, all reagents were obtained commercially and used without further purification. MeOH was dried over magnesium and distilled prior to use. Dichloromethane (DCM) was dried over CaH₂ and distilled prior to use. NMR spectra were recorded on a Brucker 300 Hz or 400 Hz NMR spectrometer with TMS as the internal standard at ambient temperature. Imines were prepared according to the literature.^[1] Complexes 1^[2,3] and 3^[4,5] were prepared according to the literature. pH was measured with a Sartorius PB-10 pH meter at 25 °C. Enantiomeric excess (ee) was determined using a SHIMADZU LC-2010A HT HPLC with a Chiralcel OD-H or AD-H column.

2. Transfer hydrogenation catalysts for alkyne hydration reaction

Table S1 Alkyne hydration catalysed by transfer hydrogenation catalysts^a

~	o catalyst solvent/water 70 °C, 24 h	
Entry	Catalyst	Yield $(\%)^b$
1	Ph _{1/1/2} N Ph Ph N H ₂ Cl	NR
2	MeO N I T CI OMe	NR
3	[RuCl ₂ (p-cymene)] ₂	36
4	[Cp*RhCl ₂] ₂	41
5	[Cp*IrCl ₂] ₂	60
6 ^{<i>c</i>}	[Cp*IrCl ₂] ₂	75
^a Reaction of	conditions: Alkyne (2 mmol)	$MeOH/H_{2}O$ (0.6/1.4 m

^a Reaction conditions: Alkyne (2 mmol), MeOH/H₂O (0.6/1.4 ml), catalyst (0.005 mmol), 70 °C, 24 h. ^{*b*} Isolated yield. ^{*c*} S/C = 200

3. Typical procedure for transforming alkynes to achiral alcohols

A tube was charged with a magnetic stir bar and phenylacetylene (3 mmol). HCOOH (99%) was introduced into the tube with a syringe (3 mL). The resulting mixture was bubbled with argon for 15 min. The tube was then sealed and the mixture was stirred at 100 °C for 0.5 h. Upon cooling to room temperature, the tube was opened and 5.6 mL of HCOONa solution (15.5 mol/L) was added to adjust the solution pH to 3.5. After addition of catalyst **1** (0.003 mmol), the resulting mixture was stirred at 80 °C for 6 h. After cooling to room temperature, the reaction mixture was transferred to a beaker containing 30 mL MeOH and the resulting mixture was basified with KOH (pH = 9~10) and stirred for 30 min to hydrolyse any formyl ester product. MeOH was then removed from the mixture under vacuum and the aqueous solution was extracted with ethyl acetate. The organic phase was washed with brine and dried over anhydrous Na₂SO₄. After removing ethyl acetate under vacuum, the residue was purified by flash chromatography [petroleum ether (m.p = 60~90 °C): ethyl acetate = 8:1] to afford 1-phenylethanol in 80% yield.

4. Typical procedure for transforming alkynes to chiral alcohols

A tube was charged with a magnetic stir bar and phenylacetylene (3 mmol). HCOOH (99%) was introduced into the tube with a syringe (3 mL). The resulting mixture was bubbled with argon for 15 min. The tube was then sealed and the mixture was stirred at 100 °C for 0.5 h. Upon cooling to room temperature, the tube was opened and NaOH solution (17 mol/L) was added to adjust the solution pH to 7. After addition of catalyst **3** (0.015 mmol), the resulting mixture was stirred at 40 °C for 3 h. After cooling to room temperature, the reaction mixture was extracted with ethyl acetate. The organic phase was washed with brine and dried over anhydrous Na₂SO₄. After removing ethyl acetate under vacuum, the residue was purified by flash chromatography [petroleum ether (m.p = 60~90 °C): ethyl acetate = 8:1] to afford 1-phenylethanol in 87% yield. The enantiomeric excess of product was determined by chiral HPLC analysis: Chiralcel OD-H (hexane/*i*PrOH = 97/3, flow rate: 0.5 mL/min), t_{*R*} (major) = 25.67 min, t₅ (minor) = 35.55 min, 99% ee.

