Solar Photochemistry: Optimisation of the Photo Friedel-Crafts Acylation of Naphthoquinones

Lorna J. Mitchell, William Lewis and Christopher J. $Moody^*$

Supplementary Information

Table of Contents

Experimental Details for the Preparation of Starting Materials	S2
X-Ray Crystallographic Data	S11
Copies of ¹ H and ¹³ C NMR Spectra	S12
Selected HMBC Spectra for Regiochemical Assignments	S90
Wavelength Emission Spectra	S94
References	S97

^{*} School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K; Fax: (+44) 115 951 3564; E-mail: <u>c.j.moody@nottingham.ac.uk</u>

Experimental Details for the Preparation of Starting Materials

Preparation of Functionalised Aldehydes

4-Chlorobutanal

The reaction was carried out according to the procedure in Snyder *et al.*¹ with minor modifications. To 4-chloro-1-butanol (2.80 mL, 28.2 mmol) in dichloromethane (100 mL) was added PCC (7.30 g, 33.9 mmol) and silica gel (7.30 g) and the reaction mixture was stirred at ambient temperature for 16 h. The resulting black slurry was filtered through a short column of florasil, washed with ether (3 × 100 mL) and concentrated *in vacuo*. The *title compound* (2.17 g, 73%) was isolated as a colourless oil which was used in the next step without further purification; $\delta_{\rm H}$ (400 MHz; CDCl₃) 9.79 (1 H, s, CH), 3.57 (2 H, t, *J* 6.50, CH₂Cl), 2.65 (2 H, td, *J* 7.0, 0.8, CH₂CO), 2.08 (2 H, pent, *J* 6.5, CH₂); $\delta_{\rm C}$ (100 MHz; CDCl₃) 200.9 (CHO), 44.0 (CH₂), 40.8 (CH₂), 24.8 (CH₂). Data are consistent with those reported in the literature.²

3-(t-Butyldimethylsiloxy)propanal

HO OTBDMS - OTBDMS

The reaction was carried out according to the procedure in McDougal *et al.*³ with minor modifications. Sodium hydride (2.63 g, 65.7 mmol) was washed with pentane ($3 \times 10 \text{ mL}$) and dried under argon. THF (125 mL) was added followed by subsequent slow addition of the propane-1,3-diol (5.00 g, 65.7 mmol) and the reaction mixture was stirred at ambient temperature. After 45 min, TBDMS-CI (9.90 g, 65.7 mmol) was added and the reaction mixture was stirred for a further 45 min. The reaction was diluted with ether (200 mL) and washed with sodium carbonate solution (200 mL), brine (200 mL),

dried (MgSO₄), filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel (light petroleum \rightarrow 70:30 light petroleum/ethyl acetate) to afford product (10.6 g, 85%) as a colourless oil; $\delta_{\rm H}$ (400 MHz; CDCl₃) 3.73 (1 H, td, *J* 6.1, 1.5, CH₂), 3.68 (1 H, td, *J* 5.8, 1.8, CH₂), 3.14 (1 H, s, OH), 1.69 (1 H, quint., *J* 5.6, CH₂), 0.83 (9 H, d, *J* 0.6, 3 × CH₃), 0.00 (6 H, d, *J* 1.6, 2 × CH₃); $\delta_{\rm C}$ (100 MHz; CDCl₃) 62.0 (CH₂), 61.2 (CH₂), 34.4 (CH₂), 25.7 (CH₃), 18.0 (C), -5.67 (CH₃). Data are consistent with those reported in the literature.³

The next step was carried out according to the procedure by Grünanger *et al.*⁴ Oxalyl chloride (1.04 mL, 12.2 mmol) in dichloromethane (27 mL) was cooled to -60 °C and DMSO (1.8 mL, 25.2 mmol) in dichloromethane (5 mL) was added and the reaction mixture stirred. After 5 min, 3-(*t*-butyldimethylsiloxy)propan-1-ol (2.00 g, 10.5 mmol) was added dropwise, followed by further dropwise addition of triethylamine (7.38 mL, 53.2 mmol). The reaction mixture was stirred whilst being gradually warmed to ambient temperature. After 1 h, water (50 mL) was added and the phases separated. The aqueous phase was back-extracted with further dichloromethane (50 mL) and the combined organic layers were washed with brine (100 mL), water (50 mL) and further brine (50 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. The residue was dissolved in ether, filtered through Celite and concentrated *in vacuo* to afford the *title compound* (1.69 g, 86%) as a colourless oil; $\delta_{\rm H}$ (400 MHz; CDCl₃) 9.79 (1 H, t, *J* 2.3, CH), 3.98 (2 H, t, *J* 6.0, CH₂), 2.59 (2 H, td, *J* 6.0, 2.2, CH₂), 0.87 (9 H, s, 3 × CH₃), 0.05 (6 H, s, 2 × CH₃); $\delta_{\rm C}$ (100 MHz; CDCl₃) 201.9 (CH), 57.4 (CH₂), 46.5 (CH₂), 25.8 (CH₃), 18.2 (C), -5.5 (CH₃). Data are consistent with those previously reported.⁵

