Supporting Information

Synthesis of Acetylenic Alcohols with Calcium Carbide as the Acetylene Source

Yin Ngai Sum, Dingyi Yu and Yugen Zhang*

Institute of Bioengineering and Nanotechnology 31 Biopolis Way, The Nanos Singapore 138669 (Singapore) Fax: (+65) 6478-9020 E-mail: ygzhang@ibn.a-star.edu.sg

Experimental Section

All solvents were purchased from Aldrich or J.T. Baker. All starting materials are commercially available and were used as received, unless otherwise indicated. Calcium carbide was purchased from Aldrich (purity: 80%). The course of the reactions were monitored by thin layer chromatography using 0.25-mm E. Merck silica gel coated glass plates (60F-254) with UV light. Chemical yields refer to the pure isolated substances. Gas chromatography-mass spectrometry (GC-MS) was performed with a Shimadzu GC-2010 coupled with GCMS-QP2010. ¹H and ¹³C NMR spectra were obtained using a Brucker AV-400 (400 MHz) spectrometer. Chemical shifts are reported in ppm with reference to tetramethylsilane with the solvent resonance as the internal standard. Data are reported in the following order: chemical shift in ppm (); multiplicity is indicated by br (broadened), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet); coupling constants (J, Hz); integration; assignment.

General Procedure for the Coupling Reaction to Synthesize ter-Propargyl Alcohols

To a vial was added 0.163 g Cs₂CO₃ (0.5mmol), 0.200 g CaC₂ (2.5mmol), 0.134g 2phenylpropanal and 3mL (DMSO/H₂O 50:1). The mixture was bubbled with argon for 10 minutes and the reaction was stirred at 60 °C for 8 hours. The reaction was extracted with 50mL ethyl acetate and washed with 3×10 mL brine. The organic layer was dried over Na₂SO₄, concentrated in vacuo and the crude product was purified by column chromatography (hexane / ethyl acetate: 5 / 1). All products gave satisfactory spectroscopic data. The NMR spectra data of compounds 2d, 2g, 4a, 4h, 4i, 4j and 4l are available in the literature and are referenced accordingly.

Ca C=C + H H H H H		
Entry	Base	Yield ^a
1	Et ₃ N	28%
2	DBU	21%
3	Cs ₂ CO ₃	61%
4 ^b	Cs ₂ CO ₃	63%
5	K_2CO_3	43%
6	Na ₂ CO ₃	No reaction
7	KOAc	56%
8	NaOAc	46%

STable 1. Effect of base on the Synthesis of Propargyl Alcohols.

Reaction conditions: 2-phenylpropropanal (1 mmol), CaC₂ (2.5 mmol), base (0.2 mmol), 3 mL (DMSO/H₂O) 50:1, 70 °C, 8 h a) Determined by ¹H NMR spectroscopy

b) 0.5 mmol base

2-Phenyl-4-pentyn-3-ol (2a)

(Mixture of isomers) ¹H NMR (400MHz, CDCl₃) δ 7.24 – 7.37 (m, 5H, *Ph*), 4.48 (ddd, 1H, *CH*(OH)C=CH), 3.00 – 3.12 (m, 1H, *CH*(CH₃)Ph), 2.46, 2.51 (d, 1H, C=CH), 1.76 – 1.78 (m, 1H, OH), 1.42 (d, 3H, *CH*₃); ¹³C NMR (400MHz, CDCl₃) δ 141.2, 140.9, 128.2, 128.1, 128.0, 127.7, 82.9, 82.8, 74.2, 74.0, 67.1, 66.6, 45.8, 45.1, 16.5, 15.6; HRMS (EI) *m/z* calcd.for C₁₁H₁₁O₁ 159.0810 found 159.0803

4-methylhept-1-yn-3-ol (2b)

(Mixture of isomers) ¹H NMR (400MHz, CDCl₃) δ 4.24 – 4.28 (m, 1H, CH(OH)C=CH), 2.45 (dd, 1H, C=CH), 1.68 – 1.81 (m, 1H, CHCH₃), 1.14 – 1.59 (m, 4H, CH₂CH₂CH₃), 1.00 (dd, 3H, CHCH₃), 0.91 (dt, 3H, CH₂CH₃); ¹³C NMR (400MHz, CDCl₃) δ 83.6, 83.0, 73.4, 73.1, 66.3, 66.1, 38.5, 38.3, 34.3, 33.6, 19.8, 19.7, 14.4, 13.9, 13.8; HRMS (EI) *m/z* calcd.for C₈H₁₃O₁ 125.0966 found 125.0966

