Supplementary Information

 $Cu(OAc)_2$ -catalyzed remote benzylic $C(sp^3)$ -H oxyfunctionalization for C=O formation directed by the hindered *para*-hydroxyl group with ambient air as terminal oxidant under ligand- and additive-free conditions

Jian-An Jiang, Cheng Chen, Jian-Gang Huang, Hong-Wei Liu, Song Cao and Ya-Fei Ji*

School of Pharmacy, East China University of Science & Technology, Campus P. O. Box 363, 130 Meilong Road, Shanghai 200237, P. R. China.

Table of Contents

1.	General Information	S 2
2.	General Procedures and Characterization Data	S 2
3.	Reference	S 17
4.	Copies of Spectra for All Compounds	S18

1. General Information

All solvents and reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out in oven-dried glassware and monitored by thin layer chromatography (TLC, precoated silica gel plates containing HF_{254}). Reaction products were purified by silica gel chromatography (300– 400 mesh). Melting points were determined using an open capillaries and uncorrected. NMR spectra were determined on Bruker AV400 in CDCl₃ or DMSO-*d*₆, with TMS as internal standard for ¹H NMR (400 MHz) and ¹³C NMR (100 MHz), respectively. HRMS were carried out on a QSTAR Pulsar I LC/TOF MS mass spectrometer or a Micromass GCTTM gas chromatograph-mass spectrometer.

2. General Procedures and Characterization Data of Compounds

2.1 Optimizing the reaction conditions (comprehensive experiments for Table 1 in the text).

Table S1. Copper(II)-catalyzed oxidation of 1aa to 2aa.^a

Entry	Cu(II) salt (<i>n</i> mol%)	Atmos.	T [°C]	Solvent	Yield [%] ^b
1	$CuCl_2(3)$	O ₂	25	MeOH	trace
2	$CuCl_2(3)$	O_2	50	MeOH	trace
3	$\operatorname{CuCl}_2(3)$	O ₂	75	MeOH	trace
4	$CuBr_2(3)$	O_2	75	MeOH	trace
5	$CuF_2(3)$	O_2	75	MeOH	trace
6	$CuSO_4(3)$	O_2	75	MeOH	0
7	$Cu(NO_3)_2(3)$	O_2	75	MeOH	0
8	Cupric tartrate (3)	O_2	75	MeOH	0
9	Cupric citrate (3)	O_2	75	MeOH	0
10	Cupric acetylacetonate (3)	O_2	75	MeOH	0
11	$Cu(AcO)_2(3)$	O ₂	75	MeOH	79
12	$Cu(AcO)_2(3)$	O_2	50	MeOH	79
13	$Cu(AcO)_2(3)$	O_2	40	MeOH	53
14	$Cu(AcO)_2(3)$	O_2	50	EtOH	78
15	$Cu(AcO)_2(3)$	O_2	50	<i>n</i> -PrOH	71
16	$Cu(AcO)_2(3)$	O_2	50	<i>i</i> -PrOH	76
17	$Cu(AcO)_2(3)$	O_2	50	<i>n</i> -BuOH	68
18	$Cu(AcO)_2(3)$	O_2	50	t-BuOH	74
19	$Cu(AcO)_2(3)$	O_2	50	ethylene glycol (EG)	92
20	$Cu(AcO)_2(3)$	O_2	50	THF	0
21	$Cu(AcO)_2(3)$	O_2	50	CH ₃ CN	0
22	$Cu(AcO)_2(3)$	O_2	50	DMF	0
23	$Cu(AcO)_2(3)$	O_2	50	CH ₂ Cl ₂	0
24	$Cu(AcO)_2(3)$	air	50	EG	92
25	$Cu(AcO)_2(2)$	air	50	EG	92
26	$Cu(AcO)_2(1)$	air	50	EG	92
27	$Cu(AcO)_2(0.5)$	air	50	EG	69
28	$Cu(AcO)_2(3)$	argon	50	EG	trace
29	$Cu(AcO)_2 H_2O(1)$	air	50	EG	92

^aReaction conditions: **1aa** (1.0 mmol), copper(II) salt (*n* mol%), solvent (2 mL), atmos. (1 atm), 12 h. ^bIsolated yield. ^cReaction time: 24 h.

General procedure: a mixture of **1aa** (1.0 mmol, 168.2 mg) and specified copper(II) salt ($n \mod \%$) in solvent (2 mL) was stirred at specified reaction temperature under corresponding atmosphere for 12 h. Hydrochloric acid (4 mL, 2%) and methyl *tert*-butyl ether (MTBE, 4 mL) were added to the reaction mixture successively. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (4 mL × 2). The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 5:1) to provide the desired product **2aa**.

OMe OH 2aa 3,5-Dimethoxy-4-hydroxybenzaldehyde (2aa):¹ yellow solid, 167.6 mg (the best yield of 92%), 110 111 °C): ¹H NMR (400 MHz, CDCl₃, ppm): δ9.81 (br s, 1H), 7.15 (s, 2H), 6.10 (br m.p. 108–110 °C (lit¹ m.p. 110–111 °C); ¹H NMR (400 MHz, CDCl₃, ppm): δ9.81 (br s, 1H), 7.15 (s, 2H), 6.10 (br s, 1H), 3.97 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ190.8, 147.4 (2C), 140.8, 128.4, 106.7 (2C), 56.5 (2C); HRMS (ESI): m/z [M+H⁺] calcd. for C₉H₁₁O₄ 183.0657, found 183.0635.

2.2 General procedure for the Cu(OAc)₂-catalyzed oxidation of 2,6-disubstituted 4-cresols

and 4-alkylphenols 1 (Scheme 3 in the text).

Scheme 3. Scope of 1 for $Cu(OAc)_2$ -catalyzed oxidation. ^aReaction conditions: 1 (1.0 mmol), $Cu(OAc)_2$ (0.01 mmol), EG (2 mL), ambient air, 12 h. ^bIsolated yield for the oxidation product. ^cRecovery for the starting material.

General procedure: a mixture of substrate **1** (1.0 mmol) and $Cu(OAc)_2$ (0.01 mmol, 1.8 mg) in EG (2 mL) was stirred at specified temperature under ambient air for 12 h. Hydrochloric acid (4 mL, 2%) and MTBE (4 mL) were added to the reaction mixture successively. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (4 mL × 2). The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 5:1) to provide the corresponding product **2**.

^{OH} **2ab 3,5-Diethoxy-4-hydroxybenzaldehyde (2ab)**: yellow solid, 182.9 mg (87% yield), m.p. 116–118 ^oC; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.79 (br s, 1H), 7.12 (s, 2H), 6.07 (br s, 1H), 4.20 (q, *J* = 7.2 Hz, 4H), 1.49 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 190.9, 146.6 (2C), 141.2, 128.3, 107.6 (2C), 65.1 (2C), 14.8 (2C); HRMS (ESI): *m*/*z* [M+H⁺] calcd. for C₁₁H₁₅O₄ 211.0970, found 211.0962.

n-PrO On-Pr OH **2ac**

OH **2ac 3,5-Dipropoxy-4-hydroxybenzaldehyde** (**2ac**): yellow solid, 200.2 mg (84% yield), m.p. 64–66 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.79 (br s, 1H), 7.12 (s, 2H), 6.05 (br s, 1H), 4.09 (t, *J* = 7.2 Hz, 4H), 1.89 (sext, *J* = 7.2 Hz, 4H), 1.06 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 190.9, 146.8 (2C), 141.4, 128.3, 107.7 (2C), 71.0 (2C), 22.5 (2C), 14.8 (2C); HRMS (ESI): *m*/*z* [M+H⁺] calcd. for C₁₃H₁₉O₄ 239.1283, found 239.1282.