5. Typical procedure for transforming alkynes to amines

A tube was charged with a magnetic stir bar and phenylacetylene (3 mmol). HCOOH (99%) was introduced into the tube with a syringe (3 mL). The resulting mixture was bubbled with argon for 15 min. The tube was then sealed and the mixture was stirred at 100 °C for 0.5 h. Upon cooling to room temperature, the tube was opened and 4.7 mL of NaOH solution (17 mol/L) was added to adjust the solution pH to 4.8. After addition of catalyst **1** (0.006 mmol) and *p*-anisidine (6 mmol), the resulting mixture was stirred at 80 °C for 3.5 h. After cooling to room temperature, a HCl solution (3 mol/L) was added to adjust solution pH to around 2-3 and the mixture was stirred at room temperature for 10 min to hydrolysis any imines. The resulting mixture was then basified with NaOH solution (6 mol/L) to pH around 9-10 and extracted with ethyl acetate. The organic phase was washed with brine and dried over anhydrous Na₂SO₄. After removing ethyl acetate under vacuum, the residue was purified by flash chromatography [petroleum ether (m.p = 60~90 °C): ethyl acetate = 40:1] to afford 4-methoxy-*N*-(1-phenylethyl)aniline in 75% yield.

6. Characterization data for catalysts and products

Catalyst 1:^[2,3] Yellow solid; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.45 (d, J = 8.8 Hz, 1H), 7.35 (d, J = 2.4 Hz, 1H), 6.94-6.92 (m, 2H), 6.58 (dd, J = 8.8 Hz, 2.4 Hz, 1H), 3.91 (s, 3H), 3.85 (s, 3H), 2.38 (s, 3H) ,1.44 (s, 15H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 180.1, 170.4, 162.1, 157.6, 144.3, 141.3, 130.0, 124.7, 119.2, 113.6, 107.8, 89.0, 55.5, 55.0, 16.8, 8.6; HRMS for C₂₆H₃₁ClIrNO₂ [M-Cl] ⁺ : m/z calc.: 582.1984. Found: 582.1979.

Catalyst 3:^[4,5] Orange solid; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.43 (d, J = 8.0 Hz, 2H), 7.16-7.08 (m, 3H), 6.90-6.78 (m, 7H), 6.66 (d, J = 7.2 Hz, 2H), 3.98 (d, J = 10.4 Hz, 2H), 3.71 (t, J = 11.6 Hz, 1H), 3.32 (d, J = 8.4 Hz, 1H), 2.22 (s, 3H), 1.86 (s, 15H); ¹³C NMR (CDCl₃,100 MHz) δ (ppm): 140.8, 139.8, 139.4, 139.3, 128.6, 128.5, 128.5, 128.4, 127.8, 127.1, 127.0, 126.5, 94.1, 71.9, 69.5, 21.2, 9.7.

1-Phenylethanol:^[6] 80% yield, colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.33-7.22 (m, 5H), 4.82 (q, *J* = 6.4 Hz, 1H), 2.40 (brs, 1H), 1.44 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 145.9, 128.5, 127.5, 125.5, 70.4, 25.2; MS (CI) for C₈H₁₀O [M+H]⁺ : m/z 123 (100%).

1-(*p***-Tolyl)ethanol:^[6]** 85% yield, colorless oil; ¹H NMR (CDCl₃, 300 MHz) δ (ppm): 7.26 (d, J = 6.0 Hz, 2H), 7.16 (d, J = 5.7 Hz, 2H), 4.86 (q, J = 4.8 Hz, 3H), 2.34 (s, 3H), 1.48 (d, J = 4.8 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 142.9, 137.1, 129.2, 125.4, 70.2, 25.1, 21.1; MS (CI) for C₉H₁₂O [M+H]⁺ : m/z 137 (100%).