4-Ethyl-1-octyn-3-ol (2c)

(Mixture of isomers) ¹H NMR (400MHz, CDCl₃) δ 4.41 (m, 1H, CH(OH)C=CH), 2.44 (d, 1H, C=CH), 1.27 – 1.65 (m, 10H), 0.89 – 0.96 (m, 6H, 2 CH₃); ¹³C NMR (400MHz, CDCl₃) δ 83.5, 73.18, 73.15, 64.3, 64.2, 45.09, 45.07, 29.0, 28.9, 28.5, 28.2, 22.61, 22.57, 22.0, 21.7, 13.64, 13.61, 11.2, 11.0; HRMS (EI) *m/z* calcd for C₁₀H₁₈O₁ 154.1358 found 154.1351

1-Cyclohexylprop-2-yn-1-ol (2d)¹

¹H NMR (400MHz, CDCl₃) δ 4.14 – 4.16 (m, 1H, C*H*(OH)C=CH), 2.46 (d, 1H, C=C*H*), 1.76 – 1.88 (m, 4H), 1.66 – 1.70 (m, 1H), 1.52 – 1.61 (m, 1H), 1.02 – 1.31 (m, 5H); ¹³C NMR (400MHz, CDCl₃) δ 83.5, 73.2, 66.5, 43.4, 27.9, 27.5, 25.9, 25.40, 25.36

4-ethyl-1-hexyn-3-ol (2e)

¹H NMR (400MHz, CDCl₃) δ 4.41 (m, 1H, CH(OH)C=CH), 2.44 (d, 1H, C=CH), 1.33 – 1.66 (m, 5H), 0.91 – 0.96 (m, 6H, 2 CH₃); ¹³C NMR (400MHz, CDCl₃) δ 83.6, 73.2, 64.0, 46.7, 21.4, 21.2, 11.2, 11.0; HRMS (EI) *m/z* calcd.for C₈H₁₃O₁ 125.0966 found 125.0965

a-ethynyl-5-norbornene-2-methanol (2f)

(Mixture of isomers) ¹H NMR (400MHz, CDCl₃) δ 5.95 − 6.21 (m, 2H, HC=CH), 4.07 − 4.17 (m, 0.5H, CH(OH)C≡CH),

3.64 − 3.70 (m, 0.5H, *CH*(OH)C≡CH), 2.80 − 3.02 (m, 2H), 2.45 − 2.53 (m, 0.5H, C≡*CH*), 2.30 − 2.40 (m, 0.8H), 2.02 − 2.22 (m, 0.2H), 1.84 − 1.92 (m, 0.5H), 1.62 − 1.69 (m, 0.5H), 1.26 − 1.51 (m, 3H), 0.67 − 0.95 (m, 0.5H) ¹³C NMR (400MHz, CDCl₃) δ 138.0, 137.8, 137.0, 136.9, 136.2, 135.9, 131.8, 131.5, 84.8, 84.4, 73.2, 72.9, 72.7, 71.6, 66.4, 66.0, 65.2, 49.1, 48.8, 46.8, 46.2, 46.09, 46.06, 45.2, 44.8, 44.5, 44.3, 43.1, 42.7, 42.4, 41.74, 41.72, 41.2, 29.6, 29.5, 29.3, 28.8; HRMS (EI) *m/z* calcd.for C₁₀H₁₂O₁ 148.0888 found 148.0885

4,4-dimethyl-1-pentyn-3-ol (2g)²

¹H NMR (400MHz, CDCl₃) δ 4.02 (dd, 1H, C*H*(OH)C≡CH), 2.45 (d, 1H, C≡C*H*), 1.77 (d,, 1H O*H*), 1.01(s, 9H, C*H*₃); ¹³C NMR (400MHz, CDCl₃) δ 83.5, 73.8, 71.2, 35.6, 25.1

1-Ethynyl-1-cyclohexanol (4a)³

¹H NMR (400MHz, CDCl₃) δ 2.48 (s, 1H, C≡C*H*), 1.86 – 1.93 (m, 2H), 1.67 – 1.73 (m, 2H), 1.51 – 1.61 (m, 5H), 1.20 – 1.29 (m, 1H); ¹³C NMR (400MHz, CDCl₃) δ 87.2, 71.7, 68.0, 39.3, 24.6, 22.7