^{OH 2ad} **3,5-Dibutoxy-4-hydroxybenzaldehyde (2ad)**: yellow solid, 213.1 mg (80% yield), m.p. 90–92 ^oC; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.77 (br s, 1H), 7.11 (s, 2H), 6.16 (br s, 1H), 4.10 (t, *J* = 7.2 Hz, 4H), 1.81 (quint, *J* = 7.2 Hz, 4H), 1.48 (sext, *J* = 7.2 Hz, 4H), 0.96 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 189.8, 149.0 (2C), 147.0, 130.0, 108.7 (2C), 69.8 (2C), 28.0 (2C), 22.4 (2C), 14.0 (2C); HRMS (ESI): *m*/*z* [M–H⁺] calcd. for C₁₅H₂₁O₄ 265.1440, found 265.1446.

^oH ^{2ae} **3,5-Diisobutoxy4-hydroxybenzaldehyde (2ae)**: yellow solid, 221.0 mg (83% yield), m.p. 58–60 ^oC; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.79 (br s, 1H), 7.11 (s, 2H), 6.03 (br s, 1H), 3.88 (d, *J* = 6.8 Hz, 4H), 2.17 (heptet, *J* = 6.8 Hz, 2H), 1.05 (d, *J* = 6.8 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 189.9, 145.8 (2C), 140.4, 127.2, 106.7 (2C), 74.8 (2C), 27.1 (2C), 18.2 (4C); HRMS (ESI): *m*/*z* [M–H⁺] calcd. for C₁₅H₂₁O₄ 265.1440, found 265.1436.

сно OFt MeC

^{OH 2af} 3-Ethoxy-4-hydroxy-5-methoxybenzaldehyde (2af): yellow solid, 168.7 mg (86% yield), m.p. 72–74 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.80 (br s, 1H), 7.13 (d, J = 1.6 Hz, 2H), 6.10 (br s, 1H), 4.21 (t, J = 6.8 Hz, 2H), 3.97 (s, 3H), 1.49 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 190.9, 147.4, 146.5, 141.0, 128.3, 107.6, 106.6, 65.1, 56.4, 14.8; HRMS (ESI): m/z [M+H⁺] calcd. for C₁₀H₁₃O₄ 197.0814, found 197.0804.

^OH **2ag 4-Hydroxy-3-methoxy-5-***n***-propoxybenzaldehyde (2ag)**: yellow solid, 172.4 mg (82% yield), m.p. 84–86 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ9.80 (br s, 1H), 7.14 (s, 2H), 6.06 (br s, 1H), 4.09 (t, J = 6.8 Hz, 2H), 3.97 (s, 3H), 1.88 (sext, J = 6.8 Hz, 2H), 1.06 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ189.9, 146.4, 145.6, 140.0, 127.3, 106.6, 105.6, 70.0, 55.4, 21.4, 9.4; HRMS (ESI): m/z [M+H⁺] calcd. for C₁₁H₁₅O₄ 211.0970, found 211.0962.

^{OH 2ah} **3,5-Di***tert*-butyl-4-hydroxybenzaldehyde (2ah):^{1,2} white solid, 185.1 mg (79% yield), m.p. 188–190 °C (lit² m.p. 190–191 °C); ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.85 (br s, 1H), 7.73 (s, 2H), 5.85 (br s, 1H), 1.48 (s, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 191.9, 159.7 (2C), 136.5, 128.7, 127.7 (2C), 34.4 (2C), 30.1 (6C); HRMS (ESI): m/z [M+H⁺] calcd. for C₁₅H₂₃O₂ 235.1698, found 235.1693.

^{OH} ^{2ai} **3,5-Dimethyl-4-hydroxybenzaldehyde** (2ai):^{1,3} white solid, 130.6 mg (87% yield), m.p. 112–114 °C (lit³ m.p. 113–114 °C); ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.81 (br s, 1H), 7.54 (s, 2H), 5.46 (br s, 1H), 2.31 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 191.5, 158.1 (2C), 131.0, 129.3, 123.7 (2C), 15.8 (2C); HRMS (ESI): m/z [M+H⁺] calcd. for C₉H₁₁O₂ 151.0759, found 151.0750.

^{OH} ^{2aj} **3**-tert-Butyl-4-hydroxy-5-methylbenzaldehyde (2aj):⁴ white solid, 161.5 mg (84% yield), m.p. 148–150 °C (lit⁴ m.p. 152–153 °C); ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.83 (br s, 1H), 7.71 (s, 1H), 7.70 (s, 1H), 5.49 (br s, 1H), 2.32 (s, 3H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 191.7, 158.6, 153.6, 136.4, 130.8, 128.0, 123.8, 34.7, 29.5 (3C), 15.9; HRMS (ESI): m/z [M+H⁺] calcd. for C₁₂H₁₇O₂ 193.1229, found 193.1234.

^{OH 2ak} **4-Hydroxy-3-methoxy-5-methylbenzaldehyde (2ak)**: white solid, 146.2 mg (88% yield), m.p. 98–100 ^oC; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.80 (br s, 1H), 7.30 (s, 1H), 7.28 (s, 1H), 6.24 (br s, 1H), 3.96 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 191.2, 149.8, 146.7, 128.9, 128.8, 124.0, 106.7, 56.2, 15.3; HRMS (ESI): *m*/*z* [M+H⁺] calcd. for C₉H₁₁O₃ 167.0708, found 167.0706.

^bH ^{2al} **3-Ethoxy-4-hydroxy-5-methylbenzaldehyde (2al)**: white solid, 153.2 mg (85% yield), m.p. 86–88 ^oC; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.78 (br s, 1H), 7.29 (s, 1H), 7.26 (s, 1H), 6.34 (br s, 1H), 4.19 (q, J = 6.8 Hz, 2H), 2.32 (s, 3H), 1.47 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 191.3, 149.9, 146.0, 128.74, 128.70, 124.0, 107.5, 64.8, 15.4, 14.8; HRMS (ESI): m/z [M+H⁺] calcd. for C₁₀H₁₃O₃ 181.0865, found 181.0862.

^{OH 2am} **4-Hydroxy-3-methyl-5-propoxybenzaldehyde** (2am): white solid, 163.2 mg (84% yield), m.p. 110–112 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.79 (br s, 1H), 7.29 (s, 1H), 7.27 (s, 1H), 6.33 (br s, 1H), 4.08 (t, *J* = 6.8 Hz, 2H), 2.32 (s, 3H), 1.87 (sext, *J* = 6.8 Hz, 2H), 1.06 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 191.3, 149.9, 146.1, 128.8, 128.7, 124.0, 107.5, 70.7, 22.4, 15.4, 10.5; HRMS (ESI): *m*/*z* [M+H⁺] calcd. for C₁₁H₁₅O₃ 195.1021, found 195.1020.

3-(Benzyloxy)-4-hydroxy-5-methylbenzaldehyde (2an): white solid, 203.5 mg (84% yield), m.p. 118–120 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.71 (br s, 1H), 7.40-7.18 (m, 7H), 6.24 (br s, 1H), 5.09 (s, 2H), 2.25 (s, 3H) ¹³C NMR (100 MHz, CDCl₃, ppm): δ 191.2, 149.9, 145.9, 135.6, 128.9, 128.85 (2C), 128.8, 128.7, 128.1 (2C), 124.4, 108.1, 71.3, 15.4; HRMS (ESI): m/z [M+H⁺] calcd. for C₁₅H₁₅O₃ 243.1021, found 243.1012.