Preparation of Functionalised Naphthoquinones

5-Methoxy-1,4-naphthoquinone 8b

The reaction was carried out according to the procedure in Tietze *et al.*,⁶ with minor modifications. To 5-hydroxy-1,4-naphthoquinone **8a** (100 mg, 0.57 mmol) and silver(I) oxide (100 mg, 0.46 mmol) in dichloromethane (2 mL) was added iodomethane (0.07 mL, 1.12 mmol) and the mixture stirred at ambient temperature. After 20 h further iodomethane (0.03 mL, 0.46 mmol) and silver(I) oxide (100 mg, 0.46 mmol) were added and the reaction mixture stirred for a further 3 h. The reaction mixture was filtered through Celite, washed (dichloromethane) and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel (light petroleum \rightarrow 8:2 light petroleum: ethyl acetate) to give the *title compound* **8b** (96 mg, 90%) as fine orange crystals; mp 180-183 °C (lit.,⁷ mp 180-185 °C); $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.72 (2 H, m, ArH), 7.32 (1 H, dd, *J* 8.2, 1.0, ArH), 6.87 (2 H, app. br s, CH), 4.02 (3 H, s, OMe); $\delta_{\rm C}$ (100 MHz; CDCl₃) 185.1 (C), 184.3 (C), 159.6 (C), 140.8 (CH), 136.1 (CH), 134.9 (CH), 134.0 (C), 119.6 (C), 119.1 (CH), 117.9 (CH), 56.4 (CH₃). Data are consistent with those reported in the literature.^{6,7}

5-Ethoxy-1,4-naphthoquinone 8c

To 5-hydroxy-1,4-naphthoquinone **8a** (100 mg, 0.57 mmol) and silver(I) oxide (100 mg, 0.46 mmol) in dichloromethane (2 mL) was added iodoethane (0.09 mL,

1.12 mmol) and the reaction mixture was stirred at ambient temperature. After 16 h further silver(I) oxide (100 mg, 0.46 mmol) and iodoethane (0.04 mL, 0.46 mmol) were added and the reaction mixture was stirred for a further 4 h. The reaction mixture was concentrated *in vacuo* and the product was crystallised from the minimum volume of hot toluene/light petroleum to yield the *title compound* **8c** (114 mg, 99%) as a brown solid; mp 78-79 °C; (Found: C, 71.28; H, 4.98; $C_{12}H_{10}O_3$ requires C, 71.32; H, 5.18 %); (Found: M+Na⁺, 225.0521. $C_{12}H_{10}O_3Na^+$ requires 225.0522); λ_{max} (CH₂Cl₂)/nm 274 (log ε 5.71), 400 (4.37); v_{max} (CHCl₃)/cm⁻¹ 3686, 3012, 2415, 1521, 1239; δ_H (400 MHz; CDCl₃) 7.69 (1 H, dd, *J* 7.6, 1.4, ArH), 7.63 (1 H, app. br t, *J* 8.3, ArH), 7.27 (1 H, dd, *J* 8.3, 1.4, ArH), 6.83 (2 H, app. br s, CH), 4.20 (2 H, q, *J* 7.0, CH₂), 1.53 (3 H, t, *J* 7.0, CH₃); δ_C (100 MHz; CDCl₃) 185.3 (C), 184.2 (C), 159.0 (C), 140.9 (CH), 136.1 (CH), 134.8 (CH), 134.0 (C), 119.8 (C), 119.1 (CH), 119.0 (CH), 65.1 (CH₂), 14.6 (CH₃); *m/z* (ESI) 225 (M+Na⁺, 100%), 103 (M+H⁺, 5).

