Electronic Supplementary Information

Facile Synthesis of 2-Methylenecyclobutanones via Ca(OH)₂-Catalyzed Direct Condensation of Cyclobutanone with Aldehydes and (PhSe)₂-Catalyzed Baeyer-Villiger Oxidation to 4-Methylenebutanolides

Lei Yu,^{*,a,b,c} Yulan Wu,^a Hongen Cao,^a Xu Zhang,^{a,b} Xinkang Shi,^b Jie Luan,^a Tian Chen,^a Yi Pan^c and Qing Xu^{*,b}

- ^a School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
 Fax: (+86)-514-8797-5244; phone: (+86)-136-652-95901; e-mail: yulei@yzu.edu.cn
- ^b College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China Fax: (+86)-577-8668-9302; phone: (+86)-138-577-45327; e-mail: qing-xu@wzu.edu.cn
- ^c School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210089, People's Republic of China

CONTENTS

1.	General Methods	.S2
2.	General Procedure for Preparation of (<i>E</i>)- 3 and (<i>E</i>)- 4	S2
3.	Detailed Condition Screening Table for Preparation of (<i>E</i>)- 3	S3
4.	Characterization of Products (<i>E</i>)-3 and (<i>E</i>)-4 and References	S5
5.	NOESY Spectra of Product (E)-3a and Determination of the Products' Stereochemistry	S15
6.	⁷⁷ Se NMR Spectroscopic Analysis of the Involved Organoselenium Species	S16
7.	¹ H and ¹³ C NMR Spectra of Products (E)- 3 and (E)- 4	.S19

Experimental Section

General Methods. The chemicals, cyclobutanone, aldehydes, bases, solvents, and organoselenium catalysts were all purchased. Liquid aldehydes were redistilled under vacuum before use. Solid aldehydes were recrystallized in EtOH/H2O under N2 before use. All reactions were monitored by TLC and/or GC analysis. GC yields were calculated according to the internal standard curve. (E)-2-Methylenecyclobutanones 3 and (E)-4-methylenebutanolides 4 were all purified by column chromatogram. ¹H and ¹³C NMR and NOESY spectra were recorded on a Bruker Avance 600 instrument (600 MHz for ¹H and 150 MHz for ¹³C NMR spectroscopy) by using CDCl₃ as the solvent and Me₄Si as the internal standard. Chemical shifts for ${}^{1}\text{H}$ and ${}^{13}\text{C}$ NMR were referred to internal Me₄Si (0 ppm) and J-values were shown in Hz. ⁷⁷Se NMR were recorded on an Agilent DD2 600 instrument (114 MHz) by using D₂O as the solvent. Melting points were measured using a WRS-2A digital instrument. Mass spectra were measured on a Thermo Trace DSQ II or a Shimadzu GCMS-QP2010 Ultra spectrometer (EI). Elemental analysis was performed on an Elementar Vario EL cube instrument. HRMS (ESI) analysis was measured on a Bruker microTOF-Q II instrument.

General Procedure for Preparation of (E)-2-MCBones 3. To a 10 mL round-bottomed flask was added 0.1 mmol of Ca(OH)₂. A solution of aldehyde 2 (1.0 mmol) and cyclobutanone 1 (3.0 mmol) in 3 mL of anhydrous ethanol were then injected via a syringe under N₂. The mixture was then stirred at 80 °C for 24 hours under N₂. The solvent was evaporated under vacuum and the residue was purified through flash column chromatogram (eluent: petroleum ether: EtOAc 9:1) to give (*E*)-3.

General Procedure for (PhSe)₂-Catalyzed Baeyer-Villiger Oxidation of (*E*)-2-MCBones 3 to (*E*)-4-Methylenebutanolides with H_2O_2 . (*E*)-2-MCBones 3 (0.3 mmol) and (PhSe)₂ (0.015 mmol) were added to a reaction tube. A solution of H_2O_2 (1.5 mmol) in 1 mL of CH₃CN was then injected via a syringe. The mixture was then stirred at room temperature (ca. 30 °C) for 24 h. After the reaction completed as monitored by TLC, 2 mL of water was added and the mixture was extracted with EtOAc (2 mL×3). The combined organic layer was dried over Na₂SO₄ and the solvent evaporated under vacuum. The residue was purified by flash column chromatogram (eluent: petroleum ether: EtOAc 8:1) to give (*E*)-4.