^oH **2ao** ^oH **5,5'-Methylenebis**(*3-tert*-butyl-4-hydroxybenzaldehyde) (**2ao**): yellow solid, 283.7 mg (77% yield), m.p. 184–186 ^oC; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.85 (br s, 2H), 7.75 (d, J = 2.0 Hz, 2H), 7.70 (d, J = 2.0 Hz, 2H), 6.73 (br s, 2H), 4.06 (s, 2H), 1.45 (s, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 191.3 (2C), 157.5 (2C), 136.9 (2C), 131.0 (2C), 129.9 (2C), 128.2 (2C), 127.1 (2C), 34.5 (2C), 30.9, 29.8 (6C); HRMS (ESI): m/z [M+H⁺] calcd. for C₂₃H₂₉O₄ 369.2066, found 369.2045.

^{OH 2ap} **4-Hydroxy-2,3,5-trimethoxybenzaldehyde** (2ap): white solid, 171.9 mg (81% yield), m.p. 112–114 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 10.25 (br s, 1H), 7.12 (s, 1H), 6.17 (br s, 1H), 3.98 (s, 3H), 3.97 (s, 3H), 3.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 188.4, 152.5, 145.9, 144.2, 139.9, 121.0, 103.2, 62.8, 61.0, 56.4; HRMS (ESI): m/z [M+H⁺] calcd. for C₁₀H₁₃O₅ 213.0763, found 213.0760.

^{OH 2ba} 1-(4-Hydroxy-3,5-dimethoxyphenyl)ethanone (2ba):⁵ yellow solid, 164.8 mg (84% yield), m.p. 122–124 °C (lit⁵ m.p. 121–122 °C); ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.26 (d, J = 4.0 Hz, 2H), 5.95 (br s, 1H), 3.96 (s, 6H), 2.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 197.1, 147.4 (2C), 140.4, 129.5, 106.5 (2C), 57.1 (2C), 26.8; HRMS (EI): m/z [M⁺] calcd. for C₁₀H₁₂O₄ 196.0736, found 196.0737.

^bH **2bb 1-(3,5-Diethoxy-4-hydroxyphenyl)ethanone** (**2bb**): yellow solid, 183.9 mg (82% yield), m.p. 117–119 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.15 (s, 2H), 6.02 (br s, 1H), 4.10 (q, J = 6.8, 4H), 2.48 (s, 3H), 1.40 (t, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 197.3, 146.7 (2C), 141.1, 129.4, 107.7 (2C), 65.8 (2C), 26.9, 15.5 (2C); HRMS (EI): m/z [M⁺] calcd. for C₁₂H₁₆O₄ 224.1049, found 224.1047.

^{OH} **2bc 1-(4-Hydroxy-3,5-di-***n***-propoxyphenyl)ethanone (2bc)**: white solid, 201.0 mg (80% yield), m.p. 98–100 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.23 (s, 2H), 5.93 (br s, 1H), 4.07 (t, J = 6.8 Hz, 4H), 2.55 (s, 3H), 1.88 (m, 4H), 1.06 (t, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 196.7, 146.2 (2C), 140.4, 128.7, 107.0 (2C), 71.1 (2C), 26.3, 22.5 (2C), 10.4 (2C); HRMS (EI): m/z [M⁺] calcd. for C₁₄H₂₀O₄ 252.1362, found 252.1361.

^{OH} **2bd 1-(3,5-Di-***n***-butoxy-4-hydroxyphenyl)ethanone (2bd)**: white solid, 215.9 mg (77% yield), m.p. 90–92 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.23 (s, 2H), 5.93 (br s, 1H), 4.11 (t, J = 6.8 Hz, 4H), 2.55 (s, 3H), 1.83 (m, 4H), 1.52 (m, 4H), 0.99 (t, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 197.3, 146.8 (2C), 141.1, 129.3, 107.6 (2C), 70.0 (2C), 31.9 (2C), 26.9, 19.8 (2C), 14.4 (2C); HRMS (EI): m/z [M⁺] calcd. for C₁₆H₂₄O₄ 280.1675, found 280.1676.

^{OH} 2be 1-(3-*tert*-butyl-4-hydroxy-5-methoxyphenyl)ethanone (2be): yellow solid, 175.6 mg (79% yield), m.p. 82–84 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.58 (s, 1H), 7.43 (s, 1H), 6.47 (br s, 1H), 3.95 (s, 3H), 2.57 (s, 3H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 197.7, 149.7, 147.3, 135.5, 129.3, 122.1, 108.3, 56.9, 35.3, 29.8 (3C), 26.7; HRMS (EI): m/z [M⁺] calcd. for C₁₃H₁₈O₃ 222.1256, found 222.1254.

^{OH} **2bf 1-(3-***tert***-Butyl-5-ethoxy-4-hydroxyphenyl)ethanone** (**2bf**): white solid, 181.9 mg (77% yield), m.p. 80–82 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.57 (s, 1H), 7.41 (s, 1H), 6.54 (br s, 1H), 4.18 (q, *J* = 6.8 Hz, 2H), 2.56 (s, 3H), 1.47 (t, *J* = 6.8 Hz, 3H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 197.2, 149.1, 145.9, 134.8, 128.6, 121.3, 108.5, 64.9, 34.7, 29.2 (3C), 26.2, 14.8; HRMS (EI): *m*/*z* [M⁺] calcd. for C₁₄H₂₀O₃ 236.1412, found 236.1414.

^{OH} **2bg 1**-(3-*tert*-**Butyl-4-hydroxy-5**-*n*-**propoxyphenyl**)**ethanone** (**2bg**): yellow solid, 190.2 mg (76% yield), m.p. 78–80 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.59 (s, 1H), 7.43 (s, 1H), 6.57 (br s, 1H), 4.09 (t, J = 6.8 Hz, 2H), 2.58 (s, 3H), 1.89 (sext, J = 6.8 Hz, 2H), 1.46 (s, 9H), 1.09 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 197.2, 149.1, 146.0, 134.8, 128.6, 121.3, 108.5, 70.8, 34.7, 29.2 (3C), 26.2, 22.5, 10.5; HRMS (EI): m/z [M⁺] calcd. for C₁₅H₂₂O₃ 250.1569, found 250.1570.

^{OH 2bh} 1-(4-Hydroxy-3,5-dimethylphenyl)ethanone (2bh): yellow solid, 136.3 mg (83% yield), m.p. 157–159 ^oC; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.64 (s, 2H), 5.43 (br s, 1H), 2.54 (s, 3H), 2.30 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 197.6, 157.0, 129.6 (3C), 123.1 (2C), 26.3, 16.0 (2C); HRMS (EI): m/z [M⁺] calcd. for C₁₀H₁₂O₂ 164.0837, found 164.0838.

^{OH} **2ca 1-(4-Hydroxy-3,5-dimethoxyphenyl)propan-1-one (2ca)**:⁶ white solid, 172.4 mg (82% yield), m.p. 109–111 ^oC (lit⁶ m.p. 109–110 ^oC); ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.26 (s, 2H), 6.09 (br s, 1H), 3.95 (s, 6H), 2.97 (q, J = 7.2 Hz, 2H), 1.22 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 199.3, 146.8 (2C), 139.5, 128.5, 105.4 (2C), 56.4 (2C), 31.3, 8.5; HRMS (EI): m/z [M⁺] calcd. for C₁₁H₁₄O₄ 210.0892, found 210.0893.

^{OH 2da} 1-(4-Hydroxy-3,5-dimethoxyphenyl)butan-1-one (2da): yellow solid, 168.2 mg (75% yield), m.p. 89–91 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.26 (s, 2H), 5.93 (br s, 1H), 3.96 (s, 6H), 2.91 (t, *J* = 7.2 Hz, 2H), 1.78 (sext, *J* = 7.2 Hz, 2H), 1.01 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 198.9, 146.7 (2C), 139.5, 128.7, 105.4 (2C), 56.5 (2C), 40.1, 18.0, 13.9; HRMS (EI): *m*/*z* [M⁺] calcd. for C₁₂H₁₆O₄ 224.1049, found 224.1047.