5-Isopropoxy-1,4-Naphthoquinone 8d

To 5-hydroxy-1,4-naphthoquinone **8a** (200 mg, 1.15 mmol) and silver(I) oxide (220 mg, 0.96 mmol) in dichloromethane (2 mL) was added 2-iodopropane (0.12 mL, 2.29 mmol) and the reaction mixture was stirred at ambient temperature. After 16 h further silver(I) oxide (440 mg, 1.92 mmol) and 2-iodopropane (0.4 mL, 9.20 mmol) were added and the reaction mixture was stirred for a further 4 h. The reaction mixture was concentrated *in vacuo* to yield the *title compound* **8d** (248 mg, 100%) as a dark green solid; mp 89-90 °C; (Found: M+Na⁺, 239.0669. C₁₃H₁₂O₃Na⁺ requires 239.0679);

 λ_{max} (CH₂Cl₂)/nm 275 (log ε 4.40), 322 (2.91), 403 (3.46); v_{max} (CH₂Cl₂)/cm⁻¹ 2983, 1662, 1585, 1464, 1298, 1251; δ_{H} (400 MHz; CDCl₃) 7.70 (1 H, dd, J 7.6, 1.2, ArH), 7.63 (1 H, app. br t, J 8.3, ArH), 7.30 (1 H, app. br d, J 8.3, ArH), 6.85 (2 H, app. br s, CH), 4.69 (1 H, sept, J 6.2, CH), 1.45 (6 H, d, J 6.2, CH₃); δ_{C} (100 MHz; CDCl₃) 185.3 (C), 184.0 (C), 158.3 (C), 141.0 (CH), 136.0 (CH), 134.5 (CH), 134.2 (C), 121.3 (CH), 120.8 (C), 119.1 (CH), 72.3 (CH), 22.0 (CH₃); *m/z* (ESI) 239 (M+Na⁺, 100%).

5-Methoxymethoxy-1,4-naphthoquinone 8e

The reaction was carried out according to the procedure in Nandaluru *et al.*⁸ with minor modifications. To 5-hydroxy-1,4-naphthoquinone **8a** (200 mg, 1.15 mmol) and MOM-CI (0.23 mL, 2.87 mmol) in dichloromethane (3 mL) at 0 °C was added DIPEA (0.40 mL, 2.30 mmol) dropwise over 5 min and the reaction mixture was stirred at ambient temperature for 16 h. To the reaction mixture was added saturated ammonium chloride solution (50 mL) and the phases separated. The aqueous layer was washed with dichloromethane (50 mL), and the organic layers combined, dried (MgSO₄), filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel (4:1 light petroleum: ethyl acetate) to afford the *title compound* **8e** (179 mg, 79%) as an orange solid; mp 98-100 °C (lit.,⁸ mp 98-101 °C); (Found: C, 66.00; H, 4.67; C₁₂H₁₀O₄ requires C, 66.05; H, 4.62 %); (Found: M+Na⁺, 241.0467. C₁₂H₁₀O₄Na⁺ requires 241.0471); λ_{max} (CH₂Cl₂)/nm 246 (log ε 5.16), 380 (4.28); ν_{max} (CHCl₃)/cm⁻¹ 3012, 1663, 1587, 1335, 994; $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.75 (1 H, dd, *J* 7.5, 1.0, ArH), 7.63

(1 H, app. b. t, J 8.3, ArH), 7.51 (1 H, dd, J 8.3, 1.0, ArH), 6.85 (2 H, app. br. s, CH), 5.33 (2 H, s, CH₂), 3.52 (3 H, s, OCH₃); δ_{C} (100 MHz; CDCl₃) 184.8 (C), 184.0 (C), 157.0 (C), 140.6 (CH), 136.2 (CH), 134.6 (CH), 133.8 (C), 122.2 (CH), 120.5 (C), 120.3 (CH), 95.0 (CH₂), 56.5 (CH₃); *m/z* (ESI) 241 (M+Na⁺, 100%).

6-Hydroxy-1,4-naphthoquinone 12a

A stirred solution of 1,6-dihydroxynapthalene **11** (5.00 g, 31.2 mmol) and salcomine (507 mg, 1.56 mmol) in DMF (33 mL) was bubbled rapidly with oxygen at ambient temperature. After 16 h, ether (200 mL) and brine (200 mL) were added and phases separated. The aqueous layer was back-extracted with further ether (10 × 200 mL) and the organic layers combined, dried (Na₂SO₄), filtered and concentrated *in vacuo*. The crude product was purified by flash chromatography on silica gel (7:3 light petroleum: ethyl acetate) to give the *title compound* **12a** (2.50 g, 46%) as a bright orange solid; mp 170-171 °C (decomp) (lit., ⁹ mp 170 °C); (Found: C, 68.67; H, 3.42; C₁₀H₆O₃ requires C, 68.97; H, 3.47 %); (Found: M-H⁺, 173.0238. C₁₀H₅O₃⁻ requires 173.0244); λ_{max} (CH₂Cl₂)/nm 274 (log ε 5.26), 385 (3.26); v_{max} (CHCl₃)/cm⁻¹ 3689, 3607, 3045, 1602, 1523, 1240; δ_{H} (400 MHz; MeOD) 7.92 (1 H, d, *J* 8.5, ArH), 7.34 (1 H, d, *J* 2.6, ArH), 7.13 (1 H, dd, *J* 8.5, 2.6, ArH), 6.90 (2 H, d, *J* 2.1, CH); δ_{C} (100 MHz; MeOD) 186.7 (C), 185.6 (C), 164.6 (C), 140.3 (CH), 139.5 (CH), 135.6 (C), 130.2 (CH), 125.8 (C), 121.9 (CH), 113.2 (CH); *m/z* (ESI) 173 (M-H⁺, 100%).