		Q		O L		
		+ PhCHO -	cat. base, solvent	\rightarrow	<u> </u>	
		2a	N ₂ , <i>T</i> , <i>t</i>			
				(<i>E</i>)-3a		
run	1 (equiv.)	base (mol%)	solvent (mL)	$T(^{\circ}C)$	<i>t</i> (h)	3a % ^b
1	1.2	NaOH (10)	EtOH (2)	80	24	2
2	1.5	NaOH (10)	EtOH (2)	80	24	7
3	3	NaOH (10)	EtOH (2)	80	24	38
4	4	NaOH (10)	EtOH (2)	80	24	41
5	5	NaOH (10)	EtOH (2)	80	24	47
6	5	NaOH (5)	EtOH (2)	80	24	33
7	5	NaOH (20)	EtOH (2)	80	24	3
8	5	NaOH (40)	EtOH (2)	80	24	0
9	6	NaOH (10)	EtOH (2)	80	24	46
10	5	KOH (10)	EtOH (2)	80	24	21
11	5	CsOH (10)	EtOH (2)	80	24	10
12	5	LiOH (10)	EtOH (2)	80	24	18
13	5	Mg(OH) ₂ (10)	EtOH (2)	80	24	7
14	5	$Ca(OH)_2$ (10)	EtOH (2)	80	24	68
15	5	Sr(OH) ₂ ·8H ₂ O (10)	EtOH (2)	80	24	17
16	5	Ba(OH) ₂ ·8H ₂ O (10)	EtOH (2)	80	24	27
17	5	Fe(OH) ₃ (10)	EtOH (2)	80	24	3
18	5	Na ₂ CO ₃ (10)	EtOH (2)	80	24	37
19	5	NaHCO ₃ (10)	EtOH (2)	80	24	25
20	5	K ₂ CO ₃ (10)	EtOH (2)	80	24	34
21	5	CaCO ₃ (10)	EtOH (2)	80	24	8
22	5	BeO (10)	EtOH (2)	80	24	2
23	5	MgO (10)	EtOH (2)	80	24	17
24	5	CaO (10)	EtOH (2)	80	24	23

Table S1. Detailed Optimization of the Reaction Conditions for Preparation of (*E*)-2-MCBones $\mathbf{3}^{a}$.

25	5	Et ₃ N (10)	EtOH (2)	80	24	2
26	5	DBU (10)	EtOH (2)	80	24	33
27	5	Ca(OH) ₂ (10)	MeOH (2)	reflux	24	35
28	5	Ca(OH) ₂ (10)	<i>i</i> -PrOH (2)	80	24	42
29	5	Ca(OH) ₂ (10)	<i>t</i> -BuOH (2)	80	24	50
30	5	Ca(OH) ₂ (10)	MeCN (2)	80	24	57
31	5	Ca(OH) ₂ (10)	THF (2)	reflux	24	32
32	5	Ca(OH) ₂ (10)	Cyclohexanol (2)	80	24	61
33	5	Ca(OH) ₂ (10)	EtOH (2)	60	24	52
34	5	Ca(OH) ₂ (10)	EtOH (2)	40	24	31
25	5	Ca(OH) ₂ (10)	Cyclohexanol (2)	100	24	42
36	5	Ca(OH) ₂ (10)	EtOH (0.5)	80	24	41
37	5	Ca(OH) ₂ (10)	EtOH (1)	80	24	57
38	5	Ca(OH) ₂ (10)	EtOH (3)	80	24	77 (70)
39	5	Ca(OH) ₂ (10)	EtOH (4)	80	24	76
40	5	Ca(OH) ₂ (10)	EtOH (5)	80	24	72
41	4	Ca(OH) ₂ (10)	EtOH (3)	80	24	80
42	3	Ca(OH) ₂ (10)	<i>EtOH</i> (3)	80	24	83 (75)
43	2	Ca(OH) ₂ (10)	EtOH (3)	80	24	68
44	1.5	Ca(OH) ₂ (10)	EtOH (3)	80	24	51
45	1	Ca(OH) ₂ (10)	EtOH (3)	80	24	32
46	3	Ca(OH) ₂ (10)	EtOH (3)	80	18	64
47	3	Ca(OH) ₂ (10)	EtOH (3)	80	36	73
48	3	Ca(OH) ₂ (10)	EtOH (3)	80	48	67
49	3	Ca(OH) ₂ (20)	EtOH (3)	80	24	75
50	3	$Ca(OH)_{2}(5)$	EtOH (3)	80	24	67
51	3	$Ca(OH)_{2}(1)$	EtOH (3)	80	24	33

^{*a*} As indicated in the table, the mixture of excess **1**, freshly distilled **2a** (1 mmol), and catalytic amount of a base in a solvent was heated under N₂ and then monitored by GC. ^{*b*} GC yields (shown outside the parenthesis, using biphenyl as the internal standard) and isolated yields (shown in parenthesis) are based on **2a**. As determined by NOESY analysis, only the (*E*)-stereomer of **3a** was obtained.

Characterization of the Products

(*E*)-2-Benzylidenecyclobutanone ((*E*)-3a). Soild. m.p. 88.7-90.3 °C. IR (KBr): 2976, 2932, 2866, 1737, 1645, 1449, 1384, 1228, 1176, 1113, 934, 759, 685 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.52–7.40 (m, 5H), 7.04 (t, *J* = 2.7 Hz, 1H), 3.15 (t, *J* = 7.8 Hz, 2H), 2.99 (dt, *J* = 2.4 Hz, *J* = 8.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 199.7, 146.2, 134.6, 130.1, 130.0, 128.9, 126.5, 45.8, 23.6; *Anal.* Calcd for C₁₁H₁₀O: C, 83.51; H, 6.37. Found: C, 83.67; H, 6.22. Known compound.¹

(*E*)-2-(4-Methylphenyl)methylenecyclobutanone ((*E*)-3b). Soild. m.p. 84.3-85.7 °C. IR (KBr): 2928, 1736, 1646, 1603, 1448, 1103, 919, 810, 523, 498 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.41 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 7.8 Hz, 2H), 7.02 (t, *J* = 2.7 Hz, 1H), 3.13 (t, *J* = 7.8 Hz, 2H), 2.97 (dt, *J* = 2.4 Hz, *J* = 7.8 Hz, 2H), 2.38 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 199.7, 145.1, 140.6, 131.8, 130.1, 129.7, 126.6, 45.7, 23.5, 21.6; MS (EI, 70 eV): *m/z* (%) 172 (12, M⁺), 157 (58), 129 (100); *Anal.* Calcd for C₁₂H₁₂O: C, 83.69; H, 7.02. Found: C, 83.84; H, 6.90.