1-ethynyl-2-methylcyclohexanol (4b)

(Major isomer) ¹H NMR (400MHz, CDCl₃) δ 2.48 (s, 1H, C=C*H*), 1.98 – 2.05 (m, 1H), 1.43 – 1.75 (m, 6H), 1.19 – 1.32 (m, 2H), 1.05 (d, 3H, CH₃); ¹³C NMR (400mHz, CDCl₃) δ 84.8, 74.1, 73.0, 42.4, 40.6, 32.1, 25.5, 24.1, 15.9; HRMS (EI) *m/z* calcd.for C₉H₁₄O₁ 138.1045 found 138.1048

1-ethynyl-3-methylcyclohexanol (4c)

(Major isomer) ¹H NMR (400MHz, CDCl₃) δ 2.48 (s, 1H, C=C*H*), 1.94 – 2.01, (m, 2H), 1.53 – 1.79 (m, 4H), 1.36 – 1.43 (m, 1H), 1.15 (t, 1H), 0.93 (d, 3H, C*H*₃), 0.75 – 0.89 (1H, m); ¹³C NMR (400MHz, CDCl₃) δ 87.0, 72.2, 69.0, 47.9, 39.2, 33.5, 30.0, 23.1, 21.6; HRMS (EI) *m/z* calcd.for C₉H₁₄O₁ 138.1045 found 138.1041

1-ethynyl-4-methylcyclohexanol (4d)

(Major isomer) ¹H NMR (400MHz, CDCl₃) δ 2.49 (s, 1H, C=C*H*), 1.95 – 2.00 (m, 2H), 1.66 – 1.70 (m, 2H), 1.50 – 1.58 (m, 2H), 1.19 – 1.42 (m, 3H), 0.92 (3H, m, CH₃); ¹³C NMR (400MHz, CDCl₃) δ 86.8, 72.4, 68.8, 39.4, 31.9, 31.8, 31.3, 21.4; HRMS (EI) *m/z* calcd.for C₉H₁₄O₁ 138.1045 found 138.1040

1,4-diethynyl-1,4-Cyclohexanediol (4f)

(Mixture of isomers) ¹H NMR (400MHz, CDCl₃) δ 2.49, 2.51 (s, 2H, C=C*H*), 1.91 – 2.04 (m, 8H), 1.97 (s, 2H, O*H*); ¹³C NMR (400MHz, CDCl₃) δ 86.8, 72.0, 66.3, 35.5; HRMS (EI) *m/z* calcd.for C₁₀H₁₁O₂ 163.0759 found 163.0753

2-Ethynyl-2-adamantanol (4g)

¹H NMR (400MHz, CDCl₃) δ 2.53 (s, 1H, C=C*H*), 2.12 – 2.18 (m, 4H), 1.96 (m, 2H), 1.77 – 1.83 (m, 4H), 1.70 (m, 2H), 1.55 – 1.69 (m, 2H); ¹³C NMR (400MHz, CDCl₃) δ 88.0, 72.3, 71.9, 38.2, 37.1, 34.9, 31.1, 26.4, 26.3; HRMS (EI) *m/z* calcd.for C₁₂H₁₆O₁ 176.1201 found 176.1197

3,3-diisopropyl-1-propyn-3-ol (4h)⁴

¹H NMR (400MHz, CDCl₃) δ 2.41 (1H, s, C=C*H*), 1.95 (2H, septet, [(CH₃)₂C*H*]), 1.74 (s, 1H, O*H*), 1.01 (12H, dd, CH₃); ¹³C NMR (400MHz, CDCl₃) δ 85.0, 73.4, 34.1, 17.9, 16.1

3-Methyl-5-phenyl-1-pentyn-3-ol (4i)⁵

¹H NMR (400MHz, CDCl₃) δ 7.18 – 7.31 (5H, m, *Ph*), 2.81 – 2.92 (m, 2H, CH₂CH₂Ph), 2.52 (1H, s, C=CH), 1.98 (s, 1H, OH), 1.93 – 2.05 (2H, m, CH₂CH₂Ph), 1.56 (3H, s, CH₃); ¹³C NMR (400mHz, CDCl₃) δ 141.7, 128.5, 128.4, 126.0, 87.3, 71.9, 68.0, 45.2, 31.1, 30.0