6-Methoxy-1,4-naphthoquinone 12b

To 6-hydroxy-1,4-naphthoquinone **12a** (100 mg, 0.57 mmol) and silver(I) oxide (200 mg, 0.92 mmol) in CH₂Cl₂ (2 mL) was added iodomethane (0.1 mL, 1.60 mmol) and the mixture stirred at ambient temperature for 3 d. The reaction mixture was filtered through Celite, washed with dichloromethane (50 mL) and concentrated *in vacuo* to afford the *title compound* **12b** (107 mg, 100%) as a fine yellow solid; mp 132–133 °C (lit.,¹⁰ mp 133-135 °C); (Found: C, 69.82; H, 4.22; C₁₁H₈O₃ requires C, 70.21; H, 4.29 %); (Found: M+H⁺, 189.0546. C₁₁H₉O₃⁺ requires 189.0546); λ_{max} (CH₂Cl₂)/nm 261 (log ε 4.91), 382 (3.89); ν_{max} (CH₂Cl₃)/cm⁻¹; 3012, 1667, 1593, 131, 1292; δ_{H} (400 MHz; CDCl₃) 8.02 (1 H, d, *J* 8.6, ArH), 7.50 (1 H, d, *J* 2.7, ArH), 7.21 (1 H, dd, *J* 8.6, 2.7, ArH), 6.92 (2 H, app br. s, CH), 3.95 (3 H, s, OCH₃); δ_{C} (100 MHz; CDCl₃) 185.2 (C), 184.1 (C), 164.1 (C), 139.0 (CH), 138.2 (CH), 133.9 (C), 128.9 (CH), 125.5 (C), 120.5 (CH), 109.6 (CH), 55.9 (CH₃); *m/z* (ESI) 399 (2M+Na⁺, 100%), 211 (M+Na⁺, 98), 189 (M+H⁺, 47).

6-Ethoxy-1,4-naphthoquinone 12c

To 6-hydroxy-1,4-naphthoquinone **12a** (50 mg, 0.29 mmol) and silver(I) oxide (106 mg, 0.46 mmol) in CH_2Cl_2 (1 mL) was added iodoethane (0.06 mL, 0.81 mmol) and the

mixture stirred at ambient temperature for 16 h. The reaction mixture was filtered through Celite, washed with dichloromethane (50 mL) and concentrated *in vacuo* to afford the *title compound* **12c** (44 mg, 76%) as a fine yellow solid; mp 116-117 °C; (Found: C, 71.07; H, 4.99; $C_{13}H_{12}O_3$ requires C, 71.28; H, 4.98%); (Found: M+Na⁺, 225.0522. $C_{12}H_{10}O_3Na^+$ requires 225.0522); λ_{max} (CH₂Cl₂)/nm 255 (log ε 4.37), 263 (4.39), 383 (3.27), 386 (3.20); v_{max} (CHCl₃)/cm⁻¹; 3012, 2415, 1666, 1595, 1333, 1239, 965; δ_H (400 MHz; CDCl₃) 8.02 (1 H, d, *J* 8.6, ArH), 7.50 (1 H, d, *J* 2.7, ArH), 7.20 (1 H, d, *J* 8.6, 2.7, ArH), 6.92 (2 H, app br. s, CH), 4.19 (2 H, q, *J* 6.9, CH₂), 1.48 (3 H, t, *J* 7.0, CH₃); δ_C (100 MHz; CDCl₃) 185.2 (C), 184.1 (C), 163.6 (C), 139.0 (CH), 138.2 (CH), 133.9 (C), 128.9 (CH), 125.3 (C), 120.8 (CH), 110.1 (CH), 64.4 (CH₂), 14.6 (CH₃); *m/z* (ESI) 225 (M+Na⁺, 100%), 203 (M+H⁺, 35).