(*E*)-2-(2-Methylphenyl)methylenecyclobutanone ((*E*)-3c). Soild. m.p. 69.0-70.2 °C. IR (KBr): 2975, 2870, 1732, 1639, 1595, 1481, 1387, 1291, 1260, 1126, 1089, 1033, 889, 799, 763, 711, 491, 463 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.46 (d, *J* = 7.8 Hz, 1H), 7.19–7.09 (m, 4H), 3.00 (t, *J* = 7.8 Hz, 2H), 2.84 (dt, *J* = 3.0 Hz, *J* = 7.8 Hz, 2H), 2.29 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 198.6, 145.4, 138.4, 131.8, 129.9, 128.9, 126.8, 125.2, 122.5, 44.5, 22.5, 18.7; MS (EI, 70 eV): *m/z* (%) 172 (12, M⁺), 158 (12), 157 (100), 143 (10), 129 (90), 128 (46), 127 (15), 116 (31), 115 (65), 105 (14), 89 (9). HRMS calcd for C₁₂H₁₃O ([M+H]⁺): 173.0961; found: 173.0975.

(*E*)-2-(2,4,6-Trimethylphenyl)methylenecyclobutanone ((*E*)-3d). Oil. IR (film): 2937, 1754, 1652, 1611, 1446, 1394, 1225, 1178, 1100, 1033, 852, 736, 668, 591, 564, 561 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.20 (t, *J* = 1.8 Hz, 1H), 6.89 (s, 2H), 3.02 (t, *J* = 7.8 Hz, 2H), 2.55 (dt, *J* = 2.4 Hz, *J* = 7.8Hz, 2H), 2.29 (s, 3H), 2.25 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 199.8, 149.1, 138.1, 136.6, 129.9, 128.6, 126.8, 44.1, 23.0, 21.1, 20.5; MS (EI, 70 eV): *m/z* (%) 200 (16, M⁺), 185 (100), 157 (98); *Anal.* Calcd for C₁₄H₁₆O: C, 83.96; H, 8.05. Found: C, 83.79; H, 8.11.

(*E*)-2-(4-*tert*-Butyl)methylenecyclobutanone ((*E*)-3e). Soild. m.p. 98.3-99.5 °C. IR (KBr): 2961, 2869, 1744, 1644, 1605, 1509, 1464, 1394, 1364, 1127, 1096, 900, 829, 561 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.47–7.42 (m, 4H), 7.02 (s, 1H), 3.13 (t, *J* = 7.5 Hz, 2H), 2.97 (dt, *J* = 2.4 Hz, *J* = 7.5 Hz, 2H), 1.33 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 199.7, 153.6, 145.3, 131.8, 130.0, 126.5, 126.0, 45.7, 35.0, 31.2, 23.5; MS (EI, 70 eV): *m*/*z* (%) 214 (9, M⁺), 171 (36), 157 (100), 130 (34), 129 (91), 128 (38), 115 (38), 57 (32). HRMS calcd for C₁₅H₁₉O ([M+H]⁺): 215.1430; found: 215.1428.

(*E*)-2-(4-Methoxyl)methylenecyclobutanone ((*E*)-3f). Soild. m.p. 79.0-79.6 °C. IR (KBr): 2932, 2840, 1731, 1644, 1600, 1569, 1512, 1462, 1423, 1388, 1305, 1259, 1175, 1122, 1026, 942, 902, 824, 761, 717, 589, 533, 501 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.43 (d, *J* = 8.4 Hz, 2H), 6.95 (s, 1H), 6.90 (d, *J* = 8.4 Hz, 2H), 3.81 (s, 3H), 3.07 (t, *J* = 7.5 Hz, 2H), 2.88 (dt, *J* = 2.4 Hz, *J* = 7.8 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ198.8, 160.6, 143.1, 131.3, 126.7, 125.7, 114.0, 54.8, 45.0, 22.7; MS (EI, 70 eV): *m/z* (%) 188 (57, M⁺), 187 (24), 160 (87), 159 (69), 157 (71), 145 (100), 129 (51), 117 (78), 115 (40), 89 (40), 77 (20), 63 (22). HRMS calcd for C₁₂H₁₃O₂ ([M+H]⁺): 189.0910; found: 189.0944.

