An efficient multi-component regio- and stereoselective synthesis of dihydroindeno[1,2-*b*]pyrroles under grinding

Sivasubramanian Muthusaravanan, Chinnathambi Sasikumar, Balasubramanian Devi bala and Subbu Perumal

Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India

General procedure for the sequential synthesis of 5

A mixture of enaminone 1 (1mmol) and aniline 3 (1mmol) with AcOH (0.1 ml) was ground well in a pestle and mortar at room temperature for 3-5 mins. The reaction progress was monitored by thin layer chromatography. After completion of the reaction, the reaction mixture was poured into crushed ice, the resulting solid filtered off and washed with water to afford (Z)-3-(arylamino)-1-arylprop-2-en-1-one

Scheme 3. Synthesis of (*Z*)-1-aryl-3-(arylamino)prop-2-en-1-ones 5Table 3. Synthesis of (*Z*)-1-aryl-3-(arylamino)prop-2-en-1-ones s 5

Entry	Comp.	Ar in 1	Ar' in 3	Time	Yield of 5
		and 5	and 5	(min)	(%) ^a
1	5a	$4-\text{MeC}_6\text{H}_4$	4-MeC ₆ H ₄	4	95
2	5b	$4-\text{MeC}_6\text{H}_4$	4-ClC ₆ H ₄	4	94
3	5c	C_6H_5	4-MeOC ₆ H ₄	5	96
4	5d	$4-\text{MeC}_6\text{H}_4$	4-MeOC ₆ H ₄	5	95
5	5e	$4-ClC_6H_4$	4-MeOC ₆ H ₄	5	96

^a Yield of after washing with water

(*Z*)-1-*p*-tolyl-3-(*p*-tolylamino)prop-2-en-1-one (5a) Isolated as pale yellow solid. Yield 95% m.p.=162 °C. ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 2.32 (s, 3H), 2.41 (s, 3H), 5.60 (d, 1H, *J* = 7.8 Hz), 7.00 (d, 2H, *J* = 8.7 Hz), 7.15 (d, 2H, *J* = 8.1 Hz), 7.24-7.26 (m, 2H), 7.45-7.51 (m, 1H), 7.84 (d, 2H, *J* = 8.4 Hz), 12.12 (bd, NH); ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm c}$ 20.7, 21.5, 93.2, 116.3, 127.3, 129.1, 130.2, 133.2, 136.6, 137.9, 141.9, 145.0, 190.6 Anal. Calcd for C₁₇H₁₇NO C, 81.24; H, 6.82; N, 5.57 Found C, 81.35; H, 6.75; N, 5.44%

(*Z*)-**3**-(**4**-chlorophenylamino)-1-*p*-tolylprop-2-en-1-one (**5b**) Isolated as pale yellow solid. Yield 94% m.p.=157 °C. ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 2.41 (s, 3H), 6.02-6.05 (m, 1H), 7.01-7.04 (m, 2H), 7.24-7.32 (m, 4H), 7.39-7.46 (m, 1H), 7.84 (d, 2H, *J* = 8.1 Hz), 12.10 (bd, NH); ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm c}$ 21.5, 94.3, 117.4, 127.4, 128.5, 129.2, 129.7, 136.4, 139.1, 142.3, 144.1, 191.1 Anal. Calcd for C₁₆H₁₄ClNO C, 70.72; H, 5.19; N, 5.15 Found C, 70.81; H, 5.25; N, 5.26%

(*Z*)-**3**-(*p*-methoxyphenylamino)-**1**-phenylprop-**2**-en-**1**-one (**5**c) Isolated as pale yellow solid. Yield 96% m.p.= $150^{\circ}C^{1}H$ NMR (300 MHz, CDCl₃) δ_{H} 3.80 (s, 3H), 5.98 (d, 1H, *J* = 7.8 Hz), 6.90 (d, 2H, *J* = 8.7 Hz), 7.06 (d, 1H, *J* = 8.7 Hz), 7.41-7.50 (m, 4H), 7.92-7.95 (m, 2H); 12.20 (bd, NH); ¹³C NMR (75 MHz, CDCl₃) δ_{c} 55.0,92.4, 114.5, 117.4, 126.7, 127.9, 130.8, 133.3, 138.8, 145.3, 155.9, 190.0 Anal. Calcd for C₁₆H₁₅NO₂C, 75.87; H, 5.97; N, 5.53 Found C, 75.75; H, 6.04; N, 5.47%

(*Z*)-**3**-(*p*-methoxyphenylamino)-1-*p*-tolylprop-2-en-1-one (5d) Isolated as pale yellow solid. Yield 95% m.p.=144 °C ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 2.41 (s, 3H), 3.80 (s, 3H), 5.97 (d, 1H, *J* = 7.5 Hz,), 6.88-6.91 (m, 2H), 7.04-7.07 (m, 2H), 7.25 (d, 2H, *J* =7.2 Hz), 7.39-7.45 (m, 1H), 7.84 (d, 2H, *J* = 8.4 Hz); 12.16 (bd, NH); ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm c}$ 21.5, 55.5, 92.8, 115.0, 117.8, 127.3, 129.1, 133.9, 136.7, 141.9, 145.5, 156.3, 190.4 Anal. Calcd for C₁₇H₁₇NO₂C, 76.38; H, 6.41; N, 5.24 Found C, 76.47; H, 6.52; N, 5.15%

