Electronic Supplementary Information (ESI)

Cation Does Matter: How Cationic Structure Affects the Dissolution

of Cellulose in Ionic Liquids

Benlian Lu^{*a,c*}, Airong Xu^{*c*}, Jianji Wang*^{*b*}

^a College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China

^b Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China

^c School of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471003, P. R. China

¹H NMR data:

1-Butyl-3-methylimidazolium acetate (**1**, [C₄mim][CH₃COO]). ¹H NMR (400MHz; DMSO-d₆; δ/ppm, relative to TMS): 0.880(t,3H), 1.224(m,2H), 1.548(s,3H), 1.752(m,2H), 3.867(s,3H), 4.182(t,2H), 7.773(s,1H), 7.843(s,1H), 9.972(s,1H).

1-Methoxyethyl-3-methylimidazolium acetate (**2**, [C₁OC₂mim][CH₃COO]). ¹H NMR (400MHz; D₂O, δ/ppm, relative to TMS): 1.792(s,3H), 3.269(s,3H), 3.721(t,2H), 3.789(s,3H), 4.280(t,2H), 7.336(d,1H), 7.393(d,1H), 8.629(s,1H).

1-Hydroxyethyl-3-methylimidazolium acetate (**3**, $[C_2OHmim][CH_3COO]$). ¹H NMR (400MHz; DMSO-d₆, δ /ppm, relative to TMS): 1.581(s,3H), 3.687(t,2H), 3.852(s,3H), 4.247(t,2H), 7.691(s,1H), 7.784(s,1H), 9.594(s,1H).

1-Butyl-2,3-dimethylimidazolium acetate (**4**, $[C_4dmim][CH_3COO]$). ¹H NMR (400MHz; D₂O, δ /ppm, relative to TMS): 0.802(t,3H), 1.198(m,2H), 1.661(m,2H), 1.778(s,3H), 2.461(s,3H), 3.640(s,3H), 3.983(t,3H), 7.190(d,1H), 7.224(d,1H).

1-Benzyl-3-methylimidazolium acetate (**5**, [phC₁mim][CH₃COO]). ¹H NMR (400MHz; D₂O, δ/ppm, relative to TMS): 1.762(s,3H), 3.727(s,3H), 5.224(s,2H), 7.256-7.343(m,7H), 8.590(s,1H).

N-ethyl-N-methylmorpholium acetate (**6**, [C₂mmor][CH₃COO]). ¹H NMR (400MHz; D₂O, δ/ppm, relative to TMS): 1.272(t,3H), 1.795(s,3H), 3.042(s,3H), 3.364(m,4H), 3.424(m,2H), 3.936(s,4H).

N-allyl-N-methylmorpholium acetate (**7**, [C=C₂mmor][CH₃COO]). ¹H NMR (400MHz; D₂O, δ/ppm, relative to TMS): 1.803(s,3H), 3.065(s,3H), 3.349(m,2H), 3.421(m,2H), 3.695(t,6H), 5.561(q,2H), 5.935(m,1H).

N-allyl-N-methylpiperidium acetate (**8**, [C=C₂mpip][CH₃COO]). ¹H NMR (400MHz; D₂O, δ/ppm, relative to TMS): 1.536(m,2H), 1781(d,4H), 1.801(s,3H), 2.896(s,3H), 3.207(m,4H), 3.818(d,2H), 5.597(t,2H), 5.910(m,1H).

N-butyl-N-methylpiperidium acetate (**9**, [C₄mpip][CH₃COO]). ¹H NMR (400MHz; D₂O, δ/ppm, relative to TMS): 0.817(t,3H), 1.235(m,2H), 1.524(m,2H), 1.590(m,2H), 1.729(s,4H), 1.762(s,3H), 2.871(s,3H), 3.185(m,6H).

1-Butyl-1-methylPyrrolidinium acetate (**10**, [C₄mPyr][CH₃COO]). ¹H NMR (400MHz; D₂O, δ/ppm, relative to TMS): 0.908(t,3H), 1.337(m,2H), 1.732(m,2H), 1.881(s,3H), 2.159(s,4H), 2.986(s,3H), 3.276(t,2H), 3.451(s,4H)

1-Butyl-3-ethylbenzimidazolium acetate (**11**, [C₄ebim][CH₃COO]). ¹H NMR (400MHz; D₂O, δ/ppm, relative to TMS): 0.806(t,3H), 1.224(m,2H), 1.485(t,3H), 1.784(s,3H), 1.826(q,2H), 4.366(m, 4H), 7.539(m,2H), 7.740(m,2H), 9.188(s,1H).