(*E*)-2-(Furan-2-yl)methylenecyclobutanone ((*E*)-3g). Soild. m.p. 59.4-60.5 °C. IR (KBr): 3116, 2937, 2251, 1734, 1639, 1474, 1390, 1328, 1224, 1177, 1108, 1016, 911, 819, 741, 684, 591, 534 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.56 (s, 1H), 6.85 (t, *J* = 3.0 Hz, 1H), 6.66 (d, *J* = 3.0

Hz, 1H), 6.51 (t, J = 1.8 Hz, 1H), 3.08 (t, J = 7.8 Hz, 2H), 2.92 (dt, J = 2.4 Hz, J = 7.8 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 199.1, 151.3, 145.3, 143.8, 115.9, 113.4, 112.5, 45.0, 22.9. MS (EI, 70 eV): m/z (%) 148 (39, M⁺), 120 (85), 91 (100); *Anal*. Calcd for C₉H₈O₂: C, 72.96; H, 5.44. Found: C, 72.87; H, 5.48.

(*E*)-2-(Pyridine-2-yl)methylenecyclobutanone ((*E*)-3h). Soild. m.p. 81.6-82.9 °C. IR (KBr): 2978, 2934, 2870, 1777, 1750, 1654, 1584, 1467, 1434, 1386, 1294, 1224, 1109, 1084, 1020, 950, 907, 844, 777, 745,612, 510 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 8.68 (d, *J* = 4.2 Hz, 1H), 7.72 (t, *J* = 7.5 Hz, 1H), 7.47 (d, *J* = 7.8 Hz, 1H), 7.26-7.24 (m, 1H), 7.05 (d, *J* = 2.4 Hz, 1H), 3.17-3.11 (m, 4H); ¹³C NMR (150 MHz, CDCl₃): δ 200.1, 154.0, 150.6, 150.3, 136.4, 125.4, 125.1, 123.5, 46.0, 24.2; MS (EI, 70 eV): *m/z* (%) 159 (3, M⁺), 131 (56), 130 (100), 103 (20), 78 (9), 77 (9), 76 (9), 52 (8), 51 (13). HRMS calcd for C₁₀H₁₀NO ([M+H]⁺): 160.0757; found: 160.0745.

(*E*)-2-(Naphthalen-1-yl)methylenecyclobutanone ((*E*)-3i). Soild. m.p. 98.1-99.2 °C. IR (KBr): 3050, 2932, 1739, 1638, 1508, 1387, 1327, 1227, 1177, 1104, 881, 783, 735, 542, 429 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 8.17 (d, *J* =8.4 Hz, 1H), 7.91-7.88 (m, 3H), 7.80 (d, *J* =4.2 Hz, 1H), 7.59-7.50 (m, 3H), 3.18 (t, *J* =7.8 Hz, 2H), 3.02 (dt, *J* = 2.4 Hz, *J* = 7.8 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 199.6, 147.6, 133.8, 132.5, 130.6, 129.0, 127.0, 126.6, 126.3, 125.3, 123.2, 122.6, 45.5, 23.7; MS (EI, 70 eV): *m*/*z* (%) 208 (47, M⁺), 179 (100), 165 (88); *Anal.* Calcd for C₁₅H₁₂O: C, 86.51; H, 5.81. Found: C, 86.70; H, 5.66.

(*E*)-2-(4-Fluorophenyl)methylenecyclobutanone ((*E*)-3j). Soild. m.p. 89.1-90.1 °C. IR (KBr): 2935, 1735, 1644, 1594, 1507, 1392, 1294, 1225, 1159, 1106, 905, 833, 775, 526 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.52-7.50 (m, 2H), 7.12-7.09 (m, 2H), 7.01 (t, *J* = 2.7 Hz, 1H), 3.16

(t, J = 7.8 Hz, 2H), 2.97 (dt, J = 2.4 Hz, J = 7.8 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 199.4, 163.6 (d, $J_{CF} = 250.7$ Hz), 145.7, 132.0 (d, $J_{CF} = 8.4$ Hz), 130.8 (d, $J_{CF} = 3.3$ Hz), 125.2, 116.2 (d, $J_{CF} = 21.8$ Hz), 45.8, 23.4; MS (EI, 70 eV): m/z (%) 176 (27, M⁺), 148 (100), 133 (96); *Anal.* Calcd for C₁₁H₉FO: C, 74.99; H, 5.15. Found: C, 75.08; H, 5.10.

(*E*)-2-(4-Chlorophenyl)methylenecyclobutanone ((*E*)-3k). Soild. m.p. 95.7-97.3 °C. IR (KBr): 2932, 1732, 1645, 1587, 1490, 1403, 1180, 1089, 1011, 892, 817, 703, 518, 491 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.44 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 6.98 (t, *J* = 2.7 Hz, 1H), 3.16 (t, *J* = 8.1 Hz, 2H), 2.97 (dt, *J* = 2.4 Hz, *J* = 8.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 199.3, 146.7, 136.0, 133.1, 131.2, 129.2, 125.1, 45.9, 23.5; MS (EI, 70 eV): *m/z* (%) 192 (8, M⁺), 157 (39), 129 (100). Known Compound.¹

(*E*)-2-(4-Bromophenyl)methylenecyclobutanone ((*E*)-3l). Soild. m.p. 62.1-63.5 °C. IR (KBr): 2927, 1780, 1728, 1640, 1484, 1396, 1176, 1117, 1093, 1069, 1006, 892, 813, 697, 515, 490 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.54 (d, *J* = 8.4Hz, 2H), 7.37 (d, *J* = 8.4Hz, 2H), 6.97 (t, J = 1.8 Hz, 1H), 3.16 (t, *J* = 7.8 Hz, 2H), 2.96 (dt, *J* = 1.8 Hz, *J* = 7.8 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 199.3, 146.8, 133.5, 132.2, 131.6, 131.3, 125.2, 45.9, 23.6; MS (EI, 70 eV): *m/z* (%) 236 (4, M⁺), 157 (54), 129 (100); *Anal*. Calcd for C₁₁H₉BrO: C, 55.72; H, 3.83. Found: C, 55.86; H, 3.91.