1-(4-Methoxyphenyl)ethanol:^[6] 60% yield, colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.26 (d, *J* = 8.8 Hz, 2H), 6.85 (d, *J* = 8.8 Hz, 2H), 4.79 (q, *J* = 6.4 Hz, 1H), 3.77 (s, 3H), 1.44 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 159.0, 138.1, 126.7, 113.8, 69.9, 55.3, 25.0; MS (CI) for C₉H₁₂O₂ [M+H]⁺ : m/z 153 (100%).

1-(4-Bromophenyl)ethanol:^[6] 87% yield, colorless oil; ¹H NMR (CDCl₃, 300 MHz) δ (ppm): 7.45 (d, *J* = 8.1 Hz, 2H), 7.22 (d, *J* = 7.8 Hz, 2H), 4.83 (q, *J* = 5.7 Hz, 1H), 2.15 (brs, 1H), 1.44 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 144.8, 131.5, 127.2, 121.1, 69.7, 25.2; MS (CI) for C₈H₉BrO [M+H]⁺ : m/z 201 (100%).

1-(4-Fluorophenyl)ethanol:^[6] 89% yield, colorless oil; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.29 (d, *J* = 19.5 Hz, 2H), 7.02 (t, J = 7.6 Hz, 2H), 4.87 (d, J = 6.0 Hz, 1H), 1.98 (s, 1H), 1.46 (d, J = 6.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 162.1 (d, ¹*J*_{C-F} = 182.6 Hz), 141.6 (d, ⁴*J*_{C-F} = 2.3 Hz), 127.1 (d, ³*J*_{C-F} = 6.0 Hz), 115.2 (d, ²*J*_{C-F} = 15.9 Hz), 69.6 (d, ⁵*J*_{C-F} = 2.1 Hz) 25.2; MS(EI) for C₈H₉FO [M+H]⁺: m/z 141.

1-(3-Chlorophenyl)ethanol:^[7] 87% yield, colorless oil; ¹H NMR (CDCl₃, 300 MHz) δ (ppm): 7.32 (s, 1H), 7.24-7.17 (m, 3H), 4.81 (q, *J* = 4.5 Hz, 1H), 2.39 (brs, 1H), 1.43 (d, *J* = 3.9 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 147.9, 134.4, 129.8, 127.5, 125.7, 123.5, 69.8, 25.2; MS (CI) for C₈H₉ClO [M+H]⁺ : m/z 157 (100%).

1,2-Diphenylethanol: 79% yield, white solid; m.p. = 60-61 °C; ¹H NMR (CDCl₃, 300 MHz) δ (ppm): 7.35-7.17 (m, 10H), 4.88 (s, 1H), 3.01 (q, *J* = 8.4 Hz, 2H), 1.98 (s, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 143.8, 138.1, 129.5, 128.5, 128.4, 127.6, 126.6, 125.9, 75.3, 46.1; MS (CI) for C₁₄H₁₄O [M+H]⁺ : m/z 199 (100%).

1-Phenylbutan-1-ol:^[8] 85% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.32-7.23 (m, 5H), 4.62 (q, *J* = 6.0 Hz, 1H), 2.16 (brs, 1H), 1.77-1.62 (m, 2H), 1.42-1.25 (m, 2H), 0.91 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 145.0, 128.4, 127.4, 126.0, 74.4, 41.2, 19.0, 14.0; MS (CI) for C₁₀H₁₄O [M+H]⁺ : m/z 151 (100%).

(*R*)-1-Phenylethanol:^[10] 87% yield, >99% ee, Colorless oil; HPLC analysis: Chiralcel OD-H (hexane/*i*-PrOH = 97/3, 0.5 mL/min), $t_{\rm R}$ (major) = 25.67 min, $t_{\rm S}$ (minor) = 35.55 min. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.33-7.22 (m, 5H), 4.82 (q, *J* = 6.4 Hz, 1H), 2.40 (brs, 1H), 1.44 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 145.8, 128.5, 127.4, 125.4, 70.4, 25.1; MS (CI) for C₈H₁₀O [M+H]⁺ : m/z 123 (100%).

