Supporting Information

H₂O₂-Mediated Oxidative Formation of Amides from Aromatic Amines and 1,3-Diketones as Novel Acylation Agents via C–C Bond Cleavage at Room Temperature in Water under Metal-Free Conditions

Xi Sun,^[a] Min Wang,^[b] Pinhua Li,^[b] Xiuli Zhang,^{*[a][c]} and Lei Wang^{*[b][c]}

^[a] Department of Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P R China

^[b] Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P R
 China; Tel: + 86-561-3802-069 Fax: + 86-561-3090-518 E-mail: leiwang@chnu.edu.cn
 ^[c] State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic
 Chemistry, Chinese Academy of Sciences, Shanghai 200032, P R China

Table of Contents for Supporting Information

1. General considerations	2
2. General procedures	2
3. Optimization of the solvent, and the concentration and amount of H_2O_2	3
4. Characterization data for all products	4
5. ¹ H, and ¹³ C NMR spectra of all products	15
6. References	49

1. General considerations

All reagents were purchased from commercial suppliers and used without further purification. All the reactions were carried out under an air atmosphere. ¹H NMR, ¹³C NMR spectra were measured on a Bruker Avance NMR spectrometer (400 MHz or 100MHz, respectively) with CDCl₃ as solvent and recorded in ppm relative to internal tetramethylsilane standard. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet. The coupling constants, J, are reported in Hertz (Hz).

2. General procedure

A 10 mL of reaction tube was charged with aniline (0.50 mmol), 1,3diketone (0.60 mmol) and H_2O_2 (30%, aq., 1.5 mmol) in the air. After the reaction was carried out at room temperature (about 25 °C) for 8 h, it was extracted twice with EtOAc. The organic layers were combined, dried over Na₂SO₄, and concentrated to yield the crude product, which was further purified by flash chromatography on silica gel to give the desired product.

3. Optimization of the solvent, and the concentration and amount of H_2O_2 in the reaction (Table S1)

	har	H ₂ O ₂ Concentration ? Amount ? Solvent ? r. t. 3a	
Entry	H ₂ O ₂ (concentration, amount)	Solvent	Yield $(\%)^b$
1	H ₂ O ₂ (30% aq., 3.0 eq.)	Toluene	41
2	H ₂ O ₂ (30% aq., 3.0 eq.)	DMF	0
3	H ₂ O ₂ (30% aq., 3.0 eq.)	DMSO	0
4	H ₂ O ₂ (30% aq., 3.0 eq.)	DME	0
5	H ₂ O ₂ (30% aq., 3.0 eq.)	CH ₃ CN	0
6	H ₂ O ₂ (30% aq., 3.0 eq.)	Dioxane	0
7	H ₂ O ₂ (30% aq., 3.0 eq.)	THF	0
8	H ₂ O ₂ (30% aq., 5.0 eq.)	Neat	88
9	H ₂ O ₂ (30% aq., 4.0 eq.)	Neat	88
10	H ₂ O ₂ (30% aq., 3.0 eq.)	Neat	88
11	H ₂ O ₂ (30% aq., 2.0 eq.)	Neat	69
12	H ₂ O ₂ (30% aq., 1.0 eq.)	Neat	37
13	H ₂ O ₂ (35% aq., 3.0 eq.)	Neat	88
14	H ₂ O ₂ (25% aq., 3.0 eq.)	Neat	82
15	H ₂ O ₂ (20% aq., 3.0 eq.)	Neat	67
16	H ₂ O ₂ (15% aq., 3.0 eq.)	Neat	56
17	H ₂ O ₂ (6.0% aq., 3.0 eq.)	Neat	41

Table S1 Optimization of the solvent, and the concentration and amount of H_2O_2 in the model reaction^{*a*}

^{*a*} Reaction conditions: **1a** (0.50 mmol), **2a** (0.60 mmol), H_2O_2 (aq. concentration, amount used in the reaction indicated in Table), solvent (2.0 mL) if needed, room temperature for 8 h. ^{*b*} Isolated yields.

4. Characterization data for all products

N-Phenylacetamide.^[1]

3a: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.78 (br, 1H), 7.52–7.50 (m, 2H), 7.32–7.28 (m, 2H), 7.12–7.08 (m, 1H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 168.6, 137.9, 128.9, 124.2, 120.0, 24.5.