(*E*)-2-(2-Bromophenyl)methylenecyclobutanone ((*E*)-3m). Oil. IR (film): 2926, 2177, 1740, 1637, 1461, 1429, 1388, 1277, 1229, 1172, 1126, 1087, 1020, 891, 755, 696, 501, 450 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.63 (t, *J* = 6.0 Hz, 2H), 7.44 (t, *J* = 2.7 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.23 (t, *J* = 7.5 Hz, 1H), 3.16 (t, *J* = 8.1 Hz, 2H), 2.97 (dt, *J* = 3.0 Hz, *J* = 8.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 199.1, 148.2, 134.0, 133.7, 131.0, 129.1, 127.5, 127.1, 125.0, 45.8, 23.4; MS (EI, 70 eV): *m/z* (%) 236 (2, M⁺), 157 (50), 129 (100); *Anal.* Calcd for

C₁₁H₉BrO: C, 55.72; H, 3.83. Found: C, 55.88; H, 3.84.

(*E*)-2-(3-Bromophenyl)methylenecyclobutanone ((*E*)-3n). Oil. IR (film): 1781, 1737, 1640, 1463, 1126, 1089, 1023, 757, 509, 450 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.63 (t, *J* = 6.0 Hz, 2H), 7.44 (t, *J* = 2.7 Hz, 1H), 7.34 (t, *J* = 7.2 Hz, 1H), 7.23 (t, *J* = 7.8 Hz, 1H), 3.16 (t, *J* = 7.8 Hz, 2H), 2.97 (dt, *J* = 2.4 Hz, *J* = 7.8 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 199.1, 148.2, 134.0, 133.7, 131.0, 129.1, 127.5, 127.1, 125.0, 45.8, 23.4; MS (EI, 70 eV): *m/z* (%) 236 (1, M⁺), 157 (48), 129 (100); *Anal.* Calcd for C₁₁H₉BrO: C, 55.72; H, 3.83. Found: C, 55.57; H, 3.68.

(*E*)-2-(4-Trifluoromethylphenyl)methylenecyclobutanone ((*E*)-3o). Soild. m.p. 92.3-93.7 °C. IR (KBr): 2935, 1734, 1643, 1417, 1321, 1235, 1164, 1113, 1063, 1013, 910, 834, 735, 685, 596, 498 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.66 (d, *J* = 8.4 Hz, 2H), 7.62 (d, *J* = 7.8 Hz, 2H), 7.04 (t, *J* = 2.7 Hz, 1H), 3.21 (t, *J* = 7.8 Hz, 2H), 3.04 (dt, *J* = 2.4 Hz, *J* = 7.8 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 199.1, 148.7, 138.0, 131.3 (d, *J*_{CF} = 32.7 Hz), 130.0, 125.8 (m), 124.6, 46.1, 23.7; MS (EI, 70 eV): *m*/*z* (%) 226 (10, M⁺), 198 (15), 170 (50), 157 (100). Known Compound.¹

(*E*,*E*)**2**-(**3-Phenyl-allylidene**)-cyclobutanone ((*E*,*E*)-**3p**). Soild. m.p. 72.5-73.5 °C. IR (KBr): 3061, 3027, 2973, 2933, 1724, 1675, 1626, 1449, 1391, 1103, 970, 737, 688, 515 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.40-7.22 (m, 5H), 6.85 (d, *J* = 15.6 Hz, 1H), 6.73 (d, *J* = 11.4 Hz, 1H), 6.66 (dd, *J* = 11.4 Hz, *J* = 15.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 199.1, 147.6, 142.5, 136.2, 129.2, 128.9, 127.2, 126.6, 123.5, 43.8, 20.8; MS (EI, 70 eV): *m/z* (%) 184 (70, M⁺), 156 (83), 155 (66), 141 (100), 128 (95), 127 (40), 115 (67), 102 (27), 91 (40), 78 (27), 77 (28). HRMS calcd for C₁₃H₁₃O ([M+H]⁺): 185.0961; found: 185.0983.

(*E*)-2-Cyclohexylcyclobutanone ((*E*)-3q). Oil. IR (film): 2928, 2853, 1756, 1665, 1448, 1393, 1231, 1110, 1088, 963, 901, 734 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 6.15 (dt, *J* = 2.7 Hz, *J* = 8.4 Hz, 1H), 2.92 (t, J = 7.8 Hz, 2H), 2.63 (td, J = 2.4 Hz, J = 7.8 Hz, 2H), 2.15-2.10 (m, 1H), 1.76-1.71 (m, 4H), 1.33-1.18 (m, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 200.1, 146.0, 135.7, 43.8, 38.2, 31.7, 25.8, 25.5, 20.6; MS (EI, 70 eV): *m/z* (%) 164 (9, M⁺), 163 (14), 136 (17), 135 (100), 107 (26), 93 (22), 81 (32), 80 (14), 79 (54), 67 (22), 55 (21). HRMS calcd for C₁₁H₁₇O ([M+H]⁺): 165.1274; found: 165.1275.

