Electronic Supplementary Information

Efficient and selective nitrile hydration reaction in water catalyzed by unexpected dimethylsulfinyl anion generated *in situ* from CsOH and DMSO

Haonan Chen,^a Wujie Dai,^a Yi Chen,^a Qing Xu,^{*a} Jianhui Chen,^a Lei Yu,^{a,c} Yajuan Zhao,^a Mingde Ye^a and Yuanjiang Pan^{*a,b}

^a College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China

^b Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China ^c School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China

E-mail: <u>qing-xu@wzu.edu.cn</u>; <u>panyuanjiang@zju.edu.cn</u>

Contents

Detailed Condition Screening Tables	
Experimental, Synthetic Procedures, and Comments	
Characterization of the Products and References	S5
Mechanistic studies and Secondary Mass Analysis	S14
Copies of ¹ H and ¹³ C NMR Spectra of All Products	

 Table S1. Detailed Condition Screening for Dimethylsulfinyl Anion-Catalyzed Hydration of Benzonitrile in Water.^[a]

		$Ph-CN + H_{-}O$	cat. CsOH, additive	o ⊥		
		1a	under air, <i>T, t</i>	Ph NH ₂ 2a		
run	CsOH (mol%)	additive	H ₂ O	Т	t	2a% ^[b]
1	10	-	H ₂ O (0.5 mL)	100 °C	24 h	$(65^{[c,d]})$
2	10	DMF (0.5 mL)	H ₂ O (0.02 mL, 1.1 equiv.)	100 °C	24 h	10 ^[d]
3	10	dioxane (0.5 mL)	H ₂ O (0.02 mL, 1.1 equiv.)	100 °C	24 h	72 ^[d]
4	10	THF (0.5 mL)	H ₂ O (0.02 mL, 1.1 equiv.)	100 °C	24 h	54 ^[d]
5	10	DMSO (0.5 mL)	H ₂ O (0.02 mL, 1.1 equiv.)	100 °C	24 h	>99 (85 ^[c])
6	10	DMSO (0.5 mL)	H ₂ O (0.04 mL, 2.2 equiv.)	100 °C	24 h	>99
7	10	DMSO (0.5 mL)	H ₂ O (0.06 mL, 3.3 equiv.)	100 °C	24 h	>99
8	10	DMSO (0.5 mL)	H ₂ O (0.24 mL, 13.2 equiv.)	100 °C	24 h	>99
9	10	DMSO (0.5 mL)	H ₂ O (0.02 mL, 1.1 equiv.)	100 °C	12 h	>99
10	10	DMSO (0.5 mL)	H ₂ O (0.02 mL, 1.1 equiv.)	100 °C	3 h	>99
11	10	DMSO (0.5 mL)	H ₂ O (0.02 mL, 1.1 equiv.)	100 °C	1 h	>99 (88)
12	10	DMSO (10 mol%)	H ₂ O (0.5 mL)	100 °C	1.5 h	$(55^{[c,d]})$
13	10	DMSO (20 mol%)	H ₂ O (0.5 mL)	100 °C	1.5 h	$(72^{[c]})$
14	10	DMSO (30 mol%)	H ₂ O (0.5 mL)	100 °C	1.5 h	$(78^{[c]})$
15	10	DMSO (40 mol%)	H ₂ O (0.5 mL)	100 °C	1.5 h	(85 ^[c])
16	10	DMSO (50 mol%)	H ₂ O (0.5 mL)	100 °C	1.5 h	(92)
17	5	DMSO (25 mol%)	H ₂ O (0.5 mL)	100 °C	1.5 h	$(60^{[c,d]})$
18	5	DMSO (50 mol%)	H ₂ O (0.5 mL)	100 °C	1.5 h	(89)
19	5	DMSO (100 mol%)	H ₂ O (0.5 mL)	100 °C	1.5 h	(94)
20	10	DMSO (50 mol%)	H ₂ O (0.5 mL)	60 °C	24 h	$(62^{[c,d]})$
21	5	DMSO (50 mol%)	H ₂ O (0.5 mL)	60 °C	24 h	$(60^{[c,d]})$
22	5	DMSO (100 mol%)	H ₂ O (0.5 mL)	60 °C	24 h	(94)
23	5	DMSO (100 mol%)	H ₂ O (0.5 mL)	rt ^[e]	132 h	(85 ^[c])
24	5	DMSO (0.25 mL)	H ₂ O (0.25 mL)	rt ^[e]	84 h	(90)
25	5	-	H ₂ O (0.5 mL)	rt ^[e]	84 h	trace