N-(*p*-Tolyl)acetamide.^[2]

3b: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.66 (br, 1H), 7.38 (d, *J* = 8.4 Hz, 2H), 7.10 (d, *J* = 8.4 Hz, 2H), 2.31 (s, 3H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 168.5, 135.4, 133.9, 129.4, 120.1, 24.3, 20.8.

N-(4-Ethylphenyl)acetamide.^[3]

3c: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ: 8.00 (br, 1H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 2.61 (q, *J* = 7.6 Hz, 2H), 2.13 (s, 3H), 1.21 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 168.8, 140.2, 135.6, 128.1, 120.3, 28.2, 24.2, 15.5.

N-(4-*iso*-Propylphenyl)acetamide.^[3]

3d: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.86 (br, 1H), 7.42 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 2.90–2.84 (m, 1H), 2.14 (s, 3H), 1.23 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 168.7, 144.9, 135.6, 126.7, 120.3, 33.5, 24.3, 23.9.

N-(4-Methoxyphenyl)acetamide.^[2]

3e: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ: 8.21 (br, 1H), 7.38 (d, *J* = 8.8 Hz, 2H), 6.80 (d, *J* = 8.8 Hz, 2H), 3.75 (s, 3H), 2.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 168.8, 156.3, 131.1, 122.0, 113.9, 55.3, 23.9.

N-(4-Ethoxyphenyl)acetamide.^[4]

3f: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ : 8.13 (br, 1H), 7.36 (d, *J* = 8.8 Hz, 2H), 6.79 (d, *J* = 8.8 Hz, 2H), 3.97 (q, *J* = 7.2 Hz, 2H), 2.09 (s, 3H), 1.38 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 168.8, 155.6, 131.0, 122.0, 114.6, 63.6, 24.0, 14.7.

N-(*o*-Tolyl)acetamide.^[2]

3g: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.64–7.62 (m, 1H), 7.38 (br, 1H), 7.17–7.15 (m, 2H), 7.09–7.05 (m, 1H), 2.22 (s, 3H), 2.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 168.7, 135.6, 130.4, 130.0, 126.5, 125.4, 123.9, 23.9, 17.7.

N-(*m*-Tolyl)acetamide.^[2]

3h: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.96 (br, 1H), 7.36 (s, 1H), 7.31–7.29 (m, 1H), 7.19–7.16 (m, 1H), 6.92–6.91 (m, 1H), 2.30 (s, 3H), 2.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 168.8, 138.7, 137.8, 128.6, 125.0, 120.7, 117.1, 24.4, 21.4.

N-(3-*iso*-Propylphenyl)acetamide.^[5]

3i: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.48 (br, 1H), 7.36–7.35 (m, 2H), 7.26–7.22 (m, 1H), 6.99–6.97 (m, 1H), 2.91-2.84 (m, 1H), 2.17 (s, 3H), 1.24 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ: 168.6, 149.8, 137.9, 128.8, 122.4, 118.1, 117.5, 34.0, 24.4, 23.8.

N-(3,4-Dimethylphenyl)acetamide.^[3]

3j: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ: 8.15 (br, 1H), 7.29–7.23 (m, 2H), 7.04–7.02 (m, 1H), 2.20 (s, 3H), 2.19 (s, 3H), 2.13 (s, 3H); ¹³C

NMR (100 MHz, CDCl₃) δ: 168.8, 136.9, 135.7, 132.4, 129.7, 121.6, 117.7, 24.1, 19.7, 19.0.

N-(2,4-Dimethylphenyl)acetamide.^[6]

3k: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.45–7.43 (m, 1H), 7.30 (br, 1H), 6.98–6.96 (m, 2H), 2.28 (s, 3H), 2.18 (s, 3H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 168.7, 135.2, 132.9, 131.0, 130.4, 127.0, 124.2, 23.8, 20.8, 17.6.

N-(2,3-Dimethylphenyl)acetamide.^[7]

31: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.34–7.32 (m, 1H), 7.14 (br, 1H), 7.09–7.05 (m, 1H), 7.02–6.99 (m, 1H), 2.28 (s, 3H), 2.16 (s, 3H), 2.11(s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 168.8, 137.4, 135.2, 130.1, 127.6, 125.7, 122.7, 23.8, 20.5, 13.8.