(*E*)-4-Benzylidenebutanolide ((*E*)-4a). Soild. m.p. 94.2-95.7 °C. IR (KBr): 2944, 1801, 1676, 1445, 1371, 1295, 1233, 1173, 1125, 1012, 935, 912, 871, 821, 757, 693, 611, 570, 548, 516, 468, 446, 425 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.36-7.33 (m, 2H), 7.23-7.22 (m, 3H), 6.33 (t, *J* = 1.8 Hz, 1H), 3.17 (dt, *J* = 1.8 Hz, *J* = 8.4 Hz, 2H), 2.75 (t, *J* = 8.7 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 174.2, 151.1, 134.4, 128.7, 127.8, 126.7, 107.1, 27.8, 25.1; MS (EI, 70 eV): *m/z* (%) 174 (100, M⁺), 145 (46); *Anal.* Calcd for C₁₁H₁₀O₂: C, 75.84; H, 5.79. Found: C, 75.93; H, 5.88. Known Compound.^{2,3}

(*E*)-4-(4-Methylphenyl)methylenebutanolide ((*E*)-4b). Soild. m.p. 91.3-92.5 °C. IR (KBr): 2922, 1796, 1671, 1609, 1513, 1443, 1417, 1292, 1210, 1170, 1125, 933, 886, 808, 715, 520, 488 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.15 (d, *J* = 7.8 Hz, 2H), 7.12 (d, *J* = 7.8 Hz, 2H), 6.29 (s, 1H), 3.14 (t, *J* = 8.4 Hz, 2H), 2.74 (t, *J* = 8.4 Hz, 2H), 2.34 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 174.3, 150.5, 136.5, 130.2, 129.4, 127.7, 107.0, 27.8, 25.1, 21.2; MS (EI, 70 eV): *m/z* (%) 188 (100, M⁺), 145 (52), 132 (78); *Anal*. Calcd for C₁₂H₁₂O₂: C, 76.57; H, 6.43. Found: C, 76.75; H, 6.50.

(*E*)-4-(2-Methylphenyl)methylenebutanolide ((*E*)-4c). Oil. IR (film): 2930, 1803, 1730, 1675, 1601, 1485, 1460, 1415, 1381, 1293, 1161, 1121, 1090, 932, 842, 752, 725, 664, 617, 546, 494, 450 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.13-7.08 (m, 4H), 6.30 (s, 1H), 2.96 (dt, J = 1.8 Hz, J = 8.4 Hz, 2H), 2.63 (t, J = 8.4 Hz, 2H), 2.21 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 174.4, 151.0, 136.7, 133.0, 130.3, 127.5, 127.1, 125.9, 105.2, 27.9, 24.7, 20.0; MS (EI, 70 eV): *m/z* (%) 188 (100, M⁺), 145 (48), 132 (21), 129 (19), 128 (20), 117 (20), 105 (36), 104 (53), 103 (22), 78 (26), 77 (21). HRMS calcd for C₁₂H₁₃O₂ ([M+H]⁺): 189.0910; found: 189.0944.

(*E*)-4-(2,4,6-Trimethylphenyl)methylenebutanolide ((*E*)-4d). Soild. m.p. 93.6-94.5 °C. IR (KBr): 2922, 1803, 1690, 1612, 1446, 1380, 1340, 1291, 1161, 1106, 1026, 923, 852, 740, 671, 564, 473 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 6.88 (s, 2H), 6.15 (s, 1H), 2.66 (t, *J* = 8.4 Hz, 2H), 2.55 (dt, *J* = 2.4 Hz, *J* = 8.4 Hz, 2H), 2.28 (s, 3H), 2.20 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 174.8, 150.6, 136.9, 136.7, 129.2, 128.3, 104.0, 27.9, 23.7, 21.0, 20.3; MS (EI, 70 eV): *m*/*z* (%) 216 (100, M⁺), 173 (44), 157 (52); *Anal.* Calcd for C₁₄H₁₆O₂: C, 77.75; H, 7.46. Found: C, 77.89; H, 7.58.

(*E*)-4-(4-*tert*-Butylphenyl)methylenebutanolide ((*E*)-4e). Soild. m.p. 92.6-93.5 °C. IR (KBr): 2963, 2868, 1800, 1737, 1676, 1602, 1512, 1461, 1361, 1292, 1266, 1171, 1104, 1015, 936, 888, 807, 559 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.36 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 7.8 Hz, 2H), 6.30 (s, 1H), 3.16 (dt, *J* = 1.8 Hz, *J* = 8.4 Hz, 2H), 2.74 (t, *J* = 8.4 Hz, 2H), 1.32 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 174.3, 150.6, 149.7, 131.4, 127.5, 125.6, 106.8, 34.6, 31.3, 27.8, 25.1; MS (EI, 70 eV): *m/z* (%) 230 (27, M⁺), 216 (16), 215 (100), 159 (13), 145 (9), 131 (13), 115 (10), 91 (9), 55 (8). HRMS calcd for C₁₅H₁₉O₂ ([M+H]⁺): 231.1380; found: 231.1375.

