Supplementary Information for

One-pot selective conversion of furfural into 1,5-pentanediol over Pd -added Ir-ReO_x/SiO₂ bifunctional catalyst

Sibao Liu, Yasushi Amada, Masazumi Tamura, Yoshinao Nakagawa* and Keiichi Tomishige*

Department of Applied Chemistry, School of Engineering, Tohoku University,

6-6-07, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan

*Corresponding authors: Keiichi Tomishige and Yoshinao Nakagawa

School of Engineering, Tohoku University,

6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan

E-mail: tomi@erec.che.tohoku.ac.jp

yoshinao@erec.che.tohoku.ac.jp

Entry	Concentration	Conversion	Yield / %								
	/ %	/ %	1,5-PeD	1,4-PeD	1,2-PeD	1-PeOH	2-PeOH	THFA	FFA	2-MTHF	Others
1	5	>99.9	61.2	5.5	1.3	10.3	0.7	10.3	0.0	3.4	7.4
2	10	>99.9	63.2	5.3	1.3	12.5	0.6	10.2	0.0	3.0	3.9
3	20	>99.9	59.5	6.3	1.4	16.6	1.0	4.9	0.0	4.7	5.5
4	50	>99.9	34.1	3.5	1.5	10.4	0.4	31.7	0.0	3.3	15.1

Table S1. Conversion of furfural over Pd(0.66)-Ir-ReO_x/SiO₂ at different furfural concentration

PeD: pentanediol; PeOH: pentanol; THFA: tetrahydrofurfuryl alcohol; FFA: furfuryl alcohol; 2-MTHF: 2-methyltetrahydrofuran.

Pretreatment: 473 K, H₂ (8 MPa), 1 h.

Reaction conditions: Furfural (1 g), H₂O (1-19 g), Pd(0.66)-Ir-ReO_x/SiO₂ (100 mg), initial H₂ (6 MPa), T₁: 313 K, time 1: 2 h, T₂: 393 K, time 2: 24 h, 500 rpm.

Fig. S1. XRD patterns of Pd(0.66)–Ir–ReO_x/SiO₂ after reduction at 473 K for 1 h (a) and after the fourth use (b).

Fig. S2. Results of Re L_3 -edge XANES analysis of Ir-ReO_x/SiO₂ and Pd(1.8)–Ir–ReO_x/SiO₂.

(I) Re L_3 -edge XANES spectra, (II) Relation between white line area and valence of Re. (a) Re powder, (b) Ir-ReO_x/SiO₂ after the catalytic use, (c) Pd(1.8)-Ir-ReO_x/SiO₂ after the catalytic use and (d) ReO₂, (e) ReO₃ and (f) Re₂O₇.

The method of XANES analysis

The first peak in the L_3 -edge XANES is called as a white line, and the white line area in the L_3 -edge XANES is known to be an informative indication of the electronic state. The larger white line intensity is due to greater electron vacancy in *d*-orbital. As reported previously, a relative electron deficiency and ionic valence can be determined on the basis of the white line intensity.^{S1-S4} Regarding the reference compounds, ionic valence of Re species had almost linear relation to the white line intensity. Therefore, the average value of Re species can be estimated by the examining the white line area in the XANES spectra.^{S5, S6}

Catalant	Metal amount / $\text{mmol} \cdot \text{g}_{\text{cat}}^{-1}$			Valence of Re	TPR	CO adsorption	
Catalyst	Pd	Ir	Re	from XANES	H_2 consumption / mmol·g _{cat} ⁻¹	Valence of Re ^a	/ mmol· g_{cat}^{-1}
Ir-ReO _x /SiO ₂	_	0.208	0.416	3.1	0.927	4.5	0.037
$Pd-ReO_x/SiO_2$	0.062	_	0.416	_	0.845	2.9	_
Pd(0.09)-Ir-ReO _x /SiO ₂	0.008	0.208	0.416	_	1.28	2.8	_
Pd(0.22)-Ir-ReO _x /SiO ₂	0.021	0.208	0.416	_	1.10	3.7	_
Pd(0.44)-Ir-ReO _x /SiO ₂	0.041	0.208	0.416	_	1.12	3.6	_
Pd(0.66)-Ir-ReO _x /SiO ₂	0.062	0.208	0.416	_	0.892	4.7	0.058
Pd(0.89)-Ir-ReO _x /SiO ₂	0.084	0.208	0.416	_	0.927	4.5	_
Pd(1.8)-Ir-ReO _x /SiO ₂	0.166	0.208	0.416	3.1	0.788	5.2	_
Pd(0.66)/SiO ₂	0.062	_	_	_	-	_	0.009

Table S2. Summary of characterization results of the catalysts

^a 7-2×[(amount of H_2 consumed, mol)-2×(Ir loading amount, mol)]/(Re loading amount, mol).