[a] The mixture of benzonitrile **1a** (2.0 mmol), CsOH·H₂O (5-10 mmol%), additive (solvent), and water in a Schlenk tube was sealed under air and then stirred at the indicated temperature. The reaction was then monitored by GC-MS and/or TLC. [b] GC yields (outside the parenthesis) and isolated yields (inside the parenthesis) of **2a** were based on **1a**. [c] Over hydrolysis of **1a** occurred in variant degrees to give byproduct PhCOOH. [d] The reactions were incomplete for **1a** was detected. [e] Room temperature: ca. 30 °C.

Ph-CN - 1a	base/DMSO (5/100 mol% under air, H ₂ O (0.5 mL) 60 °C, 24h	$\xrightarrow{O} \qquad \qquad O \qquad \qquad$
run	base (purity)	2a % ^[b]
1	LiOH (98%)	50
2	NaOH (99.99%)	46
3	KOH (AR)	30
4	CsOH·H ₂ O (99%)	94
5	$Na_2CO_3(AR)$	7
6	$K_2CO_3(AR)$	4
7	Cs_2CO_3 (99.9%)	7

Table S2. Catalytic Activities of Different Bases under the Optimal Conditions.^[a]

[a] The mixture of 1a (2 mmol) and base/DMSO (5/100mol%) in H₂O (0.5 mL) in a Schlenk tube was sealed under air and then heated at 60 °C for 24 h. [b] Isolated yields based on 1a.

Experimental

General. Substrates, catalysts, solvents, and ¹⁸O-H₂O (98% purity) were all purchased and used as received. ¹⁸O-DMSO was prepared according to the reported literature procedure (Fenselau, A. H.; Moffatt, J. G. *J. Am. Chem. Soc.* **1966**, *88*, 1762) and determined to be containing 86% ¹⁸O-DMSO by Secondary Mass analysis. Unless otherwise noted, all reactions were carried out in sealed Schlenk tubes under air and then monitored by TLC. Products of small scale reactions were all purified by column chromatography on silica gel using petroleum ether and ethyl acetate as the eluent. Products of large scale reactions were obtained by simple filtration of the reaction mixtures that include solid amides and liquid reaction media. Absolutely dry DMSO was prepared by distillation from CaH₂-predried DMSO and stored under nitrogen in a sealed Schenk flask. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance-III 500 instrument (500 MHz for ¹H and 125.4 MHz for ¹³C NMR spectroscopy) by using *d*₆-DMSO or CDCl₃ as the solvent. Chemical shifts for ¹H and ¹³C NMR were referred to internal Me₄Si (0 ppm). Mass spectra were measured on a Shimadzu GCMS-QP2010 Plus spectrometer (EI). Secondary Mass analysis was conducted at the Analysis Center of Department of Chemistry of Zhejiang University.

Typical Procedure for Dimethylsulfinyl Anion-Catalyzed Hydration of Organonitriles to Amides in Water. Benzonitrile 1a (2.0 mmol) and CsOH (0.0169 g, 0.1 mmol, 5 mol%) were mixed in H₂O (0.5 mL) under air in a Schlenk tube. No any obvious phenomenon of the reaction mixture could be observed at this stage at room temperature. DMSO (0.142 mL, 1.0 equiv.) was then added to the above mixture *via* a syringe. In great difference, upon addition of DMSO, a slight but obvious exothermic phenomenon was observed if touching outward surface of the tube. The reaction mixture was then directly sealed under air and stirred at 60 °C for 24 h. After completion of the reaction as monitored by TLC (also: forming beautiful crystalline solids in the tube), the mixture was then directly purified, without any workup, through a silica gel column by using ethyl acetate and petroleum ether as the eluent, affording benzamide 2a in 94% isolated yield.