3-butyn-2-cyclohexyl-2-ol (4j)⁶

¹H NMR (400MHz, CDCl₃) δ 2.43 (s, 1H, C=C*H*), 1.94 – 1.99 (m, 1H), 1.92 (s, 1H, O*H*), 1.78 – 1.88 (m, 3H), 1.66 – 1.70 (m, 1H), 1.46 (s, 3H, C*H*₃), 1.41 – 1.48 (m, 1H), 1.08 – 1.30 (m, 5H); ¹³C NMR (400mHz, CDCl₃) δ 87.2, 71.9, 71.0, 48.5, 27.6, 27.3, 27.1, 26.3, 26.20, 26.15

2-ethynyl-2-hexanol (4k)

¹H NMR (400MHz, CDCl₃) δ 2.43 (s, 1H, C=C*H*), 1.95 (s, 1H, O*H*), 1.64 – 1.72 (m, 2H), 1.49 (s, 3H, (OH)(HC=C)CC*H*₃), 1.44 – 1.52 (m, 2H), 1.31 – 1.40 (m, 2H), 0.93 (t, 3H, CH₂C*H*₃); ¹³C NMR (400mHz, CDCl₃) δ 87.8, 71.2, 68.1, 43.2, 29.7, 26.7, 22.8, 14.0; HRMS (EI) *m/z* calcd.for C₈H₁₄O₁ 126.1045 found 126.1045

3-methyl-6-hepten-1-yn-3-ol (4l)⁷

¹H NMR (400MHz, CDCl₃) δ 5.82 – 5.93 (m, 1H), 4.97 – 5.11 (m, 2H), 2.46 (s, 1H, C=CH), 2.23 – 2.39 (m, 2H), 1.71 – 1.83 (m, 2H), 1.51 (s, 3H, CH₃); ¹³C NMR (400mHz, CDCl₃) δ 137.8, 114.6, 86.8, 71.2, 67.4, 41.8, 29.4, 28.6

4-ethyl-1-phenyl-1-hexyn-3-ol (5a)

¹H NMR (400MHz, CDCl₃) δ 7.40 – 7.45 (m, 2H, *Ph*), 7.29-7.33 (m, 3H, *Ph*), 4.63 (d, 1H, C*H*(OH)C≡CPh), 1.40 – 1.72 (m, 5H), 0.95 – 1.00 (m, 6H); ¹³C NMR (400mHz, CDCl₃) δ 131.2, 127.85, 127.82, 122.3, 99.9, 88.8, 85.1, 64.6, 47.1, 21.6, 11.2

2-Phenyl-4-pentyn-3-ol (2a)

4-methylhept-1-yn-3-ol (2b)

4-ethyl-1-Octyn-3-ol (2c)

1-Cyclohexylprop-2-yn-1-ol (2d)

4-ethyl-1-Hexyn-3-ol (2e)

α -ethynyl-5-Norbornene-2-methanol (2f)

4,4-dimethyl-1-pentyn-3-ol (2g)

1-Ethynyl-1-cyclohexanol (4a)

1-ethynyl-2-methylcyclohexanol (4b)

1-ethynyl-3-methylcyclohexanol (4c)

1-ethynyl-4-methylcyclohexanol (4d)

2-Ethynyl-2-adamantanol (4g)

3,3-diisopropyl-1-propyn-3-ol (4h)

-

3-Methyl-5-phenyl-1-pentyn-3-ol (4i)

3-butyn-2-cyclohexyl-2-ol (4j)

2-ethynyl-2-hexanol (4k)

3-methyl-6-hepten-1-yn-3-ol (4l)

4-ethyl-1-phenyl-hexyn-3-ol (5a)

1. L. Ye, W. He, L. Zhang, J. Am. Chem. Soc., 2010, 132, 8550

- 2. M. A. Henderson, C. H. Heathcock, J. Org. Chem., 1988, 53, 4736
- 3. T. Iwasaki, K. Agura, Y. Maegawa, Y. Hayashi, T. Ohshima, K. Mashima, Chem. Eur. J., 2010, 16, 11567
- I. E. Kopka, Z. A. Fataftah, M. W. Rathke, *J. Org. Chem.*, 1980, 45, 4622
 M. Egi, Y. Yamaguchi, N. Fujiwara, S. Akai, *Org. Lett.*, 2008, 10, 1867
- 6. J. S. Schneekloth Jr., M. Pucheault, C. M. Crews, Eur. J. Org. Chem., 2007, 2007, 40
- 7. K. Nozaki, K. Oshima, K. Utimoto, Tetrahedron, 1989, 45, 923