α,ω-Di(glycerol carbonate) Telechelic Polyesters and Polyolefins as Precursors to PolyHydroxyUrethanes: an Isocyanate-free approach

Liana Annunziata,^a Abdou K. Diallo,^a Stéphane Fouquay,^b Guillaume Michaud,^c Frédéric Simon,^c Jean-François Carpentier,^a and Sophie M. Guillaume^{1,a}

^a Institut des Sciences Chimiques de Rennes, Organometallics, Materials and Catalysis, UMR
6226 CNRS-Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex, France
^b BOSTIK S.A. 16-32, rue H. Regnault, 92902 Paris La Défense (France)

^c BOSTIK CRD, Route de Bailly, 60771 Ribécourt Cedex (France)

¹ Corresponding author : Tel: +33 223235880; <u>sophie.guillaume@univ-rennes1.fr</u>

Electronic Supplementary Information

α,ω-Di(glycerol carbonate) Telechelic Polyesters and Polyolefins as Precursors to PolyHydroxyUrethanes: an Isocyanate-free approach

Figure S1. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of 4-tosylmethyl-1,3-dioxolan-2one (GC-OTs) (* stands for residual solvent resonances)

Figure S2. ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C) spectrum of 4-tosylmethyl-1,3dioxolan-2-one (GC-OTs) (* stands for residual solvent resonances)

Figure S3. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectra of PPG_{400,1600,2800}-GC₂ prepared from the reaction of the corresponding PPG_{400,1600,2800}-OH₂ with GC-OTS.

Figure S4. ¹H NMR (500 MHz, CDl₃, 25 °C) spectrum of PPG₄₀₀-OH₂ (* stands for residual solvent resonances, and x stands for an unidentified impurity).

Figure S5. ¹H-¹H COSY NMR (500 MHz, CDCl₃, 25 °C) spectrum of PPG₄₀₀-GC₂.

Figure S6. ¹H-¹³C (DEPT) HMQC NMR spectrum (500 MHz, CDCl₃, 25 °C) of PPG₄₀₀-GC₂.

Figure S7. (a) ¹H (500 MHz, CDCl₃, 25 °C) and (b) ¹³C {¹H} (125 MHz, CDCl₃, 25 °C) NMR spectra of PEG₄₀₀-OH₂.

Figure S8. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of the PEG₄₀₀-GC₂.

Figure S9. ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C) spectrum of the PEG₄₀₀-GC₂.

Figure S10. ¹H-¹H COSY NMR (500 MHz, CDCl₃, 25 °C) spectrum of the PEG₄₀₀-GC₂.

Figure S11. FTIR spectra of PEG_{400} -OH₂ (black trace) and the resulting PEG_{400} -GC₂ (red trace).

Figure S12. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of the PEE-OH₂.

Figure S13. ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C) spectrum of the PEE-OH₂.

Figure S14. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of PEE-GC₂ (* marker stands for residual toluene and ** for the starting reagent).

Figure S15. ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C) spectrum of PEE-GC₂ (* marker stands for residual toluene).

Figure S16. ¹H-¹H COSY NMR spectrum (500 MHz, CDCl₃, 25 °C) of PEE-GC₂.

Figure S17. ¹H-¹³C (DEPT) HMQC NMR spectrum (500 MHz, CDCl₃, 25 °C) of PEE-GC₂.

Figure S18. FTIR spectra of PEE-OH₂ (black trace) and the resulting PEE-GC₂ (red trace).

Figure S19. MALDI-ToF MS spectrum of PEE-GC₂.

Figure S20. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of PBD-OH₂.

Figure S21. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of PBD-GC₂ (* marker stands for residual toluene).

Figure S22. ¹³C $\{^{1}H\}$ NMR (125 MHz, CDCl₃, 25 °C) spectrum of PBD-GC₂.

Figure S23. ¹H-¹H COSY NMR (500 MHz, CDCl₃, 25 °C) spectrum of PBD-GC₂.

Figure S24. FTIR spectra of PBD-OH₂ (black trace) and the resulting PBD-GC₂ (red trace).

Scheme S1. Synthesis of 4-tosylmethyl-1,3-dioxolan-2-one (GC-OTs).

Table S1. α , ω -Dihydroxy and dicyclocarbonate telechelic PEGs characteristics.

Table S2. α , ω -Dihydroxy and dicyclocarbonate telechelic PEE characteristics.

Table S3. α , ω -Dihydroxy and dicyclocarbonate telechelic PBD characteristics.

Figure S1. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of 4-tosylmethyl-1,3-dioxolan-2one (GC-OTs) (* stands for residual solvent resonances).

