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1 1. Preparation of anodic electrolyte

2 The anodization process was carried out in a voltage-regulated mode. A home-

3 made two-electrode configuration was adopted, and Ti foils were used for both anode 

4 and cathode. Initially, a 0.30-mm Ti foil was burnished and immersed in the chemical 

5 polishing solution (HF:HNO3:H2O = 1:1:2, in volume ratio) to remove oxide layer 

6 and blot, and finally cleaned with soap, acetone and isopropanol before and after 

7 chemical polishing. Later, anodization was conducted in 0.09 M NH4F solution 

8 (prepared using 8 ml de-ionized water and 72 ml ethylene glycol as the mixed solvent) 

9 under continuous stirring. All electrolytes were prepared from reagent grade 

10 chemicals. The electrochemical treatment was conducted by applying a potential 

11 scanning from the open-circuit potential first to 80 V for 2 min, then to 70 V for 2 min, 

12 60 V for 2 min and 50 V for 2 min, then repeated this voltage-regulated process and 

13 finally to 40 V for 120 min at ambient temperature (20 ± 3 ºC).

14 The voltage-regulated anodization produced a TNTs stratification layer of 

15 approximately 7-8 µm and a milk-like wasted electrolyte (Fig. S1). The stratification 

16 layer might be generated when stepping initially to a lower voltage and keeping for a 

17 time period to sufficiently establish its diffusion and field conditions, and then 

18 stepping back to the original high voltage,1 and it usually possessed a high 

19 photoactivity for various environmental applications.2,3

20

21 2. Preparation of TiO2 nanocrystals

22 2.1. Effect of calcination temperature on TiO2 nanocrystals
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23 Calcinating at relatively low temperature, such as 300, 400 and 450°C, the 

24 obtained TiO2 nanoparticles were covered by the residual carbon from anodic 

25 ethylene glycol electrolyte due to the incomplete carbonization (Fig. S4C). Samples 

26 prepared under these conditions were poorly dispersed and did not show any one 

27 single nanocrystal as well as photoactivity. Organic removals on these photocatalysts 

28 were attributed mainly to the physical adsorption by the residual carbon.

29 When the calcination temperature was too high, e.g., 700 and 800°C, the as-

30 prepared TiO2 nanocrystals were not individually dispersed. Instead, they were easily 

31 connected with each other along [001] direction to minimize the surface free energy, 

32 resulting in the formation of mesopores.4-6 Certainly, the particles would shrink and 

33 decreased the particle size from micronmeter (TiO2 polycrystalline) to nanometer 

34 scale (TiO2 nanocrystalline) (Fig. S4D-H). This inevitably resulted in space between 

35 nanocrystals to create the porous structure in the TiO2 nanocrystals.

36

37 2.2. Effect of temperature ramping rate on TiO2 nanocrystals

38 At relatively low temperature ramping rates, e.g., 1, 3 and 5 °C/min, the retention 

39 times of the two function reactants (F and ethylene glycol) were sufficiently short to 

40 accomplish “dissolution-recrystallization” reaction and enable the formation of TiO2 

41 nanocrystals (Fig. S5A-C). However, when the temperature ramping rate was 

42 increased to a higher level, e.g., 10 and 20°C/min, the F and ethylene glycol were 

43 evaporated out of muffle furnace too slowly and retained within the system too long 

44 to retain “dissolution-recrystallization” reaction due to the chemical etching by 
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45 excessive F.7 Thus, the resultant TiO2 samples showed no single crystal 

46 characteristics (Fig. S5D and E).

47

48 2.3. Effect of calcination time on TiO2 nanocrystals

49 When the sample was calcinated for 1 h, it was too short to accomplish 

50 “dissolution-recrystallization” reaction as well as the successful formation of well-

51 dispersed TiO2 single crystal (Fig. S6A). However, a very long calcination duration 

52 would lead to the crystallographic fusion of TiO2 nanocrystals, increased particle size 

53 and pore size, and decreased specific surface area, although the morphology and 

54 crystalline phase of TiO2 remained unchanged (Fig. S6D). Only calcination for 3 and 

55 5 h could cause shrink of TiO2 particles and lead to a decrease in the particle size 

56 from micrometer (TiO2 polycrystalline) to nanometer scale (TiO2 nanocrystalline) 

57 (Fig. S6B and C).

58

59 3. XPS of TiO2 nanocrystals

60 The XPS result (Fig. S12A) indicate that the TiO2 nanocrystal was composed of 

61 Ti, O, N, and F elements, and the corresponding photoelectron peaks appeared 

62 respectively at binding energies of 458.8 (Ti2p), 529.7 (O1s), 399.5 eV (N1s) and 

63 684.4 (F1s). Ti, O, and F elements should have come from surface fluorinated TiO2 

64 nanocrystals. N was originated from the self-incorporation into the TiO2 nanocrystal 

65 particles. The atomic ratio of Ti:O was approximately 1:2 (Fig. S12B and C).