(*R*)-1-(*p*-Tolyl)ethanol:^[10] 72% yield, 98% ee, Colorless oil; HPLC analysis: Chiralcel AD-H (hexane/*i*-PrOH = 98/2, 0.2 mL/min), $t_{\rm S}$ (minor) = 15.51 min, $t_{\rm R}$ (major) = 19.32 min. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.24 (d, *J* = 7.2 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 4.82 (q, *J* = 6.4 Hz, 1H), 2.33 (s, 3H), 1.45 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 142.9, 137.1, 129.2, 125.3, 70.2, 25.1, 21.1; MS (CI) for C₉H₁₂O [M+H]⁺ : m/z 137 (100%).

(*R*)-1-(4-Bromophenyl)ethanol:^[10] 86% yield, 99% ee, Colorless oil; HPLC analysis: Chiralcel AD-H (hexane/*i*-PrOH = 98.7/1.3, 0.9 mL/min), $t_{\rm R}$ (major) = 33.08 min, $t_{\rm S}$ (minor) = 35.98min. ¹H NMR (CDCl₃, 300 MHz) δ (ppm): 7.45 (d, *J* = 8.1 Hz, 2H), 7.22 (d, *J* = 7.8 Hz, 2H), 4.83 (q, *J* = 7.8 Hz, 1H), 2.15 (brs, 1H), 1.44 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 144.8, 131.5, 127.2, 121.1, 69.7, 25.2; MS (CI) for C₈H₉BrO [M+H]⁺ : m/z Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

201 (100%).

(*R*)-1-(3-Chlorophenyl)ethanol:^[10] 86% yield, 95% ee, Colorless oil; HPLC analysis: Chiralcel AD-H (hexane/*i*-PrOH = 98.5/1.5, 0.9 mL/min), $t_{\rm S}$ (minor) = 20.90 min, $t_{\rm R}$ (major) = 23.24 min. ¹H NMR (CDCl₃, 300 MHz) δ (ppm): 7.32 (s, 1H), 7.24-7.17 (m, 3H), 4.81 (q, *J* = 4.5 Hz, 1H), 2.39 (brs, 1H), 1.43 (d, *J* = 3.9 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 147.9, 134.4, 129.8, 127.5, 125.6, 123.5, 69.8, 25.2; MS (CI) for C₈H₉ClO [M+H]⁺ : m/z 157 (100%).

(*R*)-1,2-Diphenylethanol:^[11] 84% yield, 96% ee, white solid; m.p. = 60-61 °C; HPLC analysis: Chiralcel AD-H (hexane/*i*-PrOH = 98.8/1.2, 0.7 mL/min), $t_{\rm S}$ (minor) =56.16 min, $t_{\rm R}$ (major) =58.39 min. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.37-7.18 (m, 10H), 4.90 (q, *J* = 4.8 Hz, 1H), 3.07-2.96 (m, 2H); 1.91 (brs, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 143.8, 138.1, 129.5, 128.5, 128.4, 127.6, 126.6, 125.9, 75.3, 46.1; MS (CI) for C₁₄H₁₄O [M+H]⁺ : m/z 199 (100%).