Fig. S3. Results of Ir L_3 -edge EXAFS analysis of Ir-ReO_x/SiO₂ and Pd(1.8)-Ir-ReO_x/SiO₂ after the catalytic use.

(I) k^3 -Weighted EXAFS oscillations. (II) Fourier transform of k^3 -weighted Ir L_3 -edge EXAFS, FT range: 30–120nm⁻¹. (III) Fourier filtered EXAFS data (solid line) and calculated data (dotted line), Fourier filtering range: 0.163–0.325 nm. (a) Ir powder, (b) IrO₂, (c) Ir–ReO_x/SiO₂ after hydrogenolysis of glycerol^{S7} and (d) Pd(1.8)–Ir–ReO_x/SiO₂ after reduction.

Fig. S4. Results of Re L_3 -edge EXAFS analysis of Ir-ReO_x/SiO₂ and Pd(1.8)-Ir-ReO_x/SiO₂ after the catalytic use.

(I) k^3 -Weighted EXAFS oscillations. (II) Fourier transform of k^3 -weighted Re L_3 -edge EXAFS, FT range: 30–120 nm⁻¹. (III) Fourier filtered EXAFS data (solid line) and calculated data (dotted line), Fourier filtering range: 0.138–0.325 nm. (a) Re powder, (b) NH₄ReO₄, (c) Ir–ReO_x/SiO₂ after hydrogenolysis of glycerol ^[S7] and (d) Pd(1.8)–Ir–ReO_x/SiO₂ after reduction.

Fig. S5. Results of Pd K-edge EXAFS analysis of Pd(1.8)-Ir-ReO_x/SiO₂ after the catalytic use.

(I) k^3 -Weighted EXAFS oscillations. (II) Fourier transform of k^3 -weighted Pd *K*-edge EXAFS, FT range: 30–120 nm⁻¹. (III) Fourier filtered EXAFS data (solid line) and calculated data (dotted line), Fourier filtering range: 0.135–0.331 nm. (a) Pd foil, (b) PdO, (c) Pd(1.8)–Ir–ReO_x/SiO₂ after reduction.

Fig. S6. Results of Re L_3 -edge EXAFS analysis of Pd(1.8)–Ir–ReO_x/SiO₂ after the catalytic use without Re-Pd shell.

(I) k^3 -Weighted EXAFS oscillations. (II) Fourier transform of k^3 -weighted Re L_3 -edge EXAFS, FT range: 30–120 nm⁻¹. (III) Fourier filtered EXAFS data (solid line) and calculated data (dotted line), Fourier filtering range: 0.138–0.325 nm. (a) Re powder, (b) NH₄ReO₄ and (c) Pd(1.8)–Ir–ReO_x/SiO₂ after the reduction.

Catalyst	Shells	CN ^a	$R / 10^{-1} \text{ nm}^{b}$	$\sigma \ / \ 10^{1} \ nm^c$	$\Delta E_0 / eV^d$	$R_f / \%^e$
Pd(1.8)-Ir-ReO _x /SiO ₂	Re-O	1.7	2.05	0.086	2.1	4.4
	Re-Ir (or -Re)	6.0	2.69	0.080	10.4	
NH_4ReO_4	Re=O	4	1.73	0.06	0	-

Table S3. Curve fitting results of Re L_3 -edge EXAFS of Pd (1.77)-Ir-ReO_x/SiO₂ without Re-Pd shell

^{*a*}Coordination number. ^{*b*}Bond distance. ^{*c*}Debye-Waller factor. ^{*d*}Difference in the origin of photoelectron energy between the reference and the sample. ^{*e*}Residual factor. Fourier filtering range: 0.138-0.325 nm.

Electronic Supplementary Material (ESI) for Green Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2013

Reference

- S1 T. Kubota, K. Asakura, N. Ichikuni and Y. Iwasawa, Chem. Phys. Lett., 1996, 256, 445-448.
- S2 T. Kubota, K. Asakura and Y. Iwasawa, Catal. Lett., 1997, 46, 141-144.
- S3 A.N. Mansour, J.W. Cook Jr. and D.E. Sayers, J. Phys. Chem., 1984, 88, 2330-2334.
- S4 J.A. Horsely, J. Chem. Phys., 1982, 76, 1451–1458.
- S5 M. Rønning, T. Gjervan, R. Prestivik, D.G. Nicholson and A. Holmen, J. Catal., 2001, 204, 292–304.
- S6 Y. Ishida, T. Ebashi, S. Ito, T. Kubota, K. Kunimori and K. Tomishige, Chem. Commn., 2009, 5308–5310.
- S7 Y. Amada, Y. Shinmi, S. Koso, T. Kubota, Y. Nakagawa and K. Tomishige, Appl. Catal. B: Environ., 2011, 105, 117-127.