OH 2ea 1-(4-Hydroxy-3,5-dimethoxyphenyl)pentan-1-one (2ea): yellow solid, 166.8 mg (70% yield), m.p. 76–78 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.26 (s, 2H), 5.93 (br s, 1H), 3.96 (s, 6H), 2.92 (t, *J* = 7.6 Hz, 2H), 1.71 (sext, *J* = 7.6 Hz, 2H), 1.42 (sext, *J* = 7.6 Hz, 2H), 0.96 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 199.0, 146.7 (2C), 139.5, 128.7, 105.5 (2C), 56.5 (2C), 37.9, 26.8, 22.5, 14.0; HRMS (ESI): *m*/*z* [M+H⁺] calcd. for C₁₃H₁₉O₄ 239.1283, found 239.1277.

^{OH 2fa} (4-Hydroxy-3,5-dimethoxyphenyl)(phenyl)methanone (2fa): yellow solid, 170.5 mg (66% yield), m.p. 124–126 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.77 (d, J = 8.0 Hz, 2H), 7.59 (t, J = 7.2 Hz, 1H), 7.49 (t, J = 7.2 Hz, 2H), 7.13 (s, 2H), 5.98 (br s, 1H), 3.92 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 195.5, 146.6 (2C), 139.4, 138.2, 132.0, 129.7 (2C), 128.6, 128.2 (2C), 107.8 (2C), 56.5 (2C); HRMS (EI): m/z [M⁺] calcd. for C₁₅H₁₄O₄ 258.0892, found 258.0896.

^{OH 2gh} 1-(4-Hydroxy-3,5-dimethylphenyl)-2-methylpropan-1-one (2gh): pale yellow solid, 132.7 mg (69% yield), m.p. 104–106 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.65 (s, 2H), 5.24 (br s, 1H), 3.52 (heptet, *J* = 6.8 Hz, 1H), 2.29 (s, 6H), 1.19 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 203.9, 156.8, 129.5 (2C), 128.5 (2C), 123.1, 34.8, 19.4 (2C), 16.0 (2C); HRMS (EI): *m*/z [M⁺] calcd. for C₁₂H₁₆O₂ 192.1150, found 192.1151.

^{OH2hh} 1-(4-Hydroxy-3,5-dimethylphenyl)-2,2-dimethylpropan-1-one (2hh): yellow oil, 127.9 mg (62% yield); ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.51 (s, 2H), 5.30 (br s, 1H), 2.27 (s, 6H), 1.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 207.3, 155.2, 129.8 (4C), 122.5, 44.0, 28.5 (3C), 16.0 (2C); HRMS (EI): *m*/*z* [M⁺] calcd. for C₁₃H₁₈O₂ 206.1307, found 206.1304.

^{OH} **2ih 1-(4-Hydroxy-3,5-dimethylphenyl)-2-phenylethanone** (**2ih**): white solid, 168.2 mg (70% yield), m.p. 110–112 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.69 (s, 2H), 7.37–7.19 (m, 5H), 5.23 (br s, 1H), 4.22 (s, 2H), 2.27 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 197.1, 157.1, 135.1, 130.0 (2C), 129.4 (2C), 129.0, 128.6 (2C), 126.7 (2C), 123.2, 45.1, 16.0 (2C); HRMS (EI): m/z [M⁺] calcd. for C₁₆H₁₆O₂ 240.1150, found 240.1149.

⁶H **2jh 1-(4-Hydroxy-3,5-dimethylphenyl)-3-phenylpropan-1-one** (**2jh**): white solid, 185.6 mg (73% yield), m.p. 99–101 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.64 (s, 2H), 7.32–7.18 (m, 5H), 5.25 (br s, 1H), 3.24 (t, *J* = 7.2 Hz, 2H), 3.04 (t, *J* = 7.2 Hz, 2H), 2.27 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 198.6, 156.9, 141.5, 129.4 (2C), 129.3, 128.5 (2C), 128.4 (2C), 126.1 (2C), 123.1, 40.1, 30.5, 16.0 (2C); HRMS (EI): *m*/*z* [M⁺] calcd. for C₁₇H₁₈O₂ 254.1307, found 254.1309.

OH **2aq 3,5-Dibromo-4-hydroxybenzaldehyde (2aq)**:⁸ white solid, 72.8 mg (26% yield), m.p. 182–184 °C (lit⁸ m.p. 183 °C); ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.80 (br s, 1H), 8.00 (s, 2H), 6.40 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 188.2, 154.4, 133.7 (2C), 131.3, 110.7 (2C); HRMS (ESI): *m/z* [M–H⁺] calcd. for C₇H₃Br₂O₂ 276.8500, found 276.8490. Recovery of the starting material: 172.2 mg (65%).

OH **2ar 3,5-Dichloro-4-hydroxybenzaldehyde** (**2ar**): white solid, 34.4 mg (18% yield), m.p. 160–162 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.82 (s, 1H), 7.83 (s, 2H), 6.43 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 188.5, 152.9, 130.1 (2C), 129.8 (2C), 122.2; HRMS (ESI): *m/z* [M–H⁺] calcd. for C₇H₃Cl₂O₂ 188.9510, found 188.9502. Recovery of the starting material: 132.8 mg (75%).

^{OH} **2as 3-Bromo-5-fluoro-4-hydroxybenzaldehyde** (**2as**): white solid, 19.7 mg (9% yield), m.p. 138–140 ^oC; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.74 (d, *J* = 2.0 Hz, 1H), 7.78 (t, *J* = 1.6 Hz, 1H), 7.54 (dd, *J* = 9.6, 2.0 Hz, 1H), 6.33 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 188.7, 151.1 (d, *J* = 247.3), 147.2 (d, *J* = 15.0), 130.6 (d, *J* = 2.7), 130.0 (d, *J* = 5.4), 115.6 (d, *J* = 18.8), 111.4 (d, *J* = 1.4); HRMS (ESI): *m/z* [M–H⁺] calcd. for C₇H₃BrFO₂ 216.9300, found 216.9281. Recovery of the starting material: 179.6 mg (82%).

OH **2at** The substrate failed to undergo the oxidation. Recovery of the starting material: 151.8 mg (96%).

^{OH} **2au 3-Bromo-4-hydroxy-5-methoxybenzaldehyde (2au)**:⁸ white solid, 78.6 mg (34% yield), m.p. 162–164 °C (lit⁸ m.p. 163–166 °C); ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.79 (br s, 1H), 7.64 (d, J = 1.6 Hz, 1H), 7.36 (d, J = 1.6 Hz, 1H), 6.50 (br s, 1H), 3.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 189.8, 148.9, 147.7, 130.2, 130.0, 108.2, 108.0, 56.6; HRMS (ESI): m/z [M–H⁺] calcd. for C₈H₆BrO₃ 228.9500, found 228.9473. Recovery of the starting material: 130.2 mg (60%).

^bH ^{2av} **3-Fluoro-4-hydroxy-5-methoxybenzaldehyde (2av)**: white solid, 44.2 mg (26% yield), m.p. 116– 118 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.81 (s, 1H), 7.33–7.25 (m, 2H), 5.98 (br s, 1H), 4.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 190.0 (d, J = 2.3), 150.4 (d, J = 243.8), 148.7 (d, J = 5.3), 140.0 (d, J = 13.5), 128.1 (d, J = 6.3), 113.0 (d, J = 18.5), 106.0 (d, J = 1.7), 56.7; HRMS (ESI): m/z [M+H⁺] calcd. for C₈H₈FO₃ 171.0457, found 171.0447. Recovery of the starting material: 104.6 mg (67%).