N-(1-Phenylethyl)aniline:^[9] 52% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.34 (d, J = 7.2 Hz, 2H), 7.29 (d, J = 7.2 Hz, 1H), 7.19 (t, J = 4.8 Hz, 2H), 7.06 (t, J = 7.6 Hz, 2H), 6.61 (t, J = 7.2 Hz, 1H), 6.48 (d, J = 7.6 Hz, 2H), 4.46 (q, J = 6.8 Hz, 1H), 1.48 (d, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 147.3, 145.3, 129.1, 128.6, 126.9, 125.9, 117.3, 113.4, 53.5, 25.0; HRMS for C₁₄H₁₅N [M+H] ⁺: m/z calc.: 198.1283. Found: 198.1284. Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

4-Methyl-*N***-(1-phenylethyl)aniline**:^[9] 70% yield, white solid; m.p. = 69-71 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.32 (q, *J* = 7.2 Hz, 2H), 7.19 (t, J = 5.2 Hz, 3H), 6.88 (d, *J* = 8.4 Hz, 2H), 6.41 (d, *J* = 8.4 Hz, 2H), 4.43 (q, *J* = 6.8 Hz, 1H), 3.87 (s, 1H), 2.17 (s, 3H), 1.48 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 145.5, 145.1, 129.6, 128.6, 126.8, 126.4, 126.0, 113.5, 53.7, 25.0, 20.4; HRMS for C₁₅H₁₇N [M+H] ⁺: m/z calc.: 234.1259. Found: 234.1260.

3-Methyl-*N***-(1-phenylethyl)aniline**:^[9] 59% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.43 (d, *J* = 7.2 Hz, 2H), 7.37 (t, *J* = 7.2 Hz, 2H), 7.29 (q, *J* = 7.2 Hz, 1H), 7.06 (t, *J* = 7.6 Hz, 1H), 6.63 (d, *J* = 7.6 Hz, 1H), 6.53 (s, 1H), 6.48 (d, *J* = 8.0 Hz, 1H), 4.55 (q, *J* = 6.8 Hz, 1H), 2.29 (s, 3H), 1.60 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 145.6, 144.0, 139.0, 129.1, 128.7, 127.2, 126.3, 119.9, 115.7, 111.9, 54.9, 24.1, 21.6; HRMS for C₁₅H₁₇N [M+H] ⁺: m/z calc.: 258.1489. Found: 258.1492.

4-Methoxy-*N***-(1-phenylethyl)aniline**:^[9] 75% yield, white solid; m.p. = 61-62 °C; ¹H NMR (CDCl₃, 300 MHz) δ (ppm): 7.30 (d, *J* = 12.6 Hz, 2H), 7.18 (t, *J* = 6.6 Hz, 3H), 6.67 (d, *J* = 8.4 Hz, 2H), 6.44 (d, *J* = 8.4 Hz, 2H), 4.38 (d, *J* = 6.3 Hz, 1H), 3.65 (s, 3H), 1.46 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 152.0, 145.5, 141.6, 128.6, 126.8, 126.0, 114.8, 114.6, 55.8, 54.3, 25.1; MS (CI) for C₁₄H₂₃NO [M+H] ⁺ : m/z calc.: 228.1388. Found: 228.1382.

4-Fluoro-*N***-(1-phenylethyl)aniline**:^[9] 63% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.45-7.39 (m, 2H), 7.33-7.28 (m, 3H), 6.88 (q, *J* = 6.4 Hz, 2H), 6.52-6.50 (m, 2H), 4.50 (d, *J* = 6.4 Hz, 1H), 3.96 (s, 1H), 1.58 (q, *J* = 1.6 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 155.6 (d, ¹*J*_{C-F} = 233.4 Hz), 145.0, 143.6, 128.6, 126.9, 125.8, 115.4 (d, ²*J*_{C-F} = 22.1 Hz), 114.0 (d, ³*J*_{C-F} = 7.3 Hz), 54.0, 24.0. HRMS for C₁₄H₁₄FN [M+H]⁺ : m/z calc.: 216.1189. Found: 216.1189.

N-Benzyl-1-phenylethanamine:^[9] 62% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.34-7.20 (m, 10H), 3.79 (q, J = 6.4 Hz, 1H), 3.61 (q, J = 12.8 Hz, 2H), , 1.68 (brs, 1H), 1.35 (d, J = 6.8 Hz 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 145.6, 140.7, 128.5, 128.4, 128.2, 126.8, 57.6, 51.7, 24.5; MS (CI) for C₁₄H₂₃N [M+H]⁺ : m/z calc.: 212.1439. Found: 212.1437.

