Telescoped and tandem mechanochemical reactions: Ligand and complex synthesis in one pot with no or minimal added solvent

Michael Ferguson, Nicola Giri, Xu Huang, David Apperley and Stuart L. James

Supplementary Information

Cont	tents:	Page
Ligar	ıd Analysis	3
1	2,2'-[1,2-ethanediylbis[(E)-nitrilomethylidyne]]bis-phenol.	
	¹ H NMR	3
	FTIR	4
	PXRD	7
	TGA	8
	¹³ C SSNMR	9
	Elemental Analysis	10
2	2,2'-[(\pm)-1,2-cyclohexanediylbis[(<i>E</i>)-nitrilomethylidyne]]bis-phenol.	
	¹ H NMR	11
	FTIR	12
	Elemental Analysis	14
3	2,2'-[1,2-phenylenebis(nitrilomethylidyne)]bis-phenol	
	¹ H NMR	15
	FTIR	16
	Elemental Analysis	18
4	2-[[(2-aminophenyl)imino]methyl]-phenol	
	¹ H NMR	19
	FTIR	20
	Elemental Analysis	22
5	2,2'-[(\pm)-1,2-cyclohexanediylbis[(<i>E</i>)-nitrilomethylidyne]] bis[4,6-bis(1,1-dimethylethyl)]-phenol	
	¹ H NMR	23
	FTIR	24
	Elemental Analysis	27

Con	iplex Analysis	28
6	2,2'-[1,2-ethanediylbis](E)nitrilomethylidyne]]bis[phenolato]-	
	κN,N',O,O'-zinc(II)	
	¹ H NMR	28
	FTIR	29
	PXRD	32
	TGA	33
	¹³ C SSNMR	34
	Elemental Analysis	36
7	2,2'-[1,2-ethanediylbis[(E)nitrilomethylidyne]]bis[phenolato]-	
	κN,N',O,O'-nickel(II)	
	¹ H NMR	37
	FTIR	38
	PXRD	41
	TGA	42
	¹³ C SSNMR	43
	Elemental Analysis	44
8	2,2'-[1,2-ethanediylbis[(E)nitrilomethylidyne]]bis[phenolato]-	
	κN,N',O,O'-copper(II)	
	FTIR	45
	PXRD	48
	TGA	49
	Elemental Analysis	50
6'	2,2'-[1,2-ethanediylbis[(E)nitrilomethylidyne]]bis[phenolato]-	
	κN,N',O,O'-zinc(II)	
	¹ H NMR	51
	FTIR	53
	PXRD	55
	¹³ C SSNMR	56
	Elemental Analysis	58

Ligand Analysis

2,2'-[1,2-ethanediylbis[(*E*)-nitrilomethylidyne]]bis-phenol; (compound 1):

Figure S1: Solution state (CDCl₃) ¹H NMR spectrum of salenH₂, 1, obtained mechanochemically.

Page 3 of 62

Figure S2: Solid state IR (KBr disc) spectrum of salenH₂, 1, obtained mechanochemically.

Figure S3: Expanded fingerprint region of the solid state IR spectrum of salenH₂, 1, obtained mechanochemically.

Figure S4: Comparison of the fingerprint regions of the solid state IR spectra of salen H_2 obtained through conventional solution based techniques (black) and mechanochemical synthesis, 1 (red).

Figure S5: X-Ray powder diffraction spectra of salenH₂ obtained mechanochemically, **1**, and a simulated pattern from the Cambridge Structural Database (CCD code ESALIM).

Figure S6: Thermogravimetric analysis of salenH₂ obtained mechanochemically, **1**, showing thermal decomposition onset at 160°C.

Figure S7: Solid state ¹³C MAS NMR spectrum of salenH₂ formed mechanochemically, 1.

Table ST1: Elemental analysis of salenH ₂ from both conve	ntional solution state synthesis and solventless mechanical	(compound 1) methods.
--	---	-------------	------------

Element	С	Н	Ν
Theoretical %	71.62	6.01	10.44
Solution %	71.82	6.03	10.24
Mechanochemical %	71.63	6.03	10.57

2,2'-[(±)-1,2-cyclohexanediylbis[(*E*)-nitrilomethylidyne]]bis-phenol; (compound 2):

Figure S8: Solution state (CDCl₃) ¹H NMR spectrum of the cyclohexylsalen ligand, **2**, obtained mechanochemically.

Page 11 of 62

Figure S9: Solid state IR (KBr disc) spectrum of the cyclohexylsalen ligand, 2, obtained mechanochemically.