N-(2,5-Dimethylphenyl)acetamide.^[7]

3m: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.46 (s, 1H), 7.34 (br, 1H), 7.05–7.03 (m, 1H), 6.89–6.88 (m, 1H), 2.29 (s, 3H), 2.18 (s, 3H), 2.14

(s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 168.6, 136.2, 135.3, 130.1, 126.2, 124.5, 23.9, 20.9, 17.2.

N-(4-Fluorophenyl)acetamide.^[8]

3n: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.77 (br, 1H), 7.46–7.43 (m, 2H), 7.00–6.96 (m, 2H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 168.7, 159.4 (d, J_{CF} = 242.1 Hz), 133.8 (d, J_{CF} = 2.8 Hz), 121.9 (d, J_{CF} = 7.9 Hz), 115.5 (d, J_{CF} = 22.4 Hz), 24.2.

N-(4-Chlorophenyl)acetamide.^[2]

30: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.47–7.45 (m, 2H), 7.33 (br, 1H), 7.31–7.27 (m, 2H), 2.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 168.3, 136.4, 129.3, 129.0, 121.1, 24.5.

N-(4-Bromophenyl)acetamide.^[8]

3p: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.59 (br, 1H), 7.47–7.41 (m, 4H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 168.4, 136.9, 131.9, 121.4, 116.9, 24.5.

N-(4-Iodophenyl)acetamide.^[9]

3q: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.61 (d, *J* = 8.8 Hz, 2H), 7.36 (br, 1H), 7.29 (d, *J* = 8.4 Hz, 2H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 168.3, 137.9, 137.6, 121.6, 87.4, 24.6.

N-(3-Fluorophenyl)acetamide.^[8]

3r: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ : 8.32 (br, 1H), 7.48–7.46 (m, 1H), 7.23–7.19 (m, 1H), 7.17–7.15 (m, 1H), 6.80–6.77 (m, 1H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 169.3, 162.9 (d, $J_{CF} = 243.1$ Hz), 139.5 (d, $J_{CF} = 10.8$ Hz), 130.0 (d, $J_{CF} = 9.3$ Hz), 115.3 (d, $J_{CF} = 2.8$ Hz), 111.0 (d, $J_{CF} = 21.2$ Hz), 107.5 (d, $J_{CF} = 25.9$ Hz), 24.4.

N-(3-Chlorophenyl)acetamide.^[8]

3s: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ: 8.28 (br, 1H), 7.64 (s, 1H), 7.35–7.33 (m, 1H), 7.22–7.17 (m, 1H), 7.09–7.05 (m, 1H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 169.2, 139.0, 134.4, 129.8, 124.3, 120.2, 118.0, 24.3.

N-(2-Chlorophenyl)acetamide.^[8]

3t: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ: 8.32–8.30 (m, 1H), 7.68 (br, 1H), 7.36–7.34 (m, 1H), 7.27–7.23 (m, 1H), 7.05–7.01 (m, 1H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 168.3, 134.5, 128.9, 127.6, 124.6, 121.8, 121.1, 24.7.

N-(4-Acetylphenyl)acetamide.^[3]

3u: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ: 8.17 (br, 1H), 7.91 (d, *J* = 8.4 Hz, 2H), 7.64 (d, *J* = 8.4 Hz, 2H), 2.57 (s, 3H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 197.3, 168.9, 142.5, 132.7, 129.7, 118.9, 26.4, 24.6.

N-(4-Cyanophenyl)acetamide.^[8]

3v: Colorless solid. ¹H NMR (400 MHz, CD₃COCD₃) δ : 9.57 (br, 1H), 7.84 (d, *J* = 8.8 Hz, 2H), 7.69 (d, *J* = 8.8 Hz, 2H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ : 168.8, 143.6, 132.9, 119.1, 118.6, 105.9, 23.5.