4-Methoxy-*N***-(1-(4-methoxyphenyl)ethyl)aniline**:^[9] 75% yield, white solid; m.p. = 29-31 $^{\circ}$ C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.29 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 7.6 Hz, 2H), 6.74 (d, *J* = 8.8 Hz, 2H), 6.52 (d, *J* = 8.8 Hz, 2H), 4.43 (q, *J* = 6.8 Hz, 1H), 3.73 (s, 3H), 2.36 (s, 3H), 1.52 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 152.0, 142.5, 141.7, 136.4, 129.3, 125.9, 114.8, 114.6, 55.8, 54.0, 25.1, 21.1; HRMS for C₁₆H₁₉NO₂ [M+H] ⁺: m/z calc.: 242.1545. Found: 242.1541.

4-Methoxy-*N***-(1-(4-methoxyphenyl)ethyl)aniline**:^[9] 64% yield, white solid; m.p. = 56-58 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.26 (d, *J* = 8.4 Hz, 2H), 6.84 (d, *J* = 8.4 Hz, 2H), 6.68 (d, *J* = 8.8 Hz, 2H), 6.46 (d, *J* = 9.2 Hz, 2H), 4.36 (q, *J* = 6.8 Hz, 1H), 3.76 (s, 3H), 3.68 (s, 3H), 1.46 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 158.5, 152.0, 141.7, 137.6, 127.0, 114.8, 114.7, 114.0, 55.8, 55.3, 53.7, 25.1; HRMS for C₁₆H₁₉NO₂ [M+H] ⁺: m/z calc.: 280.1313. Found: 280.1309.

N-(1-(4-Fluorophenyl)ethyl)-4-methoxyaniline:^[9] 86% yield, white solid; m.p. = 38-39 °C; ¹H NMR (CDCl₃, 300 MHz) δ (ppm): 7.34 (t, *J* = 5.7 Hz, 2H), 7.01 (t, *J* = 8.4 Hz, 2H), 6.72 (d, *J* = 8.7 Hz, 2H), 6.47 (d, *J* = 8.7 Hz, 2H), 4.41 (q, *J* = 6.0 Hz, 1H), 3.71 (s, 3H), 1.49 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 161.8 (d, ¹*J*_{C-F} = 182.1 Hz), 152.1, 141.4, 141.2 (d, ⁴*J*_{C-F} = 2.3 Hz), 127.4 (d, ³*J*_{C-F} = 5.9 Hz), 115.4 (d, ²*J*_{C-F} = 15.9 Hz), 114.8, 114.7, 55.7, 53.7, 25.2; HRMS for C₁₅H₁₆FNO [M+H] ⁺: m/z calc.: 268.1114. Found: 268.1112.

4-Methoxy-*N***-(1-phenylbutyl)aniline**:^[9] 71% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.35-7.20 (m, 5H), 6.69 (d, *J* = 8.8 Hz, 2H), 6.48 (d, *J* = 8.8 Hz, 2H), 4.24 (t, *J* = 6.4 Hz, 1H), 3.69 (s, 3H),1.83-1.70 (m, 2H), 1.45-1.33 (m, 2H), 0.94 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 151.8, 144.6, 141.8, 128.5, 126.8, 126.4, 114.8, 114.4, 58.9, 55.8, 41.2, 19.5, 14.0; HRMS for C₁₇H₂₁NO [M+H] ⁺: m/z calc.: 258.1489. Found: 258.1492.