Additional Comments:

It should be noted that, no exothermic phenomenon could be observed when mixing **1a**, CsOH, and water at room temperature before addition of DMSO. In great contrast, slight but obvious exothermic phenomenon was observed upon addition of DMSO to the above mixture. Accordingly, no obvious formation of the product could be detected by TLC in the reaction at room temperature without DMSO (Table S1, run 25). On the contrary, slight but obvious exothermic phenomenon was

observed in reactions under the same condition upon addition of DMSO (Table S1, runs 23-24). Accordingly, hydration reactions occurred smoothly to give high yields of **2a**. Similarly, exothermic phenomena in varied degrees (from slight/weak to obvious/strong) were also observed in the reactions of other nitriles upon addition of DMSO.

All the above contrastive phenomena and results support that, the true catalyst of the reaction should not be the simple hydroxide anion OH^- derived from CsOH, but a more active new species generated *in situ* from CsOH and DMSO. Since DMSO can be easily deprotonated by bases to form equilibrial ambident dimethylsulfinyl anion (**I**) even at room temperature (ref 16 of the text), we deduce it might be the active catalyst for the reaction.

Characterization of the Products and References.

Benzamide. ¹H NMR (500 MHz, *d*₆-DMSO): δ 8.01 (b, 1H), 7.88-7.86 (m, 2H), 7.54-7.51 (m, 1H), 7.47-7.44 (m, 2H), 7.39 (b, 1H). ¹³C NMR (125.4 MHz, *d*₆-DMSO): δ 168.0, 134.1, 131.2, 128.2, 127.4. MS (EI): m/z (%) 122 (6, M+1), 121 (86, M⁺), 106 (8), 105 (100), 78 (12), 77 (83), 76 (6), 75 (4), 74 (6), 65 (2), 52 (6), 51 (35), 50 (20), 44 (8), 39 (6), 38 (4), 37 (3), 27 (4). This compound was known: Li, Z.; Wang, L.; Zhou, X. *Adv. Synth. Catal.* **2012**, *354*, 584-588.

4-Methylbenzamide. ¹H NMR (500 MHz, *d*₆-DMSO): δ 7.91 (b, 1H), 7.78 (d, *J* = 8.0 Hz, 2H), 7.29 (b, 1H), 7.25 (d, *J* = 8.0 Hz, 2H), 2.35 (s, 3H). ¹³C NMR (125.4 MHz, *d*₆-DMSO): δ 167.7, 141.0, 131.4, 128.7, 127.5, 20.9. MS (EI): m/z (%) 136 (5, M+1), 135 (60, M⁺), 120 (8), 119 (100), 117 (3), 92 (5), 91 (74), 90 (8), 89 (10), 65 (33), 64 (4), 63 (13), 51 (9), 50 (6), 44 (12), 41 (5), 40 (9), 39 (20), 38 (4). This product was known: Li, Z.; Wang, L.; Zhou, X. *Adv. Synth. Catal.* **2012**, *354*, 584-588.

Me NH₂

3-Methylbenzamide. ¹H NMR (500 MHz, CDCl₃): δ 7.65 (s, 1H), 7.59-7.57 (m, 1H), 7.34-7.30 (m, 2H), 6.19 (b, 2H), 2.39 (s, 3H). ¹³C NMR (125.4 MHz, CDCl₃): δ 169.8, 138.5, 133.4, 132.7, 128.5, 128.1, 124.3, 21.3. MS (EI): m/z (%) 136 (6, M+1), 135 (63, M⁺), 120 (9), 119 (100), 117 (4), 116 (2), 92 (6), 91 (77), 90 (5), 89 (7), 65 (18), 63 (6), 62 (2), 51(4), 44 (3), 39 (6). This product was

known: Li, Z.; Wang, L.; Zhou, X. Adv. Synth. Catal. 2012, 354, 584-588.

2-Methylbenzamide. ¹H NMR (500 MHz, *d*₆-DMSO): δ 7.71 (b, 1H), 7.36-7.30 (m, 3H), 7.24-7.20 (m, 2H), 2.37 (s, 3H). ¹³C NMR (125.4 MHz, *d*₆-DMSO): δ 176.3, 142.3, 140.3, 135.7, 134.4, 132.2, 130.6, 24.8. MS (EI): m/z (%) 136 (6, M+1), 135 (66, M⁺), 120 (9), 119 (99), 92 (8), 91 (100), 89 (14), 77 (4), 66 (3), 65 (42), 64 (6), 63 (21), 62 (10), 51 (12), 44 (18), 41 (5), 39 (28), 38 (6), 27 (4), 16 (3). This compound was known: Liu, Y. M.; Lin, H.; Fan, K. N. *ChemSusChem.* **2012**, *5*, 1392-1396.