^{OH} **2aw 5-Formyl-2-hydroxy-3-methoxybenzonitrile** (**2aw**): white solid, 28.3 mg (16% yield), m.p. 196– 198 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.84 (s, 1H), 7.66 (s, 1H), 7.58 (s, 1H), 6.90 (br s, 1H), 4.04 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆, ppm): δ 190.6, 156.1, 148.9, 129.6, 129.2, 116.3, 113.6, 99.7, 56.8; HRMS (EI): *m*/*z* [M⁺] calcd. for C₉H₇NO₃ 177.0426, found 177.0424. Recovery of the starting material: 125.6 mg (77%).

^{OH} **2bi 1-(3,5-Dibromo-4-hydroxyphenyl)ethanone** (**2bi**): white solid, 67.6 mg (23% yield), m.p. 185–187 ^oC; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.08 (s, 2H), 6.33 (br s, 1H), 2.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 194.3, 153.3, 132.6 (2C), 131.9, 110.1 (2C), 26.3; HRMS (ESI): m/z [M+H⁺] calcd. for C₈H₇Br₂O₂ 292.8813, found 292.8817. Recovery of the starting material: 207.2 mg (74%).

2.3 General procedure for the Cu(AcO)₂-catalyzed oxidation of 4-hydroxybenzyl alcohols and 4-hydroxybenzyl ethers 3 (Table 2 in the text).

CHO MeO 2aa OH	86
CHO MeO 2aa OH	94
MeO OEt 2af OH	93
MeO OEt 2af OH	84
CHO MeO OEt 2af OH	82
CHO 2ai OH	92
CHO 2ai OH	85
CHO OMe 2ak OH	93
CHO OMe 2ak OH	87
MeO OMe 2ba OH	91
MeO 2ba OH	83
MeO OH 2ca OH	90

11

[a] Reaction conditions: 3 (1.0 mmol), Cu(OAc)₂ (0.01 mmol), EG (2 mL), ambient air, 50 °C for 8 h. [b] Isolated yield.

General procedure: a mixture of substrate **3** (1.0 mmol) and $Cu(AcO)_2$ (0.01 mmol, 1.8 mg) in EG (2 mL) was stirred at 50 °C under ambient air for 8 h. Hydrochloric acid (4 mL, 2%) and MTBE (4 mL) were added to the reaction mixture successively. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (4 mL × 2). The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 5:1) to provide the corresponding product **2**.

мео Оме

сно

^{OH 2aa} **3,5-Dimethoxy4-hydroxybenzaldehyde (2aa)**:¹ yellow solid, 174.9 mg (96% yield, from **3a**); 156.7 mg (86% yield, from **3b**); 171.2 mg (94% yield, from **3c**). The spectral data see 2.1 section.

^{OH 2af} **3-Ethoxy-4-hydroxy-5-methoxybenzaldehyde (2af)**: yellow solid, 182.5 mg (93% yield, from **3d**); 164.8 mg (84% yield, from **3e**); 160.9 mg (82% yield, from **3f**). The spectral data see 2.2 section. CHO

OH 2ai 3,5-dimethyl-4-hydroxybenzaldehyde (2ai):^{1,3} white solid, 138.2 mg (92% yield, from 3g); 127.6 mg (85% yield, from 3h). The spectral data see 2.2 section.

OH 2ak 4-Hydroxy-3-methoxy-5-methylbenzaldehyde (2ak): white solid, 154.5 mg (93% yield, from 3i); 144.6 mg (87% yield, from 3j). The spectral data see 2.2 section.

^{OH 2ba} 1-(4-Hydroxy-3,5-dimethoxyphenyl)ethanone (2ba): yellow solid, 178.5 mg (91% yield, from 3k); 162.8 mg (83% yield, from 3l). The spectral data see 2.2 section.

^{OH} ^{2ca} 1-(4-Hydroxy-3,5-dimethoxyphenyl)propan-1-one (2ca): white solid, 189.2 mg (90% yield, from 3m); 170.3 mg (81% yield, from 3n). The spectral data see 2.2 section.

2.4 The gram-scale oxidations of 1aa and 1ba (Scheme 4 in the text).

Scheme 4. Experiments on a gram-scale.

General procedure: a mixture of substrate **1aa** or **1ba** (10 mmol) and Cu(AcO)₂ (0.1 mmol, 18 mg) in EG (8 mL) was stirred at 50 °C under ambient air for 18 h. Hydrochloric acid (15 mL, 2%) and MTBE (15 mL) were added to the reaction mixture successively. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (15 mL \times 2). The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 5:1) to provide the corresponding product **2**.

2.5 Limitations of Cu(OAc)2-catalyzed oxygenation (Scheme 5 in the text).

Scheme 5. Limitations of Cu(OAc)2-catalyzed oxygenation due to (A) undesired coupling or (B) inhibited oxygenation.

Procedure for Scheme 5(*A*): a mixture of substrate (1.0 mmol) and Cu(AcO)₂ (0.01 mmol, 1.8 mg) in EG (2 mL) was stirred at 75 °C under ambient air for 12 h. Hydrochloric acid (4 mL, 2%) and MTBE (4 mL) were added to the reaction mixture successively. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (4 mL \times 2). The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 5:1) to provide the corresponding products.

OH Recovery of the starting material: 20.5 mg (19%).

4 5,5'-Dimethylbiphenyl-2,2'-diol (**4**): white solid, 79.3 mg (37% yield), m.p. 148–150 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.11 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.06 (d, *J* = 1.6 Hz, 2H), 6.92 (d, *J* = 8.0 Hz, 2H), 5.43 (br s, 2H), 2.32 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 150.6 (2C), 131.6 (2C), 130.8 (2C), 130.3 (2C), 123.7 (2C), 116.5 (2C), 20.5 (2C); HRMS (EI): *m/z* [M⁺] calcd. for C₁₄H₁₄O₂ 214.0994, found 214.0992. CHO

^{OH} **4-Hydroxybenzaldehyde**: yellow solid, 11.0 mg (9% yield), m.p. 116–118 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.87 (br s, 1H), 7.83 (d, J = 8.8 Hz, 2H), 7.98 (d, J = 8.8 Hz, 2H), 6.29 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 191.2, 161.5, 132.5 (2C), 129.9, 116.0 (2C); HRMS (EI): m/z [M⁺] calcd. for C₇H₆O₂ 122.0368, found 122.0367.

OH CHO Recovery of the starting material: 78.6 mg (42%).

^bH **3-Bromo-4-hydroxybenzaldehyde**: white solid, 14.1 mg (7% yield), m.p. 130–132 ^oC; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.83 (br s, 1H), 8.04 (s, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.15 (d, J = 8.0 Hz, 1H), 6.43 (s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 192.7, 151.8, 132.9, 130.3, 128.1, 127.5, 127.4; HRMS (ESI): m/z [M-H⁺] calcd. for C₇H₄BrO₂ 198.9395, found 198.9359.

5 3,3'-Dimethoxy-5,5'-dimethylbiphenyl-2,2'-diol (5):⁷ brown solid, 133.0 mg (97% yield), m.p. 132–134 °C (lit⁷ m.p. 133–135 °C); ¹H NMR (400 MHz, CDCl₃, ppm): δ 6.73 (s, 2H), 6.72 (s, 2H), 5.96 (br s, 2H), 3.91 (s, 6H), 2.33 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 147.1 (2C), 140.3 (2C), 129.6 (2C), 124.4 (2C), 123.4 (2C), 111.3 (2C), 56.0 (2C), 21.2 (2C); HRMS (ESI): m/z [M+H⁺] calcd. for C₁₆H₁₉O₄ 275.1283, found 275.1283.

Procedure for Scheme 5(*B*): a mixture of corresponding substrate (1.0 mmol) and $Cu(AcO)_2 (0.01 \text{ mmol})$, 1.8 mg) in EG (2 mL) was stirred at 95 °C under ambient air. No reaction occurred after 12 h monitored by TLC.

2.5 Mechanistic studies (Scheme 6 in the text).

Scheme 6. Mechanistic studies.