N-(4-Nitrophenyl)acetamide.^[10]

3w: Colorless solid. ¹H NMR (400 MHz, CD₃COCD₃) δ : 8.22 (br, 1H), 8.17 (d, J = 8.8 Hz, 2H), 7.88 (d, J = 8.8 Hz, 2H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ : 169.4, 145.4, 142.7, 124.7, 118.6, 23.5.

N-(Naphthalen-1-yl)acetamide.^[11]

3x: Colorless solid. ¹H NMR (400 MHz, CD₃COCD₃) δ: 9.22 (br, 1H), 8.15–8.13 (m, 1H), 7.91 (br, 2H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.52–7.45 (m, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ: 168.5, 134.2, 133.9, 128.1, 127.6, 125.6, 125.5, 125.3, 124.8, 121.9, 120.7, 22.9.

N-(4-Hydroxyphenyl)acetamide.^[10]

3y: Colorless solid. ¹H NMR (400 MHz, CD₃COCD₃) δ: 8.99 (br, 1H), 8.19 (s, 1H), 7.45 (d, *J* = 8.4 Hz, 2H), 6.76 (d, *J* = 8.4 Hz, 2H), 2.04 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ: 167.4, 153.3, 131.7, 120.7, 114.9, 23.0.

N-(3-Fluoro-4-hydroxyphenyl)acetamide.^[12]

3z: Colorless solid. ¹H NMR (400 MHz, CD₃COCD₃) δ: 9.18 (br, 1H), 8.49 (s, 1H), 7.64 (d, *J* = 13.2 Hz, 1H), 7.11 (d, *J* = 8.4 Hz, 1H), 6.93–6.88 (m,

1H), 2.06 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ : 168.0, 150.7 (d, J_{CF} = 236.7 Hz), 140.5 (d, J_{CF} = 13.1 Hz), 132.0 (d, J_{CF} = 9.2 Hz), 117.3 (d, J_{CF} = 3.5 Hz), 115.2 (d, J_{CF} = 3.3 Hz), 107.8 (d, J_{CF} = 23.1 Hz), 23.0.

N-(2-Hydroxyphenyl)acetamide.^[13]

3aa: Colorless solid. ¹H NMR (400 MHz, CD₃COCD₃) δ: 9.41 (s, 1H), 9.27 (br, 1H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.04–7.01 (m, 1H), 6.90 (d, *J* = 8.0 Hz, 1H), 6.82 –6.79 (m, 1H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ: 170.2, 148.4, 126.7, 125.5, 121.8, 119.5, 117.9, 22.5.

N-(*p*-Tolyl)propionamide.^[14]

3ab: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.52 (br, 1H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 2.37 (q, *J* = 7.6 Hz, 2H), 2.31 (s, 3H), 1.23 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 172.1, 135.4, 133.7, 129.4, 119.9, 30.6, 20.8, 9.7.

N-(4-Methoxyphenyl)propionamide.^[14]

3ac: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.41 (d, *J* = 8.8 Hz, 2H), 7.32 (br, 1H), 6.84 (d, *J* = 8.8 Hz, 2H), 3.78 (s, 3H), 2.36 (q, *J* = 7.6 Hz, 2H),

1.23 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 171.9, 156.3, 131.1, 121.8, 114.0, 55.4, 30.5, 9.7.

N-(4-Ethoxyphenyl)propionamide.^[15]

3ad: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.40 (d, *J* = 8.8 Hz, 2H), 7.22 (br, 1H), 6.84 (d, *J* = 8.8 Hz, 2H), 4.00 (q, *J* = 7.2 Hz, 2H), 2.37 (q, *J* = 7.6 Hz, 2H), 1.40 (t, *J* = 6.8 Hz, 3H), 1.24 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 171.8, 155.7, 130.9, 121.7, 114.7, 63.7, 30.5, 14.8, 9.7.

N-(4-Bromophenyl)-3-methylbutanamide.^[16]

3ag: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.48 (br, 1H), 7.44– 7.39 (m, 4H), 2.21–2.16 (m, 3H), 1.00 (d, J = 6.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 171.0, 136.9, 131.9, 121.5, 116.7, 46.9, 26.2, 22.4.