66 The XPS spectrum of N1s core electrons in C-TiO2-xNx samples exhibited several 
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67 binding energies of 399.7, 400.7 and 407.1 eV (Fig. S12D), respectively. Specifically, 

68 the N1s peak at 399.7 and 400.7 eV were attributed to the incorporated nitrogen in 

69 titania as interstitial N or O-Ti-N, while the N1s peak at 407.1 eV should be 

70 originated from surface-adsorbed or contaminated nitrogen species.8,9

71 The XPS spectrums of F1s core electrons in TiO2-xNx and C-TiO2-xNx samples 

72 both showed a binding energy at 684.6 eV (Fig. S12E), which is a typical value for 

73 fluorated TiO2 systems and could be ascribed to F- ions physically adsorbed on the 

74 TiO2 surface (such as the surface Ti-F species formed by ligand exchange between F- 

75 and surface hydroxyl groups, ≡Ti-OH + F- → ≡Ti-F + OH-).10 No signal for F− in the 

76 lattice of TiO2 (BE = 688.5 eV) was found. Thus, the atomic incorporation of F atoms 

77 or their substitution for O atoms in the anatase TiO2 crystal lattice (doping) can be 

78 ruled out. Previous works have demonstrated that the formation of Ti-F bond can 

79 significantly lower the surface free energy of the {001} facets and reversely make 

80 them more stable than {101} facets, thus enabling the formation of anatase TiO2 

81 single crystals with a large percentage of reactive {001} facets.8

82 The XPS spectra  of C 1s in C-TiO2-xNx samples showed several peaks at 284.65, 

83 286.05 and ca. 288.5 eV (Fig. S12F), respectively. The C 1s peak at 284.65 eV is 

84 usually assigned to adventitious elemental carbon because of the residual carbon from 

85 the precursor solution and the hydrocarbon present in the XPS instrument itself, while 

86 the peaks at 286.05 and ca. 288.5 eV suggest the existence of carbonate species.11,12 

87 However, the peak around 281 eV, intrinsically resulting from the Ti-C bond, was not 

88 observed in the samples. Thus, all the C was adsorbed onto surface but not doped into 
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89 the TiO2 nanocrystals in our study.

90
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Fig. S1 SEM images of the hierarchical TNTs arrays and optical photon of the 
residual milk-like electrolyte (inset) from anodization process.
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Fig. S2. XPS survey (A) and high-resolution spectras (B, C, D, E and F) for the 
(NH4)2TiF6 and the extract from wasted anodic electrolyte used in this study.
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Fig. S3. TGA curves (A) and DTA curves (B) for the (NH4)2TiF6 and the extract from 
wasted anodic electrolyte used in this study.
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Fig. S4. Typical SEM images of the TiO2-xNx particles calcinated at different 
temperatures for 3 h with 5 °C /min: (A) 300°C; (B) 400°C; (C) 450°C; (D) 500°C; (E) 
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550°C; (F) 600°C; (G) 700°C; and (H) 800°C.
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Fig. S5. Typical SEM images of the TiO2-xNx particles calcinated at 500°C for 3 h 
with different ramping rates: (A) 1 °C/min; (B) 3 °C/min; (C) 5 °C/min; (D) 10 
°C/min; and (E) 20 °C/min.
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Fig. S6. Typical SEM images of the TiO2-xNx particles calcinated at 500°C with 5 
°C/min for different times: (A) 1 h; (B) 3 h; (C) 5 h; and (D) 8 h.
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Fig. S7. Typical SEM images of the TiO2 particles calcinated at 600°C with 5 °C/min 
from a lowly-concentrated transparent wasted anodic electrolyte (inset): (A) low 
magnification and (B) high magnification.
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Fig. S8. XPS survey (A) and high-resolution spectras (B, C, D and E) for the TiO2 
nanocrystals prepared by calcinating electrolyte in air at 600 ºC.
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Fig. S9. HAs removal evolutions on the TiO2 nanocrystals (A and C) and P25 (B and 
D) under UV irradiation (λ < 420 nm), with an initial TOC concentration of 10.75 and 
1.98 mg/L.
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Fig. S10. L-H pseudo-first order HAs degradation kinetics on the TiO2 nanocrystals 
and P25 under UV irradiation (λ < 420 nm), with an initial TOC concentration of 
10.75 mg/L.
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Fig. S11. Bentazone removal evolutions on TiO2-xNx crystals (A), photolysis (B), 
TiO2 crystals (C), P25 (D) and C-TiO2-xNx crystals (E) under Vis irradiation (λ > 420 
nm), with an initial bentazone concentration of 3.0 mg/L.
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Fig. S12. XPS survey (A) and high-resolution spectras (B, C, D, E and F) for the C-
TiO2-xNx nanocrystals prepared by calcinating electrolyte in air at 400 ºC.
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Fig. S13. Cyclic bentazone removal evolutions on C-TiO2-xNx nanocrystals under Vis 
irradiation (λ > 420 nm), with an initial bentazone concentration of 3.0 mg/L.