Procedure for Scheme 6(a): a mixture of substrate **1aa** (1.0 mmol, 168.2 mg) and Cu(AcO)₂ (0.01 mmol, 1.8 mg) in EG (2 mL) was stirred at 50 °C under ambient air for 4 h. Hydrochloric acid (5.0 mL, 2%) and MTBE (4 mL) were added to the reaction mixture successively. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (4 mL \times 2). The combined organic layers were dried over anhydrous

sodium sulfate and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 5:1) to provide intermediate **3c** and product **2aa**.

OH **3c 4-((2-Hydroxyethoxy)methyl)-2,6-dimethoxyphenol (3c)**: yellow solid, 61.6 mg (27% yield), m.p. 78–80 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 6.58 (s, 2H), 5.52 (br s, 1H), 4.48 (s, 2H), 3.90 (s, 6H), 3.77 (t, J = 4.4 Hz, 2H), 3.60 (t, J = 4.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 147.0 (2C), 134.3, 128.9, 104.7 (2C), 73.7, 71.2, 61.9, 56.3 (2C); HRMS (ESI): m/z [M+Na⁺] calcd. for C₁₁H₁₆O₅Na 251.0895, found 251.0894.

OH 2aa 3,5-Dimethoxy4-hydroxybenzaldehyde (2aa):¹ yellow solid, 125.7 mg (69% yield). The spectral data see 2.1 section.

Procedure for Scheme 6(b): a mixture of substrate **1aa** (1.0 mmol) and dried $Cu(AcO)_2$ (dried in a vacuum oven at 60 °C for 10 h, 4.0 mmol, 726.5 mg) in dried EG (15 mL, dried over 4 A molecular sieve for 24 h) was stirred at 50 °C under argon atmosphere for 12 h. Hydrochloric acid (10 mL, 1%) and MTBE (10 mL) were added to the reaction mixture successively. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (10 mL × 2). The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 5:1) to provide intermediate **3c** and the desired **2aa**.

OH 3c 4-((2-Hydroxyethoxy)methyl)-2,6-dimethoxyphenol (3c): yellow solid, 98.1 mg (43% yield). The spectral data see 2.5 section.

Procedure for Scheme 6(c): a mixture of substrate **1aa** (1.0 mmol) and dried $Cu(AcO)_2$ (4.0 mmol, 726.5 mg, dried in a vacuum oven at 60 °C for 10 h) and H₂O (4.0 mmol, 72 mg) in dried EG (15 mL, dried over 4 A molecular sieve for 24 h,) was stirred at 50 °C under argon atmosphere for 12 h. Hydrochloric acid (10 mL, 1%) and MTBE (10 mL) were added to the reaction mixture successively. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (10 mL × 2). The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 5:1) to provide intermediate **3c** and the desired **2aa**.

OH 2aa 3,5-Dimethoxy4-hydroxybenzaldehyde (2aa):¹ yellow solid, 154.8 mg (85% yield). The spectral data see 2.1 section.

Procedure for Scheme 6(d): a mixture of substrate **1aa** (1.0 mmol, 168.2 mg) and dried Cu(AcO)₂ (0.01 mmol, 1.8 mg, dried in a vacuum oven at 60 °C for 10 h) in dried EG (2 mL, dried over 4 A molecular sieve for 24 h) was stirred at 50 °C under ¹⁸O₂ for 8 h. Hydrochloric acid (4 mL, 2%) and MTBE (4 mL) were added to the reaction mixture successively. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (4 mL × 2). The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 5:1).

 $\dot{O}H$ 3c 4-((2-Hydroxyethoxy)methyl)-2,6-dimethoxyphenol (3c): yellow solid, 20.5 mg (9% yield). HRMS (EI): m/z [M⁺] calcd. for C₁₁H₁₆O₅ 228.0998, found 228.0997 (herein HRMS determined again for the mechanistic studies). Other spectral data see 2.5 section.

^{OH} **2aa 3,5-Dimethoxy-4-hydroxybenzaldehyde** (**2aa**):¹ yellow solid, 152.9 mg (83% yield), HRMS (EI): m/z [M⁺] calcd. for C₉H₁₀¹⁶O₃¹⁸O 184.0622, found 184.0623. Other spectral data see 2.1 section.

Procedure for Scheme 6(e): a mixture of substrate **1aa** (1.0 mmol, 168.2 mg), $Cu(AcO)_2$ (0.01 mmol, 1.8 mg) and TEMPO (1.0 mmol, 156.3 mg) in EG (2 mL) was stirred at 50 °C under ambient air for 4 h. Hydrochloric acid (4 mL, 2%) and MTBE (4 mL) were added to the reaction mixture successively. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (4 mL × 2). The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 5:1) to recover **1aa**.

OH 1aa 2,6-dimethoxy-4-methylphenol (1aa): recovery, 161.5 mg (96%).

3. References

[1] W. Baik, H. J. Lee, J. M. Jang, S. Koo and B. H. Kim, J. Org. Chem., 2000, 65, 108.

- [2] W. Li, H. Li, Y. Li and Z. Hou, Angew. Chem. Int. Ed., 2006, 45, 7609 (see supporting information therein).
- [3] S. L. Goldstein and E. McNelis, J. Org. Chem., 1984, 49, 1613.
- [4] H. Van der Goot, J. C. Eriks, P. J. Van Rhjin-Van der Schaar, O. P. Zuiderveld and W. T. Nauta, Eur. J.
- Med. Chem., 1978, 13, 425.
- [5] J. M. Pepper and H. Hibbert, J. Am. Chem. Soc., 1948, 70, 67.
- [6] I. A. Pearl, J. Org. Chem., 1957, 22, 1229.
- [7] A. Alexakis, D. Polet, S. Rosset and S. March, J. Org. Chem., 2004, 69, 5660.
- [8] L. Kumar, T. Mahajan and D. D. Agarwal, Green Chem., 2011, 13, 2187.

4. Copies of Spectra for All Compounds

Elemental Composition Report

Page 1

Single Ma Tolerance Element pr Number of	ass Analysis = 100.0 mDa / [ediction: Off isotope peaks use	DBE: min = - ed for i-FIT =	-1.5, max = = 2	100.0			MeO		
Monoisotopi 15 formula(e Elements U: C: 0-21 H	c Mass, Even Elect e) evaluated with 8 r sed: 1: 0-50 O: 0-4	ron lons esults within	limits (up to	1 closest res	ults for each	mass)			
JYF-JI	(0.128) Cm (1:2)			ECUST institu	ite of Fine Che	m		02-Jan-2013 20:20:35 1: TOF MS ES+	
100- 	69.0048 171.0079	174.0610		18 179.0029	183.06 182.9868 1.0153 182.0203 16	35 34.0663 <mark>18</mark> 5.1051	189.1022 ^{190.0368}	5.38e+002	
168. Minimum: Maximum:	0 170.0 172.0	174.0	176.0 17 50.0	8.0 180.0 -1.5 100.0	182.0	184.0 186.0	188.0 190.0	192.0 194.0	
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (No	rm) Formula		
183.0635	183.0657	-2.2	-12.0	4.5	27.2	0.0	C9 H11	04	

21

Elemental Composition Report

Page 1

Elemental Composition Report

Page 1

Single Ma Tolerance = Element pro Number of	ss Analysis 100.0 mDa / I ediction: Off isotope peaks use	DBE: min = ed for i-FIT :	-1.5, max = 2	c = 100.0			n-PrO	CHO On-Pr OH
Monoisotopie 18 formula(e Elements Us C: 0-21 H	c Mass, Even Elect) evaluated with 10 ed: : 0-50 O: 0-4	ron lons results withi	n limits (u	o to 1 close	st results for each	i mass)		
YF-JI JYF-JA-03 8 (0.323) Cm (8:10)			ECUST in	nstitute of Fine Cher	n		02-Jan-2013 20:14:55 1: TOF MS ES+ 1 876+003
100- 				239.	1282			
228.0	071			238.0290	240.1326	244.0852 245.03	23 249.12	47 253.1429
228	0 230.0 232	.0 234.0	236.0	238.0	240.0 242.0	244.0 246	0 248.0	250.0 252.0
Minimum: Maximum:		100.0	50.0	-1.5 100.0	5			
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm) Formula	
239.1282	239.1283	-0.1	-0.4	4.5	15.0	0.0	C13 H19	04

