Supplementary Information

Design and Evaluation of Switchable-Hydrophilicity Solvents

Jesse R. Vanderveen, Jeremy Durelle, and Philip G. Jessop

Contents:

- 1. Identification of Secondary Amine Salts By ¹³C NMR Spectroscopy
- 2. Evaluation of the Accuracy of LD₅₀ Predictions by the TEST Program
- 3. Evaluation of the Accuracy of Flash Point Predictions by the TEST Program
- 4. Spectroscopic Data for Synthetic Products

1. Identification of Secondary Amine Salts By ¹³C {¹H} NMR Spectroscopy

Equal volume mixtures of secondary amine and carbonated, nondeuterated water were characterized by 13 C { 1 H} NMR using the nitrile carbon in CH₃CN as a reference (119.68 ppm) in order to determine if bicarbonate or carbamate ions were present in solution. The peak associated with the bicarbonate ion appears near 162 ppm, while the peak associated with the carbamate ion appears near 162 ppm, while the peak associated with the carbamate ion appears near 165 ppm.¹ Dipropylamine, di-*sec*-butylamine, and N-propyl-*sec*-butylamine were investigated in this way; expansions of their 13 C { 1 H} NMR spectra are shown in Fig S1. The dipropylamine spectrum contains peaks at 165 and 162 ppm, indicating the presence of both carbamate and bicarbonate ions, while the spectra of the other amines only contain peaks near 162 ppm, indicating the presence of bicarbonate ions alone. These results suggest that the carbamate salts of sterically hindered secondary amines are either not formed or are rapidly hydrolyzed.

Fig. S1 Expansions of ${}^{13}C$ { ${}^{1}H$ } NMR spectra of carbonated H₂O and a) dipropylamine, b) secbutylpropylamine, and c) di-sec-butylamine.

2. Evaluation of the Accuracy of LD₅₀ Predictions by the TEST Program

The LD_{50} (oral, rat) values of 8 amine SHSs and 14 amines which are not SHSs were predicted using the consensus method offered in the TEST software² and compared to reported values from MSDS. The predicted values were plotted against the reported values. The predicted values were found to be within a factor of 3 of the known values 95% of the time (21/22).

Amine	Experimental LD ₅₀ (oral, rat) (mg kg ⁻¹)	Predicted LD ₅₀ (oral, rat) (mg kg ⁻¹)
<i>N</i> , <i>N</i> -dimethylcyclohexylamine	348^{3}	320
<i>N</i> -ethylpiperidine	280^{4}	640
N,N-dimethylbutylamine	1885	320
triethylamine	460^{3}	1,300
diisopropylaminoethanol	860 ⁶	2,300
dibutylaminoethanol	$1,070^{3}$	1,500
dipropylamine	460^{3}	250
methylamine	100^{7}	130
ethylamine	400^{3}	920
propylamine	570 ⁸	300
butylamine	3729	630
sec-butylamine	152 ⁹	420
dibutylamine	220^{3}	460
dimethylamine	698^{3}	690
diethylamine	540^{3}	840
trimethylamine	500^{10}	600
tripropylamine	72^{3}	280
tributylamine	540 ¹¹	630
dimethylaminoethanol	$2,000^3$	1,100
diethylaminoethanol	$1,300^{3}$	1,200
triethanolamine	$8,000^{3}$	4,800
N,N-dimethylbenzylamine	265^{3}	530

Fig S2 Predicted vs. experimental LD_{50} values of various amines. The three lines signify an accurate prediction (y = x) and factors of 3 away from an accurate prediction (y = 3x and y = x/3)

3. Evaluation of the Accuracy of Flash Points Predicted by the TEST Program

The flash points of 24 amines were predicted using the consensus method offered in the TEST software and compared to reported values from MSDS. Fifteen SHSs with known flash points were used in the analysis, as were 9 other amines. The predicted values were plotted against the known values. The predicted flash points do not correlate well with reported flash points when the reported values are below 0 °C or the predicted values are below 31 °C. For amines with experimental flashpoints above 20 °C, the predicted values are within 8 °C of the reported flash points 81% of the time (13 of 16).