4-Methoxy-*N***-(octan-2-yl)aniline**:^[9] 78% yield, yellow oil; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 6.79 (d, *J* = 8.8 Hz, 2H), 6.57 (d, *J* = 8.8 Hz, 2H), 3.76 (s, 3H), 3.37 (q, *J* = 6.0 Hz, 1H), 3.07 (s, 1H) 1.61-1.53 (m, 1H), 1.43-1.30 (m, 9H), 1.16 (d, *J* = 6.4 Hz, 3H), 0.90 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 151.9, 142.0, 115.0, 114.7, 55.8, 49.6, 37.3, 31.9, 29.4, 26.1, 22.6, 20.8, 14.1; MS (CI) for C₁₅H₂₅NO [M+H] ⁺: m/z calc.: 236.2014. Found: 236.2015.

4-Methoxy-*N***-(nonan-3-yl)aniline**:^[9] 79% yield, yellow oil; ¹H NMR (CDCl₃, 300 MHz) δ (ppm): 6.76 (d, *J* = 8.7 Hz, 2H), 6.54 (d, *J* = 8.7 Hz, 2H), 3.73 (s, 3H), 3.34 (t, *J* = 5.3 Hz, 1H), 3.08 (brs, 1H), 1.56-1.27 (m, 12H), 1.14 (d, *J* = 6.3 Hz, 3H), 0.88-0.85 (m, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 151.9, 142.0, 115.0, 114.8, 55.8, 50.4, 37.3, 31.8, 29.7, 29.3, 26.2, 22.7, 20.8, 14.1; MS (CI) for C₁₆H₂₇NO [M+H] ⁺: m/z calc.: 250.2171. Found: 250.2175.

7. References

- [1] J. S. M. Samec, J. E. B äckvall, Chem. Eur. J. 2002, 8, 2955-2961.
- [2] C. Wang, A. Pettman, J. Bacsa, and J. L. Xiao, Angew. Chem. Int. Ed. 2010, 49, 7458-7552
- [3] D. L. Davies, O. Al-Duaij, J. Fawcett, M.Giardiello, S. T. Hilton, D. R. Russell, *Dalton. Trans.* 2003, 4132.
- [4] X. F. Wu, X. H. Li, Z. G. Antonio, A. Pettman, J. L. Xiao. Chem. Eur. J. 2008, 14, 2209-2222.
- [5] K. Mashima, T. Abe, K. Tani, Chem. Lett. 1998, 1199.
- [6] Y. W. Wei, D. Xue, Q. Lei, C. Wang, J. L. Xiao. Green Chem. 2013, 15, 629-634.
- [7] C. Azerraf and D. Gelman, Chem. Eur. J., 2008, 14, 10364–10368.
- [8] Y. Matsumura, K. Ogura, Y. Kouchi, F. Iwasaki, O. Onomura. Org. Lett. 2006, 8, 3789-3792.
- [9] Q. Lei, Y. W. Wei, D. Talwar, D. Xue, C. Wang, J. L. Xiao. Chem. Eur. J. 2013, 19, 4021-4029.
- [10] J. H. Xie, X. Y. Liu, J. B. Xie, Q. L. Zhou. Angew. Chem. Int. Ed. 2011, 50, 7329-7332.
- [11] S. Tang, R. Jin, H. Zhang, H. Yao, J. Q. Zhuang, G. H. Liu, H. X. Li. Chem. Commun. 2012, 48, 6286-6288.

8. ¹H and ¹³C NMR spectra of catalysts and products

Electronic Supplementary Material (ESI) for Green Chemistry This journal is O The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is C The Royal Society of Chemistry 2013

9. HPLC traces of chiral alcohols

Peak results

	Time	Area	Height	Area%
1	29.957	6896757	103863	49.9084
2	33.788	6922071	87559	50.0916
Total				100

	Time	Area	Height	Area%
1	29.731	17513	496	0.6899
2	35.142	2520926	57937	99.3101
Total				100

		Peak re	sults	
	Time	Area	Height	Area%
1	56.046	331030	6075	49.8192
2	58.418	333433	5810	50.1808
Total				100
	Time	Area	Height	Area%
1	56.159	30422	605	2.0514
2	58.394	1452552	24575	97.9486
Total				100

~1 .1 ъ