27

Elemental Composition Report

Page 1

30

Elemental Composition Report

Page 1

Elemental Composition Report

Page 1

Elemental Composition Report

Elemental Composition Report

Elemental Composition Report

CHO

't-Bu ÓH 2aj r77.363 -77.045 v76.727 -34.665 --29.522 15.890 169'161 ~136.387 ~130.757 ~128.008 ~123.801 -158.622 -153.623

Elemental Composition Report Page 1 CHO Single Mass Analysis Tolerance = 100.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off t-Bu Number of isotope peaks used for i-FIT = 2 Monoisotopic Mass, Even Electron Ions 15 formula(e) evaluated with 10 results within limits (up to 1 closest results for each mass) Elements Used: C: 0-37 H: 0-50 O: 0-4 YF-JI ECUST institute of Fine Chem 02-Jan-2013 21:00:40 JYF-JA-10 10 (0.398) Cm (9:10) 1: TOF MS ES+ 2.05e+003 193.1234 100-% 194.1285 207.1397 180.0320 198.0928 0-frage-specific-spec 180.0 182.0 184.0 186.0 188.0 190.0 192.0 194.0 196.0 198.0 200.0 202.0 204.0 206.0 Minimum: -1.5 50.0 100.0 Maximum: 100.0 Mass Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula 4.5 193.1234 193.1229 0.5 2.6 24.0 0.0 C12 H17 O2

сно `OMe ḋH 2ak -3.956 2.315 9.796 260 283 260 300 6.242 0.95<u></u>-0.92₌ 3.00-1 2.96-I 0.99 1055 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Elemental Composition Report

Single Ma Tolerance = Element pro Number of	ss Analysis 100.0 mDa / ediction: Off isotope peaks us	DBE: min = sed for i-FIT	-1.5, max = = 2	= 100.0			_	СНО ОН	C.
Monoisotopio 21 formula(e Elements Us C: 0-39 H	c Mass, Even Elec) evaluated with 1 ed: : 0-60 O: 0-8	tron lons 3 results withi	n limits (up	to 1 closest re	esults for each	n mass)			
YF-JI JYF-JA-11 18	(0.643) Cm (17:21)			ECUST institu	ite of Fine Cher	n			02-Jan-2013 21:03:40 1: TOF MS ES+ 1.63e+003
100 						167.0706			
161.0 0-161.0	689 162.0616	163.00	164.00	165.0711	166.0627	167.0105 167.11	83 168.0750	169.0771	170.0296
Minimum: Maximum:	102.00	100.0	50.0	-1.5 100.0	100.00	101.00			
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (No:	rm) Formula		
167.0706	167.0708	-0.2	-1.2	4.5	26.7	0.0	C9 H11	03	

54

Elemental Composition Report

Single Mass Ana Tolerance = 100.0 Element prediction: Number of isotope	alysis mDa / DBE: min = Off peaks used for i-FIT :	-1.5, max = 100.0 = 2			СНО	n-Pr
Monoisotopic Mass, I 24 formula(e) evaluar Elements Used: C: 0-39 H: 0-60 YF-JI	Even Electron lons ted with 15 results within O: 0-8	n limits (up to 1 close ECUST in	st results for each	mass)		02-Jan-2013
JYF-JA-13 12 (0.446) C	Cm (10:14)					21:08:56 1: TOF MS ES+
			195 1020			3.728+003
%- 181.0880 183.00	654	190.9812 192.0625 1	196.1059 94.0762 197.1/	037		208.0419
182.0 184	0 186.0 188.0	190.0 192.0	194.0 196.0	198.0 200.0	202.0 204.0	206.0 208.0
Minimum: Maximum:	100.0	-1.5 50.0 100.0	3			
Mass Calc.	Mass mDa	PPM DBE	i-FIT	i-FIT (Norm)	Formula	
195.1020 195.1	-0.1	-0.5 4.5	23.3	0.0	C11 H15 O3	

57

Elemental Composition Report

Single Ma Tolerance = Element pro Number of	ss Analysis 100.0 mDa / I ediction: Off isotope peaks use	DBE: min = ed for i-FIT	-1.5, max = 2	= 100.0			ĺ	СНО	
Monoisotopi 29 formula(e	Mass, Even Elect evaluated with 18	ron lons results with	in limits (up	to 1 closest r	esults for eacl	n mass)			<i>y</i>
C: 0.39 H	ed:								
YF-JI				ECUST instit	ute of Fine Che	m			02-Jan-2013 21:11:34
JYF-JA-14 22	(0.766) Cm (21:22)								1: TOF MS ES+
100							243.1012		3.3784003
: %									
1							24	4.1054	255.1012
195.103	0 20	8.0398 211.0	0561	224.01	18 227.1078			245.1081	2. 633
195.0	200.0 205.0	210.0	215.0	220.0 22	5.0 230.0	235.0	240.0 245	5.0 250.0	255.0
Minimum: Maximum:		100.0	50.0	-1.5 100.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (No.	rm) Formul	a	
243.1012	243.1021	-0.9	-3.7	8.5	23.7	0.0	C15 H	15 03	

210 200 -10 ò

Elemental	I Composition	Report					сно	СНО	Page 1
Single Ma Tolerance = Element pre Number of	ss Analysis 100.0 mDa / I ediction: Off isotope peaks use	DBE: min =	-1.5, max = 2	= 100.0		t-	ви ОН	OH I-BU	
Monoisotopio 21 formula(e Elements Us C: 0-37 H	c Mass, Even Elect evaluated with 11 ed: : 0-50 O: 0-4	ron lons results within	n limits (up	to 1 closest r	esults for eac	h mass)			
YF-JI JYF-JA-177 (0.299) Cm (5:7)			ECUST instit	ute of Fine Che	m		1: T	02-Jan-2013 21:16:46 OF MS ES+
100							369.20	45	3.008+003
%- 346.32	246 349.1819			359.3106 36	0.2926 362.324	3	3'	70.2083	374.3643
346.0 3 Minimum:	348.0 350.0 3	52.0 354.0	356.0	358.0 36	0.0 362.0	364.0 366.0	368.0 3	70.0 372.0	374.0
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norr	n) Formula	i.	
369.2045	369.2066	-2.1	-5.7	9.5	14.8	0.0	С23 Н2	9 04	

сно

Elemental Composition Report

Y `OMe OH 2ba

0.

MeO

Elemental Composition Report Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Monoisotopic Mass, Odd and Even Electron Ions

21 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-10 H: 0-12 O: 0-4

196.0737 51.69 196.0736 0.1 0.5 5.0 1 C10 H12 O4

230 220 210 200 190 180 170	160 150 140 130 120	

Elemental Composition Report
Single Mass Analysis
Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

21 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-12 H: 0-16 0: 0-4

0.