(*E*)-4-(4-Methoxylphenyl)methylenebutanolide ((*E*)-4f). Oil. IR (film): 2938, 2836, 1795, 1679, 1603, 1511, 1443, 1360, 1297, 1233, 1178, 1101, 1033, 939, 828, 733, 523 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.14 (d, *J* = 8.4 Hz, 2H), 6.88 (d, *J* = 9.0 Hz, 2H), 6.27 (s, 1H), 3.81 (s, 3H), 3.11 (dt, *J* = 1.8 Hz, *J* = 8.4 Hz, 2H), 2.73 (t, *J* = 8.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 174.7, 149.9, 129.0, 116.1, 114.9, 114.2, 106.6, 55.8, 42.0, 25.0; MS (EI, 70 eV): *m/z* (%) 204 (100, M⁺), 148 (66), 134 (32), 133 (16), 121 (24), 120 (50), 119 (12), 91 (27), 77 (27), 51 (19). HRMS calcd for C₁₂H₁₃O₃ ([M+H]⁺): 205.0859; found: 205.0872.

(*E*)-4-(Naphthalen-1-yl)methylenebutanolide ((*E*)-4i). Solid. m.p. 102.3-103.6 °C. IR (KBr): 2977, 2902, 1803, 1675, 1453, 1400, 1293, 1259, 1166, 1106, 1081, 1048, 927, 880, 780 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.35-7.99 (m, 7H), 6.85 (s, 1H), 3.01-3.04 (t, *J* = 8.4 Hz, 2H), 2.70-2.73 (t, *J* = 8.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 174.5, 152.0, 131.0, 128.6, 127.8, 126.3, 126.1, 125.7, 125.3, 124.3, 104.2, 27.8, 24.6; MS (EI, 70 eV): *m/z* 224 (3, M⁺), 207 (38), 57 (100); *Anal.* Calcd for C₁₅H₁₂O₂: C, 80.34; H, 5.39. Found: C, 80.46; H, 5.18.

(*E*)-4-(4-Fluorophenyl)methylenebutanolide ((*E*)-4j). Soild. m.p. 93.5-94.6 °C. IR (KBr): 2929, 2268, 1788, 1672, 1508, 1416, 1292, 1220, 1176, 1105, 929, 878, 837, 741, 655, 524, 483 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.17-7.20 (m, 2H), 7.03-7.06 (m, 2H), 6.30 (s, 1H), 3.13 (dt, *J* = 1.8 Hz, *J* = 8.4 Hz, 2H), 2.75-2.78 (t, *J* = 8.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 174.0, 161.4 (d, *J*_{CF} = 245.4 Hz), 150.8, 130.4 (d, *J*_{CF} = 3.3 Hz), 129.3 (d, *J*_{CF} = 7.8 Hz), 115.6 (d, *J*_{CF} = 21.3 Hz), 106.0, 27.7, 25.0; MS (EI, 70 eV): *m*/*z* 192 (88, M⁺), 136 (82), 108 (100); *Anal.* Calcd for C₁₁H₉FO₂: C, 68.74; H, 4.72. Found: C, 68.58; H, 4.63.

(*E*)-4-(4-Bromophenyl)methylenebutanolide ((*E*)-4l). Soild. m.p. 67.3-68.4 °C. IR (KBr): 2927, 1803, 1681, 1587, 1489, 1443, 1402, 1293, 1222, 1167, 1098, 1075, 1009, 969, 942, 912, 873, 832, 805, 740, 651, 559, 512 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.46 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 8.4 Hz, 2H), 6.26 (s, 1H), 3.13 (t, *J* = 7.8 Hz, 2H), 2.77 (t, *J* = 8.7 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 173.9, 151.7, 133.3, 131.8, 129.8, 129.3, 106.1, 27.6, 25.1; MS (EI, 70 eV): *m*/*z* 252 (18, M⁺), 89 (100); *Anal*. Calcd for C₁₁H₉BrO₂: C, 52.20; H, 3.58. Found: C, 52.08; H, 3.43.

(*E*)-4-(2-Bromophenyl)methylenebutanolide ((*E*)-4m). Oil. IR (film): 2976, 1806, 1676, 1563, 1468, 1437, 1297, 1161, 1123, 1102, 1025, 935, 837, 757, 662, 507 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.61 (d, *J* = 7.2Hz, 1H), 7.24-7.29 (m, 2H), 7.10-7.13 (m, 1H), 6.50 (s, 1H), 3.04-3.08 (m, 2H), 2.72-2.75 (m, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 174.0, 152.2, 134.3, 133.1, 128.8, 128.4, 127.3, 124.5, 106.6, 27.6, 24.7; MS (EI, 70 eV): *m/z* 252 (32, M⁺), 296 (38), 89 (100); *Anal.* Calcd for C₁₁H₉BrO₂: C, 52.20; H, 3.58. Found: C, 52.37; H, 3.62.