4-Methoxybenzamide. ¹H NMR (500 MHz, d_6 -DMSO): δ 7.78 (d, J = 8.5 Hz, 2H), 7.74 (b, 1H), 7.08 (b, 1H), 6.91 (d, J = 8.0 Hz, 2H), 3.74 (s, 3H). ¹³C NMR (125.4 MHz, d_6 -DMSO): δ 167.9, 162.1, 129.8, 127.0, 113.9, 55.8. MS (EI): m/z (%) 152 (5, M+1), 151 (54, M⁺), 136 (9), 135 (100), 108 (3), 107 (14), 92 (13), 77 (18), 65 (3), 64 (8), 63 (8), 50 (4), 44 (4), 39 (3), 38 (3), 15 (3). This product was known: Tu, T.; Wang, Z.; Liu, Z.; Feng. X.; Wang, Q. *Green. Chem.* **2012**, *14*, 921-924.

2-Aminobenzamide. ¹H NMR (500 MHz, *d*₆-DMSO): δ 7.73 (b, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.13 (t, *J* = 8.0 Hz, 1H), 7.07 (b, 1H), 6.67 (d, *J* = 8.0 Hz, 1H), 6.57 (b, 2H), 6.48 (t, *J* = 7.5 Hz, 1H). ¹³C NMR (125.4 MHz, *d*₆-DMSO): δ 171.2, 150.2, 131.8, 128.7, 116.3, 114.3, 113.6. MS (EI): m/z (%) 137 (6, M+1), 136 (74, M⁺), 120 (15), 119 (100), 118 (6), 93 (4), 92 (52), 91 (15), 66 (4), 65 (24), 64 (9), 63 (6), 52 (5), 39 (9). This product was known: Tu, T.; Wang, Z.; Liu, Z.; Feng, X.; Wang, Q. *Green. Chem.* **2012**, *14*, 921-924.

4-Aminobenzamide. ¹H NMR (500 MHz, d_6 -DMSO): δ 7.59 (d, J = 8.5 Hz, 2H), 7.53 (b, 1H), 6.84 (b, 1H), 6.53 (d, J = 8.5 Hz, 2H), 5.60 (b, 2H). ¹³C NMR (125.4 MHz, d_6 -DMSO): δ 173.3, 156.9, 134.3, 126.2, 117.7. MS (EI): m/z (%) 137(6, M+1), 136 (75, M⁺), 121 (8), 120 (100), 118 (3), 107

(4), 93 (4), 92 (40), 91 (5), 66 (6), 65 (37), 63 (6), 54 (6), 52 (4), 44 (4), 41 (4), 39 (13), 38 (4), 28
(4). This compound was known: Liu, Y. M.; Lin, H.; Fan, K. N. *ChemSusChem.* **2012**, *5*, 1392-1396.

4-Acetylbenzamide. ¹H NMR (500 MHz, *d*₆-DMSO): δ 8.15 (b, 1H), 8.02 (d, *J* = 8.5 Hz, 2H), 7.98 (d, *J* = 8.5 Hz, 2H), 7.56 (b, 1H), 2.62 (s, 3H). ¹³C NMR (125.4 MHz, *d*₆-DMSO): δ 203.0, 172.4, 143.9, 143.3, 133.3, 133.0, 32.1. MS (EI): m/z (%) 164 (7, M+1), 163 (66, M⁺), 149 (10), 148 (100), 120 (28), 117 (4), 92 (4), 89 (5), 79 (11), 77 (7), 76 (4), 66 (6), 65 (13), 63 (6), 62 (7), 54 (4), 53 (4), 51 (6), 50 (4), 39 (3), 38 (3). This compound was known: Liu, Y. M.; Lin, H.; Fan, K. N. *ChemSusChem.* **2012**, *5*, 1392-1396.