ÓН

OEt

EtO

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

21 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-14 H: 0-20 O: 0-4

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

21 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-16 H: 0-24 O: 0-4

79

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

21 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

21 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:

0-

ÓH

t-Bu

EtO

85

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

21 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-15 H: 0-22 O: 0-3

Minimum:						-1.5	
Maximum:		100.00		5.0	10.0	50.0	
Mass	RA	Calc. Mass	mDa	PPM	DBE	Score	Formula
250.1570	44.79	250.1569	0.1	0.4	5.0	1	C15 H22 O3

OH 261 77.353 77.035 76.718 -129.625 -123.05915.971 26.313 156.969 -197.643 f1 (ppm) -10 ò

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

23 formula(e) evaluated with 6 results within limits (up to 50 closest results for each mass) Elements Used:

C: 0-10 H: 0-12 O: 0-2

91

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron lons

21 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-11 H: 0-14 O: 0-4

O,___n-Bu

OMe

MeO

0,*__n*-Bu

OMe OH 2ea

MeO

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

21 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-15 H: 0-14 O: 0-4

5# 20130116 225 (3.75	2) Cm (225-2)			10	tters GCT Premier		18-Apr-2013 18:38:41 TOF MS E +
						181.05	132e+004
							259.0998
N	77.0398	105.034	4	191	153 0596	y	192.0580 237.0524
0-tangitingening	71.0858 101171-111111111 70 80	91,0657 11(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1	110 120 1	138.0324 10	169 150 180	0872 170 180	197,0804 215,0719 227,0131 200 190 200 210 220 230 240 280 280
Minimum:						-1.5	
Maximum:		10	00.00	5.0	10.0	50.0	
Mass	RA	Calc. Mass	mDa	PPM	DBE	Sco	ore Formula
258.0896	88.21	258.0892	0.4	1.5	9.0	1	C15 H14 O4

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

18 formula(e) evaluated with 7 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-12 H: 0-16 O: 0-2

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

27 formula(e) evaluated with 6 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-13 H: 0-18 0: 0-2

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										fl (pr	om)										

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

54 formula(e) evaluated with 10 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-16 H: 0-16 O: 0-2

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

27 formula(e) evaluated with 6 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-17 H: 0-18 0: 0-2

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 100.0 mDa / I Element prediction: Off Number of isotope peaks use	DBE: min = -1.5, max ed for i-FIT = 2	= 100.0			Br Gr	IO Br
Monoisotopic Mass, Even Elect 67 formula(e) evaluated with 11 Elements Used: C: 0-39 H: 0-60 O: 0-8 Br:	ron lons results within limits (up 0-2	to 1 closest re	esults for each	mass)		
YF-JI		ECUST institu	ite of Fine Chem	1		02-Jan-2013
JYF-JA-101 22 (0.787) Cm (21:22)						2: TOF MS ES- 1 80e+003
100- 				21	280.8456	
88.2726		192.0491,198.92	233 233.149	8 265.1418	305.21	36 319.2327
100 120 1	40 160 180	200	220 2	40 260	280 300	320 340
Minimum: Maximum:	100.0 50.0	-1.5 100.0				
Mass Calc. Mass	mDa PPM	DBE	i-FIT	i-FIT (Norm) Formula	
276.8490 276.8500	-1.0 -3.6	5.5	26.5	0.0	С7 НЗ 02	Br2

сно

CI

Elemental Composition Report

Page 1

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

102 formula(e) evaluated with 22 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-9 H: 0-7 N: 0-1 0: 0-2

Elemental Composition Report Page 1 Single Mass Analysis Tolerance = 30.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2 Monoisotopic Mass, Even Electron Ions 17 formula(e) evaluated with 1 results within limits (up to 1 closest results for each mass) Elements Used: C: 0-10 H: 0-80 O: 0-3 Br: 0-2 YF-JI ECUST institute of Fine Chem 15-Sep-2013 15:59:47 1: TOF MS ES+ JYF-JG-3 109 (0.759) Cm (105:116) 2.03e+003 294,8806 100-292.8817 296.8782 297.2902 %-291.2717 294,9493 295.8836 290.3331 292.0240 293.8863 0------ m/z 291.00 292.00 294.00 297.00 295.00 293.00 296.00 Minimum: -1.5 50.0 100.0 30.0 Maximum: mDa Mass Calc. Mass PPM DBE i-FIT i-FIT (Norm) Formula 292.8813 C8 H7 O2 Br2 292.8817 0.4 1.4 4.5 6.2 0.0

Elemental Composition Report Single Mass Analysis Tolerance = 5.0 mDa DBE: min = -1.5, max = 50.0 1 ÓН OH Monoisotopic Mass, Odd and Even Electron Ions 68 formula(e) evaluated with 20 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-14 H: 0-14 0:0-2 CC •7 Micromass GCT 20130895-1 210 (3.484) Cm (210-(32+42)) TOFMSEI+ 214.0992 2.2844 100-* 171.0817 199.0769 235.1029 195.0621. 213.0925 0 27.023039.023751.023083.0235 77.0395 91.0245 115.0558 128.0535 145.0561159.0523 218.1073 T m /T 100 110 120 160 170 180 190 200 220 210 Minimum: 3.00 -1.5 50.0 Maximum: 100.00 5.0 5.0 PPM Formula Mass RA Calc. Mass. mDa DBE Score 214.0992 8.0 C14 H14 O2 100.00 214.0994 -0.2 -0.8 1

Elemental Composition Report CHO Single Mass Analysis Tolerance = 5.0 mDa 1 DBE: min = -1.5, max = 50.0 Monoisotopic Mass, Odd and Even Electron lons 19 formula(e) evaluated with 9 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-7 H: 0-6 0:0-2 05-Jun-2013 18:52:26 |y⁴-ja-2 20130554 26 (0.850) Cm (26-(4+7)) Waters GD7 Premier TOF MS EI+ 121.0289 8.568+004 100-1 122 0387 14-93.0345 85.0385 123.0406 84 0406 92.0273 94 0408 97 1022 105 0348 112 1257 115 057 95 0 100.0 105.0 110.0 115.0 112.1257 115.0574 120.0 125.0 Minimum: 3.00 -1.5 Maximum: 100.00 5.0 10.0 50.0 Mass RA Calc. Mass mDa PPM DBE i-FIT Formula 122.0367 84.79 122.0368 -0.1 -0.8 5.0 3.5 C7 H6 O2

ÇНО

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 30.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2 Monoisotopic Mass, Even Electron Ions

7 formula(e) evaluated with 1 results within limits (up to 1 best isotopic matches for each mass) Elements Used: C: 0-7 H: 0-5 O: 0-2 Br: 0-2

Electronic Supplementary Material (ESI) for Green Chemistry This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is C The Royal Society of Chemistry 2013

Elemental Composition Report

Page 1

Single Ma Tolerance = Element pre Number of	ss Analysis 100.0 mDa / D ediction: Off sotope peaks use	BE: min = d for i-FIT	-1.5, max = 2	= 100.0			мео Он	ОН	
Monoisotopio 33 formula(e	Mass, Even Electr	on lons results withi	n limits (up	to 1 closest	results for each	i mass)			
Elements Us	ed:					2014 (1919) (1919) (1919) 			
C: 0-39 H	: 0-60 O: 0-8								
YF-JI ECUST institute of Fine Chem									02-Jan-2013 21:59:41
JYF-JA-105 1	6 (0.569) Cm (1:16)							8	1: TOF MS ES+
									9.57e+003
% %224 013	9								
226.0	155	255.10	21	274.2737	000 0700	297.1093		318,3007	
17	243.1004	10000	1		282.2799	1 1 1	313.0850	2	335.1300
225 23	0 235 240 245	250 255	260 265	270 275	280 285 29	0 295 300 305	310 315	320 325	330 335
Minimum:				-1.5					
Maximum:		100.0	50.0	100.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula		
275.1283	275.1283	0.0	0.0	7.5	18.4	0.0	C16 H19	04	

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is O The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2013

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

138 formula(e) evaluated with 16 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-11 H: 0-16 O: 0-5

Electronic Supplementary Material (ESI) for Green Chemistry This journal is O The Royal Society of Chemistry 2013

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

21 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-9 H: 0-10 160: 0-4 180: 0-1

CH18O

OH 2aa

MeO