Supporting Information for

Supported Nickel–Iron Nanocomposites as a Bifunctional Catalyst towards Hydrogen Generation from N₂H₄·H₂O

Wa Gao,^a Changming Li,^a Hao Chen,^a Min Wu,^b Shan He,^a Min Wei,^{*a} David G. Evans^a and

Xue Duan^a

^a State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China

^b Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author. Tel: +86-10-64412131; Fax: +86-10-64425385.

E-mail address: weimin@mail.buct.edu.cn

1. Experimental section

Preparation of pristine Ni_{1.5}Fe_{1.0}-alloy, Ni/MgO and Fe/MgO catalysts

NiFe-LDHs precursor with a Ni²⁺/Fe³⁺ molar ratio of 1.5 was prepared by using SNAS method and was used as a reference sample.¹ The synthetic process is the same as 2.1.1 step. The product was calcined in air at 500 °C for 5 h with a heating rate of 2 °C min⁻¹ (denoted as Ni_{1.5}Fe_{1.0}-MMO). After reduction by hydrogen at 500 °C for 3 h with a heating rate of 5 °C min⁻¹, the final product was labeled as Ni_{1.5}Fe_{1.0}-alloy catalyst. The reference samples Ni/MgO and Fe/MgO were synthesized by the impregnation method, in which the metal contents of Ni and Fe were controlled to be 35wt.% and 22wt.%, respectively. The commercial MgO (2g) was pretreated in a muffle furnace at 700 °C for 4 h and then impregnated in a Ni(NO₃)₂·6H₂O solution or a Fe(NO₃)₃·9H₂O solution by mechanical agitation at 60 °C for 12 h, followed by evaporation at 60 °C until the water was removed. The resultant solid was dried at 120 °C for 12 h, calcined at 500 °C for 5 h in air (denoted as NiO/MgO and Fe₂O₃/MgO), and then reduced at 500 °C or 800 °C for 3 h in hydrogen to obtain 35wt.%Ni/MgO and 22wt.%Fe/MgO, respectively.

2. Characterization

Fig. S1 XRD patterns of Ni_xFe_{1.0}Mg_{2.5}-MMO samples: (a) x = 3.7, (b) x = 2.5, (c) x = 1.5, (d) x = 0.4.

Fig. S2 XRD patterns of (A) Ni_{1.5}Fe_{1.0}Mg_z-LDHs precursors, (B) Ni_{1.5}Fe_{1.0}Mg_z-MMO samples, (C) Ni_{1.5}Fe_{1.0}-alloy/(MgO)_z samples: (a) z = 0.6, (b) z = 1.4, (c) z = 2.5, (d) z = 3.5, (e) z = 5.0, (f) z = 10.0. Crystalline phase: (•) MgO, Mg(Ni, Fe)O, (♥) NiFe alloy.

Fig. S3 Mg 1s XPS spectra of Ni_xFe_{1.0}-alloy/(MgO)_{2.5} samples: (a) x = 0.4, (b) x = 1.5, (c) x = 2.5, (d) x = 3.7, (e) MgO.

Fig. S4 SEM images of the Ni_xFe_{1.0}Mg_{2.5}-LDHs precursors: (a) x = 0.4, (b) x = 1.5, (c) x = 2.5, (d) x

= 3.7.

Fig. S5 (A-D) SEM images of the Ni_xFe_{1.0}Mg_{2.5}-MMO samples; (E-H) SEM images of the Ni_xFe_{1.0}-alloy/(MgO)_{2.5}: (a) x = 0.4, (b) x = 1.5, (c) x = 2.5, (d) x = 3.7.

Fig. S6 (A) XRD pattern and (B) HRTEM image of the used Ni_{1.5}Fe_{1.0}-alloy/(MgO)_{3.5} catalyst.

Catalysts	Metal content (wt.%)		
	Ni	Fe	
Ni1.5Fe1.0/(MgO)0.6	58.9	37.3	
Ni _{1.5} Fe _{1.0} /(MgO) _{1.4}	43.8	28.0	
Ni1.5Fe1.0/(MgO)2.5	35.4	22.4	
Ni1.5Fe1.0/(MgO)3.5	29.5	18.6	
Ni1.5Fe1.0/(MgO)5.0	23.6	14.9	
$Ni_{1.5}Fe_{1.0}/(MgO)_{10.0}$	14.2	8.9	

Table S1 Metal contents in the Ni_{1.5}Fe_{1.0}-alloy/(MgO)_z samples determined by ICP-AES

Catalysts	Surface metal Content (at.%)		
	Ni	Fe	
Ni/MgO	7.65		
Fe/MgO	—	5.26	
Ni _{0.4} Fe _{1.0} /(MgO) _{2.5}	4.2	6.89	
Ni _{1.5} Fe _{1.0} /(MgO) _{2.5}	7.85	5.07	
Ni _{2.5} Fe _{1.0} /(MgO) _{2.5}	7.75	4.77	
Ni _{3.7} Fe _{1.0} /(MgO) _{2.5}	8.64	3.31	
Ni _{1.5} Fe _{1.0} /(MgO) _{0.6}	8.07	7.18	
Ni1.5Fe1.0/(MgO)1.4	7.98	6.62	
Ni1.5Fe1.0/(MgO)2.5	7.85	5.07	
Ni _{1.5} Fe _{1.0} /(MgO) _{3.5}	7.06	4.68	
Ni1.5Fe1.0/(MgO)5.0	5.37	4.89	
$Ni_{1.5}Fe_{1.0}/(MgO)_{10.0}$	3.06	2.32	

Table S2 Metal contents in various catalysts determined by XPS

Table S3 Reduction Degree and specific surface area of the NiFe alloy particles in the $Ni_xFe_{1.0}/(MgO)_{2.5}$ and $Ni_{1.5}Fe_{1.0}/(MgO)_z$ catalysts

Catalysts	Ni/Fe/MgO ratio ^a	Reduction degree (%) ^b		Specific surface area
		Ni	Fe	$(m^2g^{-1})^c$
Ni _{0.4} Fe _{1.0} /(MgO) _{2.5}	0.39:0.98:2.47	62	55	78
Ni _{1.5} Fe _{1.0} /(MgO) _{2.5}	1.52:0.96:2.49	65	61	70
Ni _{2.5} Fe _{1.0} /(MgO) _{2.5}	2.53:0.95:2.51	69	58	68
Ni _{3.7} Fe _{1.0} /(MgO) _{2.5}	3.68:1.03:2.50	73	66	62
Ni _{1.5} Fe _{1.0} /(MgO) _{0.6}	1.48:0.98:0.59	58	56	82
Ni _{1.5} Fe _{1.0} /(MgO) _{1.4}	1.52:0.96:1.49	62	60	78
Ni _{1.5} Fe _{1.0} /(MgO) _{2.5}	1.52:0.96:2.49	65	61	70
Ni _{1.5} Fe _{1.0} /(MgO) _{3.5}	1.46:1.03:3.50	60	58	69
Ni _{1.5} Fe _{1.0} /(MgO) _{5.0}	1.47:1.01:5.03	68	58	60
Ni1.5Fe1.0/(MgO)10.0	1.51:1.02:9.96	59	55	56

^aDetermined by ICP-AES. ^bCalculated by O₂ consumption from TPO. ^cCalculated from the volume of chemisorbed H₂.

References

[1] Y. Zhao, F. Li, R. Zhang, D. G. Evans and X. Duan, Chem. Mater., 2002, 14, 4286.