Experimental Flash Point (°C)

Predicted Flash Point (°C)

Amine	Experimental Flash Point (°C)	Predicted Flash Point (°C)
<i>N</i> , <i>N</i> -dimethylcyclohexylamine	43 ¹²	38
<i>N</i> -ethylpiperidine	17^{13}	27
<i>N</i> -butylpyrrolidine	35 ¹⁴	43
N,N-dimethylhexylamine	34 ¹⁵	29
<i>N</i> , <i>N</i> -dimethylbutylamine	-5 ⁵	7
<i>N</i> , <i>N</i> -diethylbutylamine	24^{16}	29
N-methyldipropylamine	-3^{17}	19
triethylamine	-9 ¹⁸	5
diisopropylaminoethanol	64 ¹⁹	66
dibutylaminoethanol	95^{20}	96
4,4-diethoxy- <i>N</i> , <i>N</i> -dimethylbutanamine	70^{21}	68
N,N-dimethylphenethylamine	71 ²²	70
dipropylamine	17 ¹⁸	16
di-sec-butylamine	21^{23}	24
butylamine	-124	31
sec-butylamine	-1918	4
dibutylamine	40^{25}	44
trimethylamine	-73	-11
tripropylamine	41^{18}	41
tributylamine	63 ²⁶	70
dimethylaminoethanol	41 ¹²	41
diethylaminoethanol	50^{27}	63
triethanolamine	179 ¹⁸	153
N,N-dimethylbenzylamine	53 ²⁸	67

Fig S3 Predicted vs. experimental flash points of various amines. The black line represents an accurate prediction and the red lines represent differences of 8 °C from an accurate prediction.

4. Spectroscopic Data for Synthetic Products

a) Ethyl 3-(diethylamino)propanoate

Fig S4 ¹H NMR spectrum of ethyl 3-(diethylamino)propanoate (CDCl₃, 300 MHz).

Fig S5 ¹³C NMR spectrum of ethyl 3-(diethylamino)propanoate (CDCl₃, 300 MHz).

Fig S6 IR spectrum of ethyl 3-(diethylamino)propanoate.

Fig S7 Mass spectrum of ethyl 3-(diethylamino)propanoate (EI).

b) Ethyl 3-(dipropylamino)propanoate

Fig S8 ¹H NMR spectrum of ethyl 3-(dipropylamino)propanoate (CDCl₃, 300 MHz).

Fig S9¹³C NMR spectrum of ethyl 3-(dipropylamino)propanoate (CDCl₃, 300 MHz).

Fig S10 IR spectrum of ethyl 3-(dipropylamino)propanoate.

Fig S11 Mass spectrum of ethyl 3-(dipropylamino)propanoate (EI).

c) Ethyl 4-(diethylamino)butanoate

Fig S12 ¹H NMR spectrum of ethyl 4-(diethylamino)butanoate (CDCl₃, 300 MHz).

Fig S13 ¹³C NMR spectrum of ethyl 4-(diethylamino)butanoate (CDCl₃, 300 MHz).

Fig S14 IR spectrum of ethyl 4-(diethylamino)butanoate.

Fig S15 Mass spectrum of ethyl 4-(diethylamino)butanoate (EI).

d) Ethyl 3-(sec-butylamino)propanoate

Fig S16¹H NMR spectrum of ethyl 3-(sec-butylamino)propanoate (CDCl₃, 500 MHz).

Fig S17¹³C NMR spectrum of ethyl 3-(sec-butylamino)propanoate (CDCl₃, 500 MHz).

Fig S18 IR spectrum of ethyl 3-(sec-butylamino)propanoate.

Fig S19 Mass spectrum of ethyl 3-(sec-butylamino)propanoate (EI).

e) Ethyl 3-(tert-butylamino)propanoate

Fig S20¹H NMR spectrum of ethyl 3-(*tert*-butylamino)propanoate (CDCl₃, 300 MHz).