(*Z*)-1-(*p*-chlorophenyl)-3-(*p*-methoxyphenylamino)prop-2-en-1-one (5e) Isolated as pale yellow solid. Yield 96% m.p.= 153 °C ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 3.81 (s, 3H), 5.92 (d,

1H, J = 7.5 Hz,), 6.88- 6.92 (m, 2H),7.04-7.08 (m, 2H), 7.39-7.48 (m, 3H), 7.85-7.88 (m, 2H), 12.19 (bd, NH); ¹³C NMR (75 MHz, CDCl₃) δ_c 55.6, 92.6, 115.0, 118.0, 128.6, 133.6, 137.5, 137.7, 146.2, 156.5, 189.0 Anal. Calcd for C₁₆H₁₄ClNO₂ C, 66.79; H, 4.90; N, 4.87 Found C, 66.67; H, 4.83; N, 4.80%

Serial No	Description	Page No
1	¹ H NMR spectrum of 4f	6
2	¹ H NMR(expanded) spectrum of 4f	7
3	¹³ CNMR spectrum of 4f	8
4	¹³ C NMR (expanded) spectrum of 4f	9
5	HMBC spectrum of 4f	10
6	HMBC (expanded) spectrum of 4f	11
7	H,H-COSY spectrum of 4f	12
8	H,H- COSY (expanded) spectrum of 4f	13
9	C,H- COSY spectrum of 4f	14
10	C,H- COSY(expanded) spectrum of 4f	15
11	¹ H NMR spectrum of 4a	16
12	¹³ C NMR spectrum of 4a	17
13	¹ H NMR spectrum of 4b	18
14	¹³ C NMR spectrum of 4b	19
15	¹ H NMR spectrum of 4c	20
16	¹³ C NMR spectrum of 4c	21
17	¹ H NMR spectrum of 4d	22
18	¹³ C NMR spectrum of 4d	23
19	¹ H NMR spectrum of 4e	24
20	¹³ C NMR spectrum of 4e	25

21	¹ H NMR spectrum of 4g	26
22	¹³ C NMR spectrum of 4g	27
23	¹ H NMR spectrum of 4h	28
24	¹³ C NMR spectrum of 4h	28
25	¹ H NMR spectrum of 4i	30
26	¹³ C NMR spectrum of 4i	31
27	¹ H NMR spectrum of 4 j	32
28	¹³ C NMR spectrum of 4 j	33
29	¹ H NMR spectrum of 4k	34
30	¹³ C NMR spectrum of 4k	35
31	¹ H NMR spectrum of 4 I	36
32	¹³ C NMR spectrum of 4	37
33	¹ H NMR spectrum of 4m	38
34	¹³ C NMR spectrum of 4m	39
35	H1 NMR spectrum of 4n	40
36	¹³ C NMR spectrum of 4n	41
37	¹ H NMR spectrum of 40	42
38	¹³ C NMR spectrum of 40	43
39	¹ H NMR spectrum of 4p	44
40	¹³ C NMR spectrum of 4p	45
41	¹ H NMR spectrum of 4q	46
42	¹³ C NMR spectrum of 4q	47
43	¹ H NMR spectrum of 4r	48
44	¹³ C NMR spectrum of 4r	49
45	¹ H NMR spectrum of 4s	50
46	¹³ C NMR spectrum of 4s	51

47	¹ H NMR spectrum of 4 t	52
48	¹³ C NMR spectrum of 4 t	53
49	¹ H NMR spectrum of 4u	54
50	¹³ C NMR spectrum of 4u	55
51	¹ H NMR spectrum of 4v	56
52	¹³ C NMR spectrum of 4v	57
53	ESI mass spectrum of 4c	58
54	ESI mass spectrum of 4d	59
55	ESI mass spectrum of 4e	60
56	ESI mass spectrum of 4f	61
57	¹ H NMR spectrum of 5a	62
58	¹ H NMR (expanded) spectrum of 5a	63
59	¹³ C NMR spectrum of 5a	64
60	¹ H NMR spectrum of 5b	65
61	¹³ C NMR spectrum of 5b	66
62	¹ H NMR spectrum of 5c	67
63	¹ H NMR(expanded) spectrum of 5 c	68
64	¹³ C NMR spectrum of 5 c	69
65	¹ H NMR spectrum of 5d	70
66	¹ H NMR (expanded) spectrum of 5d	71
67	¹³ C NMR spectrum of 5d	72
68	¹ H NMR spectrum of 5 e	73
69	¹ H NMR(expanded) spectrum of 5 e	74
70	¹³ C NMR spectrum of 5e	75

Electronic Supplementary Material (ESI) for Green Chemistry This journal is O The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Green Chemistry This journal is O The Royal Society of Chemistry 2013