6-Isopropoxy-1,4-naphthoquinone 12d

To 6-hydroxy-1,4-naphthoquinone **12a** (100 mg, 0.57 mmol) and silver(I) oxide (110 mg, 0.48 mmol) in dichloromethane (1 mL) was added 2-iodopropane (0.1 mL, 1.12 mmol) and the mixture stirred at ambient temperature. After 16 h further silver(I) oxide (220 mg, 0.96 mmol) and 2-iodopropane (0.2 mL, 2.2 mmol) was added and the reaction mixture was stirred for a further 4 h. The reaction mixture was concentrated *in vacuo* to yield the *title compound* **12d** (123 mg, 100%) as a pale green solid; mp 111-113 °C; (Found: M+Na⁺, 239.0671. C₁₃H₁₂O₃Na⁺ requires 239.0679); λ_{max} (CH₂Cl₂)/nm 257 (log ϵ 4.54), 264 (4.56), 330 (2.96), 390 (3.54); v_{max} (CHCl₃)/cm⁻¹; 2983, 1665, 1592, 1491, 1316, 1110, 1045, 961; δ_{H} (400 MHz; CDCl₃) 8.02 (1 H, d, *J* 8.6, ArH), 7.48

(1 H, d, J 2.6, ArH), 7.17 (1 H, dd, J 8.6, 2.7, ArH), 6.92 (2 H, app. br. s, CH), 4.76 (1 H, sept, J 6.0, CH), 1.40 (6 H, d, J 6.0, CH₃); $\delta_{\rm C}$ (100 MHz; CDCl₃) 185.3 (C), 184.1 (C), 162.7 (C), 139.0 (CH), 138.2 (CH), 133.9 (C), 129.0 (CH), 125.0 (C), 121.7 (CH), 111.0 (CH), 70.8 (CH), 21.8 (CH₃); *m/z* (ESI) 239 (M+Na⁺, 100%), 217 (M+H⁺, 11).

6-Methoxymethoxy-1,4-naphthoquinone 12e

To 6-hydroxy-1,4-naphthoquinone **12a** (100 mg, 0.57 mmol) and MOM-Cl (0.12 mL, 1.44 mmol) in dichloromethane (2 mL) at 0 °C was added DIPEA (0.2 mL, 1.15 mmol) dropwise over 5 min and the reaction mixture was stirred at ambient temperature for 16 h. To the reaction mixture was added saturated ammonium chloride solution (50 mL) and the phases separated. The aqueous layer was washed with dichloromethane (50 mL) and the organic layers combined, dried (MgSO₄), filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel (4:1 light petroleum: ethyl acetate) to afford the *title compound* **12e** (82 mg, 66%) as an orange solid; mp 110-112 °C; (Found: M+Na⁺, 241.0468. C₁₂H₁₀O₄Na⁺ requires 241.0471); λ_{max} (CH₂Cl₂)/nm 254 (log ϵ 4.69), 260 (4.69), 372 (3.69); v_{max} (CHCl₃)/cm⁻¹; 3012, 1668, 1595, 1312, 988; δ_{H} (400 MHz; CDCl₃) 8.00 (1 H, d, *J* 8.6, ArH), 7.62 (1 H, d, *J* 2.6, ArH), 7.32 (1 H, dd, *J* 8.6, 2.6, ArH), 6.91 (2 H, app br. s, CH), 5.29 (2 H, s, CH₂), 3.48 (3 H, s, CH₃); δ_{C} (100 MHz; CDCl₃) 184.8 (C), 184.0 (C), 161.6 (C), 138.8 (CH), 138.3 (CH), 133.8 (C), 128.8 (CH), 126.1 (C), 121.5 (CH), 112.5 (CH), 94.1 (CH₂), 56.4 (CH₃); *m/z* (ESI) 241 (M+Na⁺, 100%), 219 (M+H⁺, 17).

X-Ray Crystallographic Studies

All data sets were collected either with a SuperNova Cu diffractometer or a GV1000 diffractometer. The crystal was kept at 120(2)K during data collection. Using Olex2, the structure was solved with the olex2.solve structure solution program using Charge Flipping and refined with the ShelXL refinement package using Least Squares minimisation. Crystal structure data and details are listed in Table 1.

Compound		9e	10c	13b
CCDC		952123	952121	952122
Empirical formula		$C_{16}H_{18}O_5$	$C_{16}H_{18}O_4$	$C_{15}H_{16}O_4$
Formula weight		290.30	274.30	260.28
Crystal size/mm ³		0.51 × 0.0864 × 0.0426	0.126 × 0.1016 × 0.0629	0.1243 × 0.0791 × 0.0316
Crystal system		monoclinic	monoclinic	orthorhombic
Space group		P2 ₁ /c	P2 ₁ /n	Pbca
Unit cell dimensions	a/Å	15.7243(11)	7.7968(2)	12.8287(3)
	b/Å	5.0123(3)	21.1512(5)	7.9789(3)
	c/Å	18.5815(12)	9.1046(3)	24.2643(9)
	$\alpha/^{\circ}$	90	90	90
	β/°	107.285	114.189	90
	γ/°	90	90	90
Volume/Å ³		1398.35(17)	1369.64(7)	2483.67(15)
Z		4	4	8
Reflections collected		5181	12604	13106
Independent reflections		2731 [R(int) = 0.0207]	2766 [R(int) = 0.0207]	2494 [R(int) = 0.0371]
Final R indexes R [I>=2σ (I)]		$R_1 = 0.0362,$ $wR_2 = 0.0987$	$R_1 = 0.0329,$ $wR_2 = 0.0900$	$R_1 = 0.0438,$ $wR_2 = 0.1128$
Final R indexes (all data)		$R_1 = 0.0362,$ w $R_2 = 0.0987$	$R_1 = 0.0378,$ $wR_2 = 0.0941$	$R_1 = 0.0525$ $wR_2 = 0.1191$