Fig S21¹³C NMR spectrum of ethyl 3-(*tert*-butylamino)propanoate (CDCl₃, 300 MHz).

Fig S22 IR spectrum of ethyl 3-(tert-butylamino)propanoate.

Fig S23 Mass spectrum of ethyl 3-(tert-butylamino)propanoate (EI).

f) Ethyl 3-(isobutylamino)propanoate

Fig S24 ¹H NMR spectrum of ethyl 3-(isobutylamino)propanoate (CDCl₃, 300 MHz).

Fig S25¹³C NMR spectrum of ethyl 3-(isobutylamino)propanoate (CDCl₃, 300 MHz).

Fig S26 IR spectrum of ethyl 3-(isobutylamino)propanoate.

Fig S27 Mass spectrum of ethyl 3-(isobutylamino)propanoate (EI)

Fig S28 ¹H NMR spectrum of 5-(diethylamino)pentan-2-one (CDCl₃, 500 MHz).

Fig S29 ¹³C NMR spectrum of 5-(diethylamino)pentan-2-one (CDCl₃, 500 MHz).

Fig S30 IR spectrum of 5-(diethylamino)pentan-2-one.

Fig S31 Mass spectrum of 5-(diethylamino)pentan-2-one (EI).

h) 5-(dipropylamino)pentan-2-one

Fig S32 ¹H NMR spectrum of 5-(dipropylamino)pentan-2-one (CDCl₃, 500 MHz).

Fig S33 ¹³C NMR spectrum of 5-(dipropylamino)pentan-2-one (CDCl₃, 500 MHz).

Fig S34 IR spectrum of 5-(dipropylamino)pentan-2-one.

Fig S35 Mass spectrum of 5-(dipropylamino)pentan-2-one (EI).

i) Ethyl 4-(tert-butylamino)butanoate

Fig 36¹H NMR spectrum of ethyl 4-(*tert*-butylamino)butanoate (CDCl₃, 300 MHz).

Fig 37¹³C NMR spectrum of ethyl 4-(*tert*-butylamino)butanoate (CDCl₃, 300 MHz).

Fig 38 IR spectrum of ethyl 4-(tert-butylamino)butanoate.

Fig 39 Mass spectrum of ethyl 4-(tert-butylamino)butanoate (EI).

j) Propyl 3-(sec-butylamino)propanoate

Fig S40 ¹H NMR spectrum of propyl 3-(sec-butylamino)propanoate (CDCl₃, 500 MHz).

Fig S41 ¹³C NMR spectrum of propyl 3-(sec-butylamino)propanoate (CDCl₃, 500 MHz).

Fig S42 IR spectrum of propyl 3-(sec-butylamino)propanoate.

Fig S43 Mass spectrum of propyl 3-(sec-butylamino)propanoate (EI).

k) Butyl 3-(isopropylamino)propanoate

Fig S44 ¹H NMR spectrum of butyl 3-(isopropylamino)propanoate (CDCl₃, 500 MHz).

Fig S45¹³C NMR spectrum of butyl 3-(isopropylamino)propanoate (CDCl₃, 500 MHz).

Fig S46 IR spectrum of butyl 3-(isopropylamino)propanoate.

Fig S47 Mass spectrum of butyl 3-(isopropylamino)propanoate (EI).

Fig S48 ¹H NMR spectrum of propyl 3-(diethylamino)propanoate (CDCl₃, 500 MHz).

Fig S49¹³C NMR spectrum of propyl 3-(diethylamino)propanoate (CDCl₃, 500 MHz).

Fig S50 IR spectrum of propyl 3-(diethylamino)propanoate.

Fig S51 Mass spectrum of propyl 3-(diethylamino)propanoate (EI).