3-Nitrobenzamide. ¹H NMR (500 MHz, *d*₆-DMSO): δ 8.69 (s, 1H), 8.39 (b, 1H), 8.36 (d, *J* = 8.0 Hz, 2H), 8.31 (d, *J* = 7.5 Hz, 1H), 7.77 (m, 1H), 7.73 (b, 1H). ¹³C NMR (125.4 MHz, *d*₆-DMSO): δ 165.8, 147.8, 135.7, 133.8, 130.1, 125.9, 122.2. MS (EI): m/z (%) 167 (6, M+1), 166 (67, M⁺), 151 (8), 150 (100), 105 (3), 104 (33), 92 (17), 77 (14), 76 (54), 75 (30), 74 (30), 73 (6), 65 (26), 64 (6), 63 (9), 62 (5), 53 (4), 51 (20), 50 (52), 46 (20), 44 (50), 39 (9), 38 (7), 37 (5), 30 (31) . This product was known: Li, Z.; Wang, L.; Zhou, X. *Adv. Synth. Catal.* **2012**, *354*, 584-588.

4-Fluorobenzamide. ¹H NMR (500 MHz, d_6 -DMSO): δ 8.02 (b, 1H), 7.96-7.93 (m, 2H), 7.41 (b, 1H), 7.28 (m, 2H). ¹³C NMR (125.4 MHz, d_6 -DMSO): δ 166.9, 163.9 (d, $J_{C-F} = 248$ Hz), 130.6 (d, $J_{C-F} = 2.9$ Hz), 130.1 (d, $J_{C-F} = 9.0$ Hz), 115.1 (d, $J_{C-F} = 21.6$ Hz). MS (EI): m/z (%) 140 (6, M+1), 139 (62, M⁺), 124 (8), 123 (100), 122 (2), 121 (5), 96 (10), 95 (80), 94 (8), 93 (3), 83 (3), 76 (4), 75 (35), 74 (10), 70 (4), 69 (8), 68 (6), 63 (4), 62 (3), 61 (3), 57 (4), 51 (7), 50 (14), 44 (11), 39 (3), 38 (3), 37 (4), 31 (3). This product was known: Tu, T.; Wang, Z.; Liu, Z.; Feng, X.; Wang, Q. *Green. Chem.* **2012**, *14*, 921-924.

4-Chlorobenzamide. ¹H NMR (500 MHz, *d*₆-DMSO): δ 8.07 (b, 1H), 7.91-7.88 (m, 2H), 7.53 (d, *J* = 9.0 Hz, 2H), 7.49 (b, 1H). ¹³C NMR (125.4 MHz, *d*₆-DMSO): δ 166.8, 136.0, 133.0, 129.4, 128.3. MS (EI): m/z (%) 157 (16, M+2), 155 (50, M⁺), 141 (29), 140 (8), 139 (100), 137 (8), 113 (16), 112 (5), 111 (51), 85 (4), 77 (5), 76 (8), 75 (35), 74 (15), 73 (5), 51 (10), 50 (21), 44 (10), 38 (5), 28 (4). This product was known: Li, Z.; Wang, L.; Zhou, X. *Adv. Synth. Catal.* **2012**, *354*, 584-588.

3-Chlorobenzamide. ¹H NMR (500 MHz, *d*₆-DMSO): δ 8.10 (b, 1H), 7.92 (s, 1H), 7.84 (d, *J* = 7.5 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.54 (b, 1H), 7.50 (t, *J* = 7.5 Hz, 1H). ¹³C NMR (125.4 MHz, *d*₆-DMSO): δ 166.4, 136.3, 133.1, 131.0, 130.2, 127.3, 126.1. MS (EI): m/z (%) 157 (19, M+2), 155 (53, M⁺), 141 (27), 140 (11), 139 (100), 137 (9), 113 (16), 112 (5), 111 (51), 85 (5), 77 (7), 76 (9), 75 (35), 74 (15), 73 (5), 51 (10), 50 (23), 44 (9), 38 (4), 28 (3). This compound was known: Liu, Y. M.; Lin, H.; Fan, K. N. *ChemSusChem.* **2012**, *5*, 1392-1396.