Table 1	L. Crystal	structure	data
---------	------------	-----------	------

4-Chlorobutanal

¹H NMR at 400 MHz in CDCl₃

4-Chlorobutanal

¹³C NMR at 100 MHz in CDCl₃

3-((t-butyldimethylsilyl)oxy)propan-1-ol

¹H NMR at 400 MHz in CDCl₃

3-((t-butyldimethylsilyl)oxy)propan-1-ol

 ^{13}C NMR at 100 MHz in CDCl_3

3-(t-Butyldimethylsiloxy)propanal

OTBDMS

 1 H NMR at 400 MHz in CDCl₃

3-(t-Butyldimethylsiloxy)propanal

¹³C NMR at 100 MHz in CDCl₃

5-Methoxy-1,4-naphthoquinone 8b

¹H NMR at 400 MHz in CDCl₃

5-Methoxy-1,4-naphthoquinone 8b

 $^{\rm 13}{\rm C}$ NMR at 100 MHz in CDCl_3

5-Ethoxy-1,4-naphthoquinone 8c

¹H NMR at 400 MHz in CDCl₃

5-Ethoxy-1,4-naphthoquinone 8c

 ^{13}C NMR at 100 MHz in CDCl_3

 1 H NMR at 400 MHz in CDCl₃

5-Isopropoxy-1,4-Naphthoquinone 8d

 $^{\rm 13}{\rm C}$ NMR at 100 MHz in ${\rm CDCI}_{\rm 3}$

5-Methoxymethoxy-1,4-naphthoquinone 8e

¹H NMR at 400 MHz in CDCl₃

5-Methoxymethoxy-1,4-naphthoquinone 8e

 ^{13}C NMR at 100 MHz in CDCl_3

6-Hydroxy-1,4-naphthoquinone 12a

¹H NMR at 400 MHz in MeOD

6-Hydroxy-1,4-naphthoquinone 12a

¹³C NMR at 100 MHz in MeOD

6-Methoxy-1,4-naphthoquinone 12b

¹H NMR at 400 MHz in CDCl₃

6-Methoxy-1,4-naphthoquinone 12b

 ^{13}C NMR at 100 MHz in CDCl_3

6-Ethoxy-1,4-naphthoquinone 12c

¹H NMR at 400 MHz in CDCl₃

6-Ethoxy-1,4-naphthoquinone 12c

 $^{\rm 13}{\rm C}$ NMR at 100 MHz in CDCl_3

6-Isopropoxy-1,4-naphthoquinone 12d

¹H NMR at 400 MHz in CDCl₃

6-Isopropoxy-1,4-naphthoquinone 12d

LM-186-CARBON.ESP

 $^{\rm 13}{\rm C}$ NMR at 100 MHz in ${\rm CDCI}_{\rm 3}$

6-(Methoxymethoxy)-1,4-naphthoquinone 12e

 1 H NMR at 400 MHz in CDCl₃

6-(Methoxymethoxy)-1,4-naphthoquinone 12e

¹³C NMR at 100 MHz in CDCl₃

1-(1,4-Dihydroxy-2-naphthyl)-1-butanone 6a

 1 H NMR at 400 MHz in d₆-DMSO

1-(1,4-Dihydroxy-2-naphthyl)-1-butanone 6a

 $^{\rm 13}{\rm C}$ NMR at 100 MHz in d_6-DMSO

1-(1,4-Dihydroxy-2-naphthyl)-2-methyl-1-propanone 6b

S37

1-(1,4-Dihydroxy-2-naphthyl)-2-methyl-1-propanone 6b

S38

1-(1,4-Dihydroxy-2-naphthyl)-1-hexanone 6c

¹H NMR at 400 MHz in d₆-DMSO

1-(1,4-Dihydroxy-2-naphthyl)-1-hexanone 6c

 ^{13}C NMR at 100 MHz in d_6-DMSO

1-(1,4-dihydroxynaphthalen-2-yl)-3-phenylpropan-1-one 6d

¹H NMR at 400 MHz in d₆-DMSO

1-(1,4-dihydroxynaphthalen-2-yl)-3-phenylpropan-1-one 6d

LM-226-P-CARBON.ESP

-205.43

1-(1,4-Dihydroxy-2-naphthyl)-1-ethanone 6e

216 208 200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 Chemical Shift (ppm)