References

- a) W. Böttinger, M. Maiwald and H. Hasse, *Fluid Phase Equilibria*, 2008, 263, 131-143. b) Q. Yang, M. Bown, A. Ali, D. Winkler, G. Puxty and M. Attalla, *Energy Procedia*, 2009, 1, 955-962. c) F. Barzagli, F. Mani and M. Peruzzini, *Energy Environ. Sci.*, 2010, 3, 772-779. d) J. P. Jakobsen, J. Krane and H. F. Svendsen, *Ind. Eng. Chem. Res.* 2005, 44, 9894-9903.
- 2 Toxicity Estimation Software Tool, version 4.1, U.S. Environmental Protection Agency, http://www.epa.gov/nrmrl/std/qsar/qsar.html (accessed 2 August, 2013).
- 3 R. J. Lewis, *Sax's Dangerous Properties of Industrial Materials*, 9th ed., New York: Van Nostrand Reinhold, 1996.
- 4 Material safety data sheet for *N*-ethylpiperidine, Merck Millipore, 2010.
- 5 Material safety data sheet for *N*,*N*-dimethylbutylamine, Oxea Chemicals, 2011.
- 6 R. E Watson, A. M. Hafez, J. N. Kremsky and G. O. Bizzigotti, *Int. J. Toxicol.*, 2007, **26**, 503-512.
- 7 Material safety data sheet for methylamine, Sigma Aldrich, 2012.
- 8 E. Bingham, B, Cohrssen and C. H. Powell, *Patty's Toxicology, vol 1-9, 5th ed.*, New York: John Wiley & Sons, 2001.
- K. L. Cheever, D. E, Richards and H. B. Plotnick, *Toxicology and Applied Pharmacology*, 1982, 63, 150-152.
- 10 Material safety data sheet for trimethylamine, Sigma Aldrich, 2012.
- 11 C. P. Carpenter, C. S. Weil and H. F. Smith Jr., *Toxicology and Applied Pharmacology*, 1974, **28**, 313-319.
- 12 G. G. Hawley, *The Condensed Chemical Dictionary*, New York, Van Nstrand Reinhold, 9th edn., 1977.
- 13 Material safety data sheet for *N*-ethylpiperidine, Merck Millipore, 2010.
- 14 H. Yoshikawa and K. Kawai, Ind. Health, 1966, 4, 63.
- 15 Material safety data sheet for *N*,*N*-dimethylhexylamine, Sigma Aldrich, 2012.
- 16 Material safety data sheet for N,N-diethylbutylamine, Sigma Aldrich, 2012.
- 17 Material safety data sheet for *N*-methyldipropylamine, Sigma Aldrich, 2010.
- 18 *Fire Protection Guide to Hazardous Materials*, Quincy, Massachusetts, National Fire Protection Association, 13th edn. 2002.
- 19 Material safety data sheet for diisopropylaminoethanol, Sigma Aldrich, 2012.
- 20 Material safety data sheet for dibutylaminoethanol, Sigma Aldrich, 2013.
- 21 Material safety data sheet for 4,4-diethoxy-*N*,*N*-dimethyl butan-1-amine, Sigma Aldrich, 2012.
- 22 Material safety data sheet for *N*,*N*-dimethylphenethylamine, Sigma Aldrich, 2013.
- 23 Material safety data sheet for di-sec-butylamine, Sigma Aldrich, 2012.
- 24 *The Merck Index An Encyclopedia of Chemicals, Drugs, and Biologicals.* Ed. M.J. O'Neil, Whitehouse Station, NJ, Merck and Co., Inc., 2006.
- 25 *Hawley's Condensed Chemical Dictionary*, ed. N. I. Sax and R. J. Lewis Sr., New York, Van Nostrand Reinhold, 11th edn.,1987.
- 26 Material safety data sheet for tributylamine, Sigma Aldrich, 2012.
- 27 Material safety data sheet for diethylaminoethanol, Sigma Aldrich, 2012.
- 28 Material safety data sheet for *N*,*N*-dimethylbenzylamine, Sigma Aldrich, 2012.