Figure S10: Expanded fingerprint region of the solid state IR spectrum of the cyclohexylsalen ligand, 2, formed mechanochemically.

Element	С	Н	Ν
Theoretical %	74.51	6.89	8.69
Mechanochemical %	74.58	6.91	8.92

Table ST2: Elemental analysis of the cyclohexylsalen lignad, 2, formed mechanochemically

2,2'-[1,2-phenylenebis(nitrilomethylidyne)]bis-phenol; (compound 3):

Figure S11: Solution state (CDCl₃) ¹H NMR spectrum of the salphen ligand, **3**, obtained mechanochemically.

Page 15 of 62

Figure S12: Solid state IR (KBr disc) spectrum of the salphen ligand, 3, obtained mechanochemically.

Figure S13: Expanded fingerprint region of the solid state IR spectrum of the salphen ligand, 3, obtained mechanochemically.

Element	С	Н	Ν
Theoretical %	75.93	5.10	8.86
Mechanochemical %	75.92	4.97	8.68

Figure S14: Solution state (CDCl₃) ¹H NMR spectrum of the unsymmetrical salphen ligand, 4, obtained mechanochemically.

Page 19 of 62

Figure S15: Solid state IR (KBr disc) spectrum of the asymmetrical salphen ligand, 4, formed mechanochemically.

Figure S16: Expanded fingerprint region of the solid state IR spectrum of the asymmetric salphen ligand, 4, obtained mechanochemically.

Element	С	Н	Ν
Theoretical %	73.56	5.70	13.20
Mechanochemical %	73.49	5.69	13.09

Table ST4: Elemental analysis of the asymmetrical salphen ligand, 4, formed mechanochemically

Figure S17: Solution state (CDCl₃)¹H NMR spectrum of the 'Jacobsen' ligand, 5, obtained mechanochemically.

Figure S18: Solid state IR (KBr disc) spectrum of the 'Jacobsen' ligand, 5, obtained mechanochemically.

Figure S19: Expanded fingerprint region of the solid state IR spectrum of the 'Jacobsen' ligand, 5, obtained mechanochemically.

Figure S20: Comparison of the expanded fingerprint regions of the solid state IR spectra of the 'Jacobsen' ligand obtained through conventional solution based techniques (black) and mechanochemical synthesis, **5**, (red).

Element	С	Н	Ν
Theoretical %	79.07	9.95	5.12
Mechanochemical %	79.16	10.17	5.13

 Table ST5: Elemental analysis of the 'Jacobsen' ligand, 5, obtained mechanochemically.

Complex Analysis

2,2'-[1,2-ethanediylbis[(*E*)-nitrilomethylidyne]]bis[phenolato]-κN,N',O,O'-zinc(II); (compound 6):

Figure S21: Solution state (d^6 -DMSO) ¹H NMR spectrum of Zn(salen), **6**, obtained by a 2-step mechanochemical process.

Page 29 of 62

Figure S22: Solid state IR (KBr disc) spectrum of Zn(salen), 6, obtained mechanochemically.

Figure S23: Expanded fingerprint region of the solid state spectrum of Zn(salen), 6, obtained mechanochemically.

Figure S24: Comparison of the expanded fingerprint regions of the solid state IR spectra of Zn(salen) obtained through conventional solution based techniques (black) and mechanochemical synthesis, **6**, (red).

Figure S25: X-Ray powder diffraction spectra of Zn(salen), **6**, obtained mechanochemically and a simulated pattern from the Cambridge Structural Database (CCD code MEHBEH).

Page 34 of 62

Figure S26: Thermal gravimetric analysis of Zn(salen), 6, formed mechanochemically showing $\approx 5\%$ mass loss at 150°C which is equivalent to one molecule of H₂O per molecule of complex.

Figure S27: Solid state ¹³C MAS NMR spectrum of Zn(salen), 6, obtained by a two-step telescoped mechanochemical reaction.

Figure S28: Comparison between the solid state 13 C MAS NMR spectra for Zn(salen) obtained from conventional solution state synthesis (black) and the two-step telescoped mechanical method (red, compound 6).

Page 37 of 62

Element	С	Н	Ν
Theoretical %	57.94	4.25	8.45
Solution %	58.67	4.46	8.57
Mechanochemical %	57.64	4.01	8.51

Table ST6: Elemental analysis of Zn(salen) from both conventional solution state synthesis and mechanical methods (compound 6).

Figure S29: Solution state (d^6 -DMSO) ¹H NMR spectrum of Ni(salen), 7, obtained mechanochemically.

