Supporting Information

Electrochemical pinacol coupling of aromatic carbonyl compounds in a [BMIM][BF₄]/H₂O mixture

Hannah Kronenwetter, Jakub Husek, Brian Etz, Aaron Jones, and Renuka Manchanayakage* Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870 manchanayakage@susqu.edu

Contents

General information and the procedure for pinacol coupling reaction	. 2
Cyclic voltammogram of 80% [BMIM][BF ₄]/H ₂ O	. 2
NMR spectra of 1,2-diphenylethane-1,2-diol [4a]	. 3
NMR spectra of 1,2-di(4-methylphenyl)ethane-1,2-diol [4b]	. 5
NMR spectra of 1,2-di(4-methoxylphenyl)ethane-1,2-diol [4c]	. 7
NMR spectra of 1,2-di(4-chlorophenyl)ethane-1,2-diol [4d]	. 9
NMR spectra of 1,2-di(4-bromophenyl)ethane-1,2-diol [4e]	. 11
NMR spectra of 2,3-diphenylbutane-2,3-diol [6a]	13
NMR spectra of 2,3-di(4-methylphenyl)butane-2,3-diol [6b]	. 15
NMR spectra of 2,3-di(4-methoxylphenyl)butane-2,3-diol [6c]	17
NMR spectra of 2,3-di(4-bromophenyl)butane-2,3-diol [6d]	19
NMR spectra of 2,3-di(2-pyridinyl)butane-2,3-diol [6e]	21
NMR spectra of 3,4-diphenylhexane-3,4-diol [6f]	. 23
NMR spectra of 2-methyl-1-phenylpropan-1-ol [7a]	25
NMR spectra of diphenylmethanol [7b]	. 27

General Information

All reactions were conducted under nitrogen atmosphere. All reagents were obtained from commercial suppliers and used without further purification. Ionic liquids, [BMIM][BF₄] and [BMIM][PF₆] were synthesized according to the literature.¹ NMR experiments were conducted in chloroform-*d*.

General procedure for the electrochemical pinacol coupling reaction

The carbonyl compound (0.35 mmol) and a mixture of 80% [BMIM][BF₄]/H₂O (4.0 mL of [BMIM][BF₄] and 1.0 mL of H₂O) were placed in an electrochemical cell fitted with a tin foil anode (1.0 cm²), a platinum plate cathode (1.0 cm²) and a Ag/AgCl reference electrode. The mixture was stirred and degassed by bubbling nitrogen for 30 minutes. A controlled potential of 2.0 V was applied under nitrogen atmosphere for 5 hours. The resultant solution was extracted with diethyl ether (2 × 5 mL). The ether extract was dried with anhydrous sodium sulfate, filtered and concentrated in vacuo. When necessary, the residue was purified via silica gel flash column chromatography (10% ethyl acetate in hexane eluent) to afford the final product.

References

1. Dupont, J.; Consorti, C.; Suarez, P.; Souza, R. Org. Syn. Coll. Vol. 2004, 79, 236.

Figure 1: Cyclic voltammogram of the 80% [BMIM][BF_4]/ H_2O system. Recorded at a Pt cathode against Ag/AgCl reference. The scan rate was 0.025 Vs⁻¹.

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2014

.....

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2014

.

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2014

