Supplementary Information for

Synthesis of polyurethane particles in supercritical carbon dioxide using organocatalysts or organocatalytic surfactants

Christopher A. Smith,^{*a,b*} Eric Cloutet,^{*a*} Thierry Tassaing^{*b*} and Henri Cramail^{**a*}

^a Univ. Bordeaux, LCPO, UMR 5629, F-33600 Pessac, France.

CNRS, LCPO, UMR 5629, F-33607 Pessac Cedex, France.

Fax: +33540008487; Tel: +33540006254; E-mail: cramail@enscbp.fr

^b Univ. Bordeaux, ISM, UMR 5255, F-33400 Talence, France.

CNRS, ISM, UMR 5255, F-33405 Talence Cedex, France.

Fax: +33540008402; Tel: +33540002892; E-mail: t.tassaing@ism.u-bordeaux1.fr

200 um

30 um

30 um

10 um

Fig. S1 SEM images of polyurethane particles produced in the absence of catalyst (table 1, entry 2).

Fig. S2 SEM images of polyurethane particles produced in the presence of 0.2 mol% NMO (table 1, entry 3).

Fig. S3 SEM images of polyurethane particles produced in the presence of 1 mol% NMO (table 1, entry 4).

Fig. S4 SEM images of polyurethane particles produced in the presence of 5 mol% NMO (table 1, entry 5).

Fig. S5 ¹H NMR spectra of the telechelic amine-oxide terminated PDMS (red) and the amine terminated precursor (black) [* impurity].

Fig. S6 MALDI-TOF mass spectrum of the telechelic catasurf between 2020 and 2218 m/z (top) and calculated spectrum for n = 25 (bottom).

Fig. S7 Thermogravimetric analysis curve (green) and differential thermogravimetric analysis curve (purple) of the mono-amino functionalised PDMS (top) and the mono-amine oxide functionalised PDMS (bottom) $[M_n = 1600 \text{ g mol}^{-1}]$.

500 um

300 um

100 um

30 un

20 um

10 um

Fig. S8 SEM images of polyurethane particles produced in the presence of 0.2 mol% of the telechelic catasurf with an M_n of 15,000 g mol⁻¹ (table 2, entry 1a).

Fig. S9 SEC traces of the polyurethane particles produced in the presence of 0.2 mol% of the telechelic catasurf with an M_n of 15,000 g mol⁻¹ (table 2, entry 1a).

Fig. S10 SEM images of polyurethane microcellular foam produced in the presence of the monofunctional catasurf with an M_n of 1600 g mol⁻¹ (table 2, entry 4).

Fig. S11 SEM images of polyurethane particles produced in the presence of 1.0 mol% of the telechelic catasurf with an M_n of 12,000 g mol⁻¹ (table 2, entry 6).

Fig. S12 SEM images of polyurethane particles produced in the presence of 1.0 mol% of the monofunctional catasurf with an M_n of 10,000 g mol⁻¹ (table 2, entry 7).

Fig. S13 Optical microscope images of the large spheriodal beads produced with 1.0 mol% of the telechelic amino-terminated PDMS (table 2, entry 8).

Fig. S14 SEM images of polyurethane particles produced in the presence of 1.0 mol% of the telechelic amino-terminated PDMS (table 2, entry 8).