2-Chlorobenzamide. ¹H NMR (500 MHz, *d*₆-DMSO): δ 7.94 (b, 1H), 7.66 (b, 1H), 7.55-7.53 (m, 1H), 7.51-7.46 (m, 2H), 7.45-7.42 (m, 1H). ¹³C NMR (125.4 MHz, *d*₆-DMSO): δ 168.1, 137.1, 130.5, 129.58, 129.56, 128.6, 127.0. MS (EI): m/z (%) 157 (18, M+2), 156 (4, M+1), 155 (58, M⁺), 142 (2), 141 (32), 140 (8), 139 (100), 113 (12), 112 (6), 111 (38), 85 (3), 77 (9), 76 (8), 75 (26), 74 (8), 51 (9), 50 (16), 44 (11), 38 (4), 37 (3). This product was known: Li, Z.; Wang, L.; Zhou, X. *Adv. Synth. Catal.* **2012**, *354*, 584-588.

4-Bromobenzamide. ¹H NMR (500 MHz, *d*₆-DMSO): δ 8.07 (d, 1H), 7.82 (d, *J* = 8.5 Hz, 2H), 7.67 (d, *J* = 7.0 Hz, 2H), 7.49 (b, 1H). ¹³C NMR (125.4 MHz, *d*₆-DMSO): δ 166.9, 133.3, 131.2, 129.5, 125.0. MS (EI): m/z (%) 201 (51, M+2), 199 (53, M⁺), 185 (94), 184 (7), 183 (100), 157 (37), 155 (38), 77 (20), 76 (46), 75 (45), 74 (26), 73 (6), 65 (6), 51 (22), 50 (67), 49 (6), 44 (25). This product was known: Tu, T.; Wang, Z.; Liu, Z.; Feng, X.; Wang, Q. *Green. Chem.* **2012**, *14*, 921-924.

3-Bromobenzamide. ¹H NMR (500 MHz, *d*₆-DMSO): δ 8.11 (b, 1H), 8.06-8.05 (m, 1H), 7.89-7.87 (m, 1H), 7.73-7.71 (m, 1H), 7.53 (b, 1H), 7.43 (t, *J* = 8.0 Hz, 1H). ¹³C NMR (125.4 MHz, *d*₆-DMSO): δ 171.6, 141.7, 139.2, 135.7, 135.4, 131.8, 126.8. MS (EI): m/z (%) 202 (5), 201 (58, M+2), 200 (5, M+1), 199 (59, M⁺), 186 (8), 185 (96), 184 (8), 183 (100), 157 (31), 156 (4), 155 (32), 139 (6), 102 (3), 77 (17), 76 (26), 75 (25), 74 (11), 65 (4), 51 (11), 50 (26), 44 (12), 38 (6), 37 (4). This compound was known: Liu, Y. M.; Lin, H.; Fan, K. N. *ChemSusChem.* **2012**, *5*, 1392-1396.

4-Iodobenzamide. ¹H NMR (500 MHz, *d*₆-DMSO): δ 8.03 (b, 1H), 7.84 (d, *J* = 8.5 Hz, 2H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.44 (b, 1H). ¹³C NMR (125.4 MHz, *d*₆-DMSO): δ 167.2, 137.1, 133.7, 129.4, 98.8. MS (EI): m/z (%) 248 (8, M+1), 247 (100, M⁺), 232 (4), 231 (72), 203 (29), 127 (5), 104 (5), 103 (4), 92 (3), 77 (8), 76 (38), 75 (12), 74 (13), 73 (3), 65 (7), 56 (4), 51 (9), 50 (28), 44 (13). This compound was known: Sahnoun, S.; Messaoudi, S.; Peyrat, J.-F.; Brion, J.-D. *Tetrahedron Lett.* **2012**, *53*, 2860-2863.