 1 H NMR at 400 MHz in d₆-DMSO

1-(1,4-Dihydroxy-2-naphthyl)-1-ethanone 6e

 $^{\rm 13}{\rm C}$ NMR at 100 MHz in d_6-DMSO

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

 1 H NMR at 400 MHz in d₆-DMSO

1-(1,4-Dihydroxy-2-naphthyl)-1-propanone 6f

 ^{13}C NMR at 100 MHz in d_6-DMSO

¹H NMR at 400 MHz in d₆-DMSO

 13 C NMR at 100 MHz in d₆-DMSO

3-((*t*-Butyldimethylsilyl)oxy)-1-(1,4-dihydroxynaphthalen-2-yl)1-propanone 6h

¹H NMR at 400 MHz in CDCl₃

3-((t-Butyldimethylsilyl)oxy)-1-(1,4-dihydroxynaphthalen-2-yl)1-propanone 6h

 ^{13}C NMR at 100 MHz in CDCl_3

¹H NMR at 400 MHz in d₆-DMSO

 $^{\rm 13}{\rm C}$ NMR at 100 MHz in d_6-DMSO

(1,4-dihydroxynaphthalen-2-yl)(4-fluorophenyl)methanone 6j

 ^1H NMR at 400 MHz in d_6-acetone

(1,4-dihydroxynaphthalen-2-yl)(4-fluorophenyl)methanone 6j

 13 C NMR at 100 MHz in d₆-acetone

(2,6-difluorophenyl)(1,4-dihydroxynaphthalen-2-yl)methanone 6k

¹H NMR at 400 MHz in d₆-acetone

(2,6-difluorophenyl)(1,4-dihydroxynaphthalen-2-yl)methanone 6k

0

¹³C NMR at 100 MHz in d₆-acetone

(1,4-dihydroxynaphthalen-2-yl)(4-methoxyphenyl)methanone 6l

¹H NMR at 400 MHz in d₆-acetone

(1,4-dihydroxynaphthalen-2-yl)(4-methoxyphenyl)methanone 6l

OH O

 13 C NMR at 100 MHz in d₆-acetone

(1,4-dihydroxynaphthalen-2-yl)(thiophen-2-yl)methanone 6m

(1,4-dihydroxynaphthalen-2-yl)(thiophen-2-yl)methanone 6m

 ^{13}C NMR at 100 MHz in d_6-acetone

1-(1,4-Dihydroxy-5-methoxynaphthalen-2-yl)butan-1-one 9b

¹H NMR at 400 MHz in d₆-acetone

1-(1,4-Dihydroxy-5-methoxynaphthalen-2-yl)butan-1-one 9b

 13 C NMR at 100 MHz in d₆-acetone

1-(1,4-Dihydroxy-8-methoxynaphthalen-2-yl)butan-1-one 10b

¹H NMR at 400 MHz in d₆-acetone

1-(1,4-Dihydroxy-8-methoxynaphthalen-2-yl)butan-1-one 10b

 13 C NMR at 100 MHz in d₆-acetone

1-(5-Ethoxy-1,4-dihydroxynaphthalen-2-yl)butan-1-one 9c

¹H NMR at 400 MHz in d₆-DMSO

1-(5-Ethoxy-1,4-dihydroxynaphthalen-2-yl)butan-1-one 9c

¹³C NMR at 100 MHz in d₆-DMSO

1-(8-Ethoxy-1,4-dihydroxynaphthalen-2-yl)butan-1-one 10c

 1 H NMR at 400 MHz in d₆-DMSO

 ^{13}C NMR at 100 MHz in d₆-DMSO

LM-189-P1-FINAL.ESP

1-(1,4-Dihydroxy-5-isopropoxynaphthalen-2-yl)butan-1-one 9d

1-(1,4-Dihydroxy-5-isopropoxynaphthalen-2-yl)butan-1-one 9d

¹³C NMR at 100 MHz in d₆-acetone

1-(1,4-Dihydroxy-8-isopropoxynaphthalen-2-yl)butan-1-one 10d

¹H NMR at 400 MHz in d₆-acetone

ОН

208 200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 Chemical Shift (ppm)