1,3-Diethylbenzimidazolium acetate (**12**, [C₂ebim][CH₃COO]). ¹H NMR (400MHz; DMSO-d₆; δ /ppm, relative to TMS): 1.53(m,9H), 4.52(q,4H), 7.68(m,2H), 8.07(m,2H),

10.17(s,1H).

1-Butyl-3-ethylbenzotriazolium acetate (**13**, $[C_4ebt][CH_3COO]$). ¹H NMR (400MHz; DMSO-d₆; δ /ppm, relative to TMS): 0.921(t,3H), 1.386(m,2H), 1.645(t,3H), 1.693(s,3H), 2.003(m,2H), 5.046(m,4H), 7.995(m,2H), 8.479(m,2H).

Entry	IL	$T_m/^{\circ}C^a$	$T_g/^{\circ}C^{a}$	$T_d/^{\circ}C^{b}$		
1	[C ₄ mim][CH ₃ COO]	с	-58	221		
2	[C ₁ OC ₂ mim][CH ₃ COO]	с	-54	217		
3	[C ₂ OHmim][CH ₃ COO]	57	c	234		
4	[C ₄ dmim][CH ₃ COO]	52	c	223		
5	[phC ₁ mim][CH ₃ COO]	с	-23	211		
6	[C ₂ mmor][CH ₃ COO]	47	с	177		
7	[C=C ₂ mmor][CH ₃ COO]	с	-33	160		
8	[C=C ₂ mpip][CH ₃ COO]	78	с	171		
9	[C ₄ mpip][CH ₃ COO]	с	-54	183		
10	[C ₄ mpyr][CH ₃ COO]	60	с	165		
11	[C ₄ ebim][CH ₃ COO]	с	-27	209		
12	[C ₂ ebim][CH ₃ COO]	55	с	204		
13	[C ₄ ebt][CH ₃ COO]	с	-53	162		
^a Temperature at signal peak, ^b temperature for 10% weight loss under N ₂ gas, ^c not observed.						

Table S1 Thermal properties of the ionic liquids

Entry	IL	[Cl ⁻]/mol.kg ⁻¹	[Br ⁻]/mol.kg ⁻¹	H ₂ O/ppm			
1	[C ₄ mim][CH ₃ COO]	0.011		589			
2	[C ₁ OC ₂ mim][CH ₃ COO]	0.013		355			
3	[C ₂ OHmim][CH ₃ COO]	0.015		466			
4	[C ₄ dmim][CH ₃ COO]	0.0085		519			
5	[phC ₁ mim][CH ₃ COO]	0.012		527			
6	[C ₂ mmor][CH ₃ COO]		0.00028	521			
7	[C=C ₂ mmor][CH ₃ COO]	0.014		422			
8	[C=C ₂ mpip][CH ₃ COO]	0.010		405			
9	[C ₄ mpip][CH ₃ COO]	0.0095		428			
10	[C ₄ mpyr][CH ₃ COO]	0.010		420			
11	[C ₄ ebim][CH ₃ COO]	0.0082		468			
12	[C ₂ ebim][CH ₃ COO]		0.0028	489			
13	[C ₄ ebt][CH ₃ COO]		0.0030	396			

 Table S2 Impurity contents in the ionic liquids

Fig. S1 Temperature dependence of α parameter of the ILs: (**a**), [C₄mim][CH₃COO]; (**¢**), [C₁OC₂mim][CH₃COO]; (**•**), [phC₁mim][CH₃COO]; (**†**), [C₂mmor][CH₃COO]; and (**◄**) [C=C₂mmor][CH₃COO].

Fig. S2 Temperature dependence of β parameter of the ILs: (**a**), [C₄mim][CH₃COO]; (**¢**), [C₁OC₂mim][CH₃COO]; (**•**), [phC₁mim][CH₃COO]; (**†**), [C₂mmor][CH₃COO]; and (**◄**) [C=C₂mmor][CH₃COO].

Fig. S3 Temperature dependence of π^* parameter of the ILs: (**a**), [C₄mim][CH₃COO]; (**\diamond**), [C₁OC₂mim][CH₃COO]; (**\diamond**), [phC₁mim][CH₃COO]; (\bigstar), [C₂mmor][CH₃COO]; and (**\checkmark**) [C=C₂mmor][CH₃COO].

Fig. S4 The linear correlation between solubility of cellulose and α parameter of the ILs at 70°C.

Fig. S5 The linear correlation between solubility of cellulose and α parameter of the ILs at 80°C

Fig. S6 The linear correlation between solubility of cellulose and α parameter of the ILs at 100°C.

Fig. S7 The linear correlation between solubility of cellulose and α parameter of the ILs at 110°C.

Fig. S8 The linear correlation between solubility of cellulose and α parameter of the ILs at 120°C.