N-(*p*-Tolyl)benzamide.^[17]

3ah: Colorless solid. ¹H NMR (400 MHz, CDCl₃) δ: 8.17 (br, 1H), 7.85– 7.84 (m, 2H), 7.55–7.51 (m, 2H), 7.49 (s, 1H), 7.43–7.40 (m, 2H), 7.15–7.13 (m, 2H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 165.8, 135.4, 134.9, 134.1, 131.5, 129.4, 128.5, 127.0, 120.5, 20.8.

4-(Phenylamino)pent-3-en-2-one.^[18]

4a: Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ: 12.48 (br, 1H), 7.35–7.32 (m, 2H), 7.20–7.17 (m, 1H), 7.11 (d, *J* = 7.6 Hz, 2H), 5.19 (s, 1H), 2.10 (s, 3H), 1.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 196.1, 160.1, 138.7, 129.0, 125.5, 124.7, 97.6, 29.1, 19.7.

3-Anilino-1-phenyl-2-buten-1-one.^[19]

4k: Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ: 13.13 (br, 1H), 7.94 (d, *J* = 7.2 Hz, 2H), 7.50–7.42 (m, 3H), 7.40–7.37 (m, 2H), 7.25–7.19 (m, 3H), 5.91 (s, 1H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 188.6, 162.1, 139.9, 138.6, 130.8, 129.1, 128.2, 127.0, 125.7, 124.7, 94.2, 20.4.

5. ¹H and ¹³C NMR spectra of all products

Electronic Supplementary Material (ESI) for Green Chemistry This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is o The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is o The Royal Society of Chemistry 2013

6. References

- [1] Furuya, Y.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 11240.
- [2] Li, M.; Hu, L.; Cao, X.; Hong, H.; Lu, J.; Gu, H. Chem. Eur. J. 2011, 17, 2763.
- [3] Bhattacharya, A.; Purohit, V. C.; Suarez, V.; Tichkule, R.; Parmera, G.; Rinaldi, F. *Tetrahedron Lett.* 2006, 47, 1861.
- [4] Bose, A. K.; Manhas, M. S.; Pednekar, S.; Ganguly, S. N.; Dang, H.; He, W.; Mandadi, A. *Tetrahedron Lett.* 2005, 46, 1901.
- [5] Saxena, A. K.; Arunamurthy, V.; Patnaik, G. K.; Jain, P. C.; Anand, N. Indian J. Chem. B 1980, 19, 10.
- [6] Zhang, Y.; Feng, J.; Li, C.-J. J. Am. Chem. Soc. 2008, 130, 2900.
- [7] Suzuki, H.; Tatsumi, A.; Ishibashi, T.; Mori, T. J. Chem. Soc. Perkin. Trans. 1 1995, 339.
- [8] Kim, B. H.; Han, R.; Piao, F.; Jun, Y. M.; Baik, W.; Lee, B. M. *Tetrahedron Lett.* 2003, 44, 77.
- [9] Johnsson, R.; Meijer, A.; Ellervik, U. Tetrahedron 2005, 61, 11657.
- [10] Luque, R.; Budarin, V.; Clark, J. H.; Macquarrie, D. J. Green Chem. 2009, 11, 459.
- [11] Khaligh, N. G. RSC Advances 2013, 3, 99.
- [12] O'Neill, P. M.; Harrison, A. C.; Storr, R. C.; Hawley, S. R.; Ward, S. A.; Park, B. K.
 J. Med. Chem. 1994, *37*, 1362.
- [13] Drillaud, N.; Banaszak-Léonard, E.; Pezron, I.; Len, C. J. Org. Chem. 2012, 77, 9553.
- [14] Ramalingan, C.; Park, Y.-T. J. Org. Chem. 2007, 72, 4536.
- [15] Hill, A. J.; Rabinowitz, I. J. Am. Chem. Soc. 1926, 48, 734.
- [16] Kuehn, M.; McElvain, S. M. J. Am. Chem. Soc. 1931, 53, 1173.
- [17] Zhang, M.; Imm, S.; Bähn, S.; Neubert, L.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed. 2012, 51, 3905.
- [18] Epifano, F.; Genovese, S.; Curini, M. Tetrahedron Lett. 2007, 48, 2717.
- [19] Katritzky, A. R.; Hayden, A. E.; Kirichenko, K.; Pelphrey, P.; Ji, Y. J. Org. Chem.2004, 69, 5108.