Page 39 of 62

Figure S30: Solid state IR (KBr disc) spectrum of Ni(salen), 7, obtained mechanochemically.

Figure S31: Expanded fingerprint region of the solid state IR spectrum of Ni(salen), 7, obtained mechanochemically.

Figure S32: Comparison of the expanded fingerprint regions of the solid state IR spectra of Ni(salen) obtained through conventional solution based techniques (black) and mechanochemical synthesis, 7, (red).

Figure S33: X-Ray powder diffraction spectra of Ni(salen) obtained mechanochemically, **7**, and the simulated patterns for a Ni(salen) monomer (CSD code SAENNI) and dimer (CSD code RITMUD) from the Cambridge Structural Database.

Page 43 of 62

Figure S34: Therm0gravimetric analysis of Ni(salen) obtained mechanochemically, 7, showing $\approx 12.25\%$ mass loss at 115°C which is equivalent to one molecule of H₂O and molecule of MeOH per molecule of complex.

Figure S35: Solid state ¹³C MAS NMR spectrum of Ni(salen), 7, obtained mechanochemically.

Element	С	Н	Ν
Theoretical %	59.13	4.34	8.62
Solution %	59.14	4.13	8.79
Mechanochemical %	58.73	4.20	8.69

Table ST7: Elemental analysis of Ni(salen) from both conventional solution state synthesis and mechanical methods (compound 7).

2,2'-[1,2-ethanediylbis[(*E*)nitrilomethylidyne]]bis[phenolato]-κN,N',O,O'-copper(II); (compound 8):

Figure S36: Solid state IR (KBr disc) spectrum of Cu(salen), 8, obtained by a two-step telescoped mechanochemical reaction.

Figure S37: Expanded fingerprint region of the solid state IR spectrum of Cu(salen), 8, obtained by a two-step telescoped mechanochemical reaction.

Figure S38: Comparison of the expanded fingerprint regions of the solid state IR spectra of Cu(salen) obtained through conventional solution based method (black) and mechanochemical method, 8, (red).

Figure S39: X-Ray powder diffraction spectra of Cu(salen), 8, obtained mechanochemically and the simulated pattern from the Cambridge Structural Database (CSD code PIFKIY).

Page 50 of 62

Figure S40: Thermogravimetric analysis of Cu(salen), **8**, obtained from a two-step telescoped mechanochemical reaction showing $\approx 1.3\%$ mass loss at 175°C which is equivalent to 1/3 molecule of H₂O per molecule of complex.

Element	С	Н	Ν
Theoretical %	58.26	4.28	8.49
Solution %	58.77	4.06	8.73
Mechanochemical %	57.30	4.14	8.63

Table ST8: Elemental analysis of Cu(salen) from both conventional solution state synthesis and mechanical methods (compound 8).

'All in one' 2,2'-[1,2-ethanediylbis[(*E*)nitrilomethylidyne]]-bis[phenolato]-kN,N',O,O'-zinc(II); (compound 9):

Figure S41: Solution state (d^6 -DMSO) ¹H NMR spectrum of Zn(salen), **6'**, from tandem mechanochemical synthesis.

Page 53 of 62

Figure S42: Solid state IR (KBr disc) spectrum of Zn(salen), 6', obtained from tandem mechanochemical synthesis.

Figure S43: Expanded fingerprint region of the solid state IR spectrum of Zn(salen), 6', obtained from tandem mechanochemical synthesis.

Figure S44: Comparison of the expanded fingerprint regions of the solid state IR spectra of Zn(salen) obtained through conventional solution based techniques (black) and tandem mechanochemical synthesis, 6', (red).

Figure S45: X-Ray powder diffraction spectra of Zn(salen) obtained by tandem mechanochemical reaction, **6'**, and the simulated pattern from the Cambridge Structural Database (CSD code MEHBEH).

Figure S46: Solid state ¹³C MAS NMR spectrum of Zn(salen), 6', obtained by tandem mechanochemical reaction. * represents a spinning side

Page 59 of 62

band.

Figure S47: Comparison of ¹³C SSNMR of Zn(salen) obtained from the tandem mechanochemical reaction, **6'**, (red) and the hydrated product from the two step mechanochemical reaction, **6**. * represents a spinning side band.

Element	С	Н	Ν
Theoretical %	57.94	4.25	8.45
Mechanochemical %	57.58	4.26	8.50

Table ST9: Elemental analysis of Zn(salen) from the tandem mechanical method (compound 6').