(*E*)-4-(3-Bromophenyl)methylenebutanolide ((*E*)-4n). Oil. IR (film): 2974, 1806, 1676, 1468, 1437, 1297, 1161, 1123, 1102, 1024, 934, 836, 757, 663, 507, 447 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 7.61 (d, *J* = 2.4Hz, 1H), 7.25-7.29 (m, 2H), 7.10-7.12 (m, 1H), 6.50 (s, 1H), 3.05 (dt, *J* = 2.4 Hz, *J* = 7.8 Hz, 2H), 2.73 (t, *J* = 7.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 172.1, 150.4, 132.4, 131.2, 126.9, 126.5, 125.4, 122.6, 104.7, 25.7, 22.8; MS (EI, 70 eV): *m/z* 252 (31, M⁺), 196 (20), 89 (100); *Anal*. Calcd for C₁₁H₉BrO₂: C, 52.20; H, 3.58. Found: C, 52.28; H, 3.73.

(*E*)-4-Cyclopropylidenebutanolide ((*E*)-4q). Oil. IR (film): 2925, 2851, 1797, 1696, 1447, 1418, 1379, 1345, 1295, 1238, 1175, 1139, 1091, 1012, 975, 911, 839, 664, 581, 536, 454 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, TMS): δ 5.09 (d, *J* = 10.2Hz, 1H), 2.84 (t, J = 8.4 Hz, 2H), 2.66 (t, J = 8.4 Hz, 2H), 1.99-1.93 (m, 1H), 1.74-1.64 (m, 4H), 1.31-1.08 (m, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 175.1, 147.9, 110.7, 35.4, 33.3, 27.8, 25.9, 22.6; MS (EI, 70 eV): *m/z* (%) 180 (43, M⁺), 137 (100), 109 (56), 99 (56), 95 (65), 82 (66), 81 (92), 80 (51), 67 (50), 55 (67). HRMS calcd for C₁₁H₁₇O₂ ([M+H]⁺): 181.1223; found: 181.1229.

References

- 1. J. P. Markham, S. T. Staben, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 9708.
- 2. WSS: Spectral data were obtained from Wiley Subscription Services, Inc. (US).
- 3. G. Tsolomiti, A. Tsolomitis, Hetero. Commun. 2006, 12, 93.

NOESY Spectra of Product (*E*)-3a and Determination of the Products' Stereochemistry

- 1) As shown in the following NOESY spectra of **3a**, the strong correlation between an aromatic proton (7.40 *ppm*) and the protons of cyclic CH₂ (2.99 *ppm*) confirmed that they are in a *syn*-position, indicating that product **3a** is the (*E*)-stereomer.
- 2) On the contrary, obviously there is no correlation between the vinylic proton (7.04 *ppm*) and the protons of cyclic CH₂ (2.99 *ppm*), implying that they are in an *anti*-position, which also indicated that product **3a** is the (*E*)-stereomer.
- 3) The stereochemistry of products (*E*)-3a, 3g, and 3k were also confirmed by the literature data (*J. Am. Chem. Soc.* 2005, *127*, 9708).
- 4) The stereochemistry of other products (*E*)-**3** can be inferred analogously by comparing their NMR spectra and chemical shifts of the corresponding protons with those of **3a**, **3g** and **3k**.

⁷⁷Se NMR Spectroscopic Analysis of the Involved Organoselenium Species

Step 1. Determined chemical shift of pure benzeneseleninic acid PhSe(O)OH (**A**) in D₂O is 1171 ppm, which is consistent with the literature data (1182 ppm, see: D. Dowd, P. Gettins, *Magn. Reson. Chem.* 1988, **26**, 1).

Step 2. Literature chemical shift of the unstable benzeneseleninoperoxoic acid PhSe(O)OOH (**B**) is not available, but it was reported that **B** could be obtained from **A** by treatment with H_2O_2 (see: L. Syper, J. Mlochowski, *Tetrahedron* 1987, **43**, 207). As shown below, by treating **A** with H_2O_2 in D_2O_2 , a new peak at 1024 ppm was detected, which is most possibly the chemical shift of **B**.

Step 3. By treating $(PhSe)_2$ with H_2O_2 in D_2O , a new peak at 1248 ppm was detected, which, consists with the literature data (1241 ppm, see: <u>http://www.chem.wisc.edu/areas/reich/handouts/nmr/se-data.htm</u>) of benzeneseleninoperoxoic anhydride [PhSe(O)O]_2O (**C**), is thus most possibly the chemical shift of **C**.

Step 4. After standing for 24 h, the chemical shifts of the above sample (in step 3) changed a lot. As shown below, the peak of $[PhSe(O)O]_2O(C)$ disappeared and that of **B** (1024 ppm) appeared as the major one, with generation of small amounts of **A** (1173 ppm).

Step 5. On the other hand, as shown below, vigorous stirring of the mixture of $(PhSe)_2$ and H_2O_2 (5 equiv.) in CH₃CN for 4 h could directly afford **A** and **B** without the detection of **C**.

1350 1300 1250 1200 1150 1100 1050 1000 950 ppm (f1)

¹H and ¹³C NMR Spectra of Products (*E*)-3 and (*E*)-4

Electronic Supplementary Material (ESI) for Green Chemistry This journal is O The Royal Society of Chemistry 2013