Figure S2. ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C) spectrum of 4-tosylmethyl-1,3dioxolan-2-one (GC-OTs) (* stands for residual solvent resonances).

Figure S3. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectra of PPG_{400,1600,2800}-GC₂ prepared from the reaction of the corresponding PPG_{400,1600,2800}-OH₂ with GC-OTS.

Figure S4. ¹H NMR (500 MHz, CDl₃, 25 °C) spectrum of PPG₄₀₀-OH₂ (* stands for residual solvent resonances, and x stands for an unidentified impurity).

Figure S5. ¹H-¹H COSY NMR (500 MHz, CDCl₃, 25 °C) spectrum of PPG₄₀₀-GC₂.

Figure S6. $^{1}\text{H}^{-13}\text{C}$ (DEPT) HMQC NMR spectrum (500 MHz, CDCl₃, 25 °C) of PPG₄₀₀-GC₂.

Figure S7. (a) 1 H (500 MHz, CDCl₃, 25 °C) and (b) 13 C { 1 H} (125 MHz, CDCl₃, 25 °C) NMR spectra of PEG₄₀₀-OH₂.

Figure S8. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of the PEG₄₀₀-GC₂.

Figure S10. ¹H-¹H COSY NMR (500 MHz, CDCl₃, 25 °C) spectrum of the PEG₄₀₀-GC₂.

Figure S11. FTIR spectra of PEG_{400} -OH₂ (black trace) and the resulting PEG_{400} -GC₂ (red trace).

Figure S12. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of the PEE-OH₂.

Figure S13. ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C) spectrum of the PEE-OH₂.

Figure S14. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of PEE-GC₂ (* marker stands for residual toluene and ** for the starting reagent).

Figure S15. ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C) spectrum of PEE-GC₂ (* marker stands for residual toluene).

Figure S16. ¹H-¹H COSY NMR spectrum (500 MHz, CDCl₃, 25 °C) of PEE-GC₂.

Figure S17. ¹H-¹³C (DEPT) HMQC NMR spectrum (500 MHz, CDCl₃, 25 °C) of PEE-GC₂.

Figure S18. FTIR spectra of PEE-OH₂ (black trace) and the resulting PEE-GC₂ (red trace).

Figure S19. MALDI-ToF MS spectrum of PEE-GC₂.

Figure S20. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of PBD-OH₂.

Figure S21. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of PBD-GC₂ (* marker stands for residual toluene).

Figure S22. ¹³C{¹H} NMR (125 MHz, CDCl₃, 25 °C) spectrum of PBD-GC₂.

Figure S23. ¹H-¹H COSY NMR (500 MHz, CDCl₃, 25 °C) spectrum of PBD-GC₂.

Figure S24. FTIR spectra of PBD-OH₂ (black trace) and the resulting PBD-GC₂ (red trace).

Scheme S1. Synthesis of 4-tosylmethyl-1,3-dioxolan-2-one (GC-OTs).

Table S1. α , ω -Dihydroxy and dicyclocarbonate telechelic PEGs characteristics.

	$M_{ m n,SEC}$ b	${\mathcal D}_{M}{}^{b}$
PEG ₄₀₀ -OH ₂	-	-
PEG ₄₀₀ -GC ₂	-	-
PEG ₄₀₀₀ -OH ₂	3950	1.10
PEG ₄₀₀₀ -GC ₂	4400	1.18

^a Determined by SEC in THF at 30 °C vs. polystyrene standards (uncorrected M_n values).

Table S2	. α,ω-Dihydroxy	and dicyclocarbona	te telechelic PEH	E characteristics.
----------	-----------------	--------------------	-------------------	--------------------

	$M_{ m n,NMR}$ ^a	$M_{n,\rm SEC}$ ^b	${\mathcal D}_{\mathrm{M}}{}^{\mathrm{b}}$
PEE-OH ₂	1000	1040	2.24
PEE-GC ₂	1200	1090	2.14

^a Determined by NMR analysis of the isolated polymer, from ¹H resonances of both terminal groups ^b Determined by SEC in THF at 30 °C vs. polystyrene standards (uncorrected M_n values).

Table S3. α , ω -Dihydroxy and dicyclocarbonate telechelic PBD characteristics.

	$M_{n,SEC}^{a}$	${\mathcal D}_{M}{}^{a}$	% 1,4-cis units	% 1,4-trans units	% 1,2 units
PBD-OH ₂	3450	2.4	20.0	60.0	20.0
PBD-GC ₂	3800	2.29	20.0	60.0	20.0

^a Determined by SEC in THF at 30 °C vs. polystyrene standards (uncorrected M_n values).