 13 C NMR at 100 MHz in d₆-acetone

206.42

1-(1,4-Dihydroxy-5-(methoxymethoxy)naphthalen-2-yl)butan-1-one 9e

¹H NMR at 400 MHz in d₆-acetone

1-(1,4-Dihydroxy-5-(methoxymethoxy)naphthalen-2-yl)butan-1-one 9e

¹³C NMR at 100 MHz in d₆-acetone

1-(1,4-Dihydroxy-8-(methoxymethoxy)naphthalen-2-yl)butan-1-one 10e

¹H NMR at 400 MHz in d_6 -acetone

1-(1,4-Dihydroxy-8-(methoxymethoxy)naphthalen-2-yl)butan-1-one 10e

 13 C NMR at 100 MHz in d₆-acetone

1-(1,4-Dihydroxy-6-methoxynaphthalen-2-yl)butan-1-one 13b

он о

 ^{13}C NMR at 100 MHz in d_6-acetone

 1 H NMR at 400 MHz in d₆-acetone

1-(1,4-Dihydroxy-7-methoxynaphthalen-2-yl)butan-1-one 14b

 ^{13}C NMR at 100 MHz in d_6-acetone

1-(6-Ethoxy-1,4-dihydroxynaphthalen-2-yl)butan-1-one 13c

¹H NMR at 400 MHz in d₆-acetone

1-(6-Ethoxy-1,4-dihydroxynaphthalen-2-yl)butan-1-one 13c

 13 C NMR at 100 MHz in d₆-acetone

 1 H NMR at 400 MHz in d₆-acetone

1-(7-Ethoxy-1,4-dihydroxynaphthalen-2-yl)butan-1-one 14c

1-(7-Ethoxy-1,4-dihydroxynaphthalen-2-yl)butan-1-one 14c

 ^{13}C NMR at 100 MHz in d_6-acetone

¹H NMR at 400 MHz in d₆-acetone

1-(1,4-Dihydroxy-6-isopropoxynaphthalen-2-yl)butan-1-one 13d

он о

¹³C NMR at 100 MHz in d₆-acetone

1-(1,4-Dihydroxy-7-isopropoxynaphthalen-2-yl)butan-1-one 14d

¹H NMR at 400 MHz in d₆-acetone

1-(1,4-Dihydroxy-7-isopropoxynaphthalen-2-yl)butan-1-one 14d

 ^{13}C NMR at 100 MHz in d_6-acetone

Key HMBC Interactions: 1-(5-Ethoxy-1,4-dihydroxynaphthalen-2-yl)butan-1-one 9c

Key HMBC Interactions: 1-(8-Ethoxy-1,4-dihydroxynaphthalen-2-yl)butan-1-one 10c

Key HMBC Interactions: 1-(6-Ethoxy-1,4-dihydroxynaphthalen-2-yl)butan-1-one 13c

Key HMBC Interactions: 1-(7-Ethoxy-1,4-dihydroxynaphthalen-2-yl)butan-1-one 14c

Wavelength Emission Spectra

Wavelength Emission Spectra of the UV Sunlamp (Table 2, Entry 3)

Measured using a compact CCD (Model: CCS150) spectrometer, produced by Thorlabs

Wavelength Emission Spectra of the Halogen Floodlight (Table 2, Entry 4)

Measured using a compact CCD (Model: CCS150) spectrometer, produced by Thorlabs

Wavelength Emission Spectra of the HQI-T HID Light (Table 2, Entry 5)

Measured using a USB Miniature Fiber Optic Spectrometer, produced by Ocean Optics.

References

- 1. S. A. Snyder, Z.-Y. Tang and R. Gupta, *J. Am. Chem. Soc.*, 2009, 131, 5744-5745.
- 2. M. Vuagnoux-d'Augustin and A. Alexakis, *Chem. Eur. J.*, 2007, 13, 9647-9662.
- 3. P. G. McDougal, J. G. Rico, Y. I. Oh and B. D. Condon, *J. Org. Chem.*, 1986, 51, 3388-3390.
- 4. C. U. Grünanger and B. Breit, *Angew. Chem. Int. Ed.*, 2010, 49, 967-970.
- 5. M. T. Gieseler and M. Kalesse, *Org. Lett.*, 2011, 13, 2430-2432.
- L. F. Tietze, C. Güntner, K. M. Gericke, I. Schuberth and G. Bunkoczi, *Eur. J. Org. Chem.*, 2005, 2005, 2459-2467.
- 7. R. L. Hannan, R. B. Barber and H. Rapoport, *J. Org. Chem.*, 1979, 44, 2153-2158.
- 8. P. R. Nandaluru and G. J. Bodwell, J. Org. Chem., 2012, 77, 8028-8037.
- M. De Min, S. Croux, C. Tournaire, M. Hocquaux, B. Jackquet, E. Oliveros and M.-T. Maurette, *Tetrahedron*, 1992, 48, 1869-1882.
- 10. D. Cameron and M. Sidell, Aust. J. Chem., 1978, 31, 1323-1333.