1-Naphthamide. ¹H NMR (500 MHz, CDCl₃): δ 8.43 (d, *J* = 8.5 Hz, 1H), 7.95 (d, *J* = 8.5 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.71 (d, *J* = 7.0 Hz, 1H), 7.60-7.53 (m, 2H), 7.49-7.46 (m, 1H), 5.96 (b, 1H). ¹³C NMR (125.4 MHz, CDCl₃): δ 171.3, 133.7, 133.1, 131.2, 130.0, 128.3, 127.3, 126.5, 125.4, 125.3, 124.6. MS (EI): m/z (%) 172 (9, M+1), 171 (72, M⁺), 170 (26), 156 (9), 155 (75), 154 (7), 153 (4), 128 (15), 127 (100), 126 (28), 125.4 (3), 115 (9), 101 (9), 85 (4), 77 (12), 76 (5), 75 (10), 63 (12), 51 (8), 50 (6), 44 (4). This product was known: Tu, T.; Wang, Z.; Liu, Z.; Feng, X.; Wang, Q. *Green. Chem.* **2012**, *14*, 921-924.

2-Naphthamide. ¹H NMR (500 MHz, d_6 -DMSO): δ 8.49 (s, 1H), 8.15 (b, 1H), 8.01 (d, J = 7.5 Hz,

1H), 7.99-7.95 (m, 3H), 7.64-7.58 (m, 2H), 7.47 (b, 1H). ¹³C NMR (125.4 MHz, *d*₆-DMSO): δ 168.0, 134.1, 132.1, 131.7, 128.8, 127.8, 127.7, 127.6, 127.5, 126.6, 124.4. MS (EI): m/z (%) 172 (9, M+1), 171 (71, M⁺), 170 (23), 156 (10), 155 (73), 154 (8), 153 (7), 128 (15), 127 (100), 126 (28), 125.4 (3), 115 (11), 101 (8), 85 (5), 77 (14), 76 (5), 75 (13), 63 (12), 51 (8), 50 (6), 44 (3). This compound was known: Wu, X.-F.; Sharif, M.; Feng, J.-B.; Neumann, H.; Langerb, P.; Beller, M. *Green. Chem.* **2013**, *15*, 1956-1961.

Picolinamide. ¹H NMR (500 MHz, *d*₆-DMSO): δ 8.64-8.62 (m, 1H), 8.16 (b, 1H), 8.06-8.04 (m, 1H), 8.00-7.97 (m, 1H), 7.67 (b, 1H), 7.60-7.57(m, 1H). ¹³C NMR (125.4 MHz, *d*₆-DMSO): δ 166.0, 150.3, 148.4, 137.6, 126.4, 121.9. MS (EI): m/z (%) 123 (2, M+1), 122 (29, M⁺), 80 (6), 79 (100), 78 (34), 76 (5), 53 (7), 52 (50), 51 (39), 50 (20), 49 (5), 44 (19), 39 (8), 38 (6), 37 (4), 28 (7), 27 (8), 26 (7), 16 (5). This product was known: Tamura, M.; Wakasugi, H.; Shimizu, K.; Satsuma, A. *Chem. Eur. J.* **2011**, *17*, 11428-11431.

Nicotinamide. ¹H NMR (500 MHz, d_6 -DMSO): δ 9.04-9.03 (m, 1H), 8.71 (dd, J = 1.5, J = 5.0 Hz, 1H), 8.22-8.20 (m, 1H), 8.18 (b, 1H), 7.63 (b, 1H), 7.52-7.49 (m, 1H). ¹³C NMR (125.4 MHz, d_6 -DMSO): δ 166.4, 151.9, 148.6, 135.1, 129.6, 123.4. MS (EI): m/z (%) 123 (8, M+1), 122 (100, M⁺), 106 (60), 105 (6), 104 (3), 94 (3), 79 (8), 78 (69), 77 (7), 76 (3), 75 (2), 53 (3), 52 (12), 51 (30), 50 (13), 49 (2), 44 (8), 39 (3), 38 (2). This product was known: Li, Z.; Wang, L.; Zhou, X. *Adv. Synth. Catal.* **2012**, *354*, 584-588.

O_↓NH₂

Isonicotinamide. ¹H NMR (500 MHz, d_6 -DMSO): δ 8.72 (d, J = 6.0 Hz, 2H), 8.27 (b, 1H), 7.77 (d, J = 4.5 Hz, 2H), 7.76 (b, 1H). ¹³C NMR (125.4 MHz, d_6 -DMSO): δ 166.3, 150.2, 141.2, 121.4. MS (EI): m/z (%) 123 (8, M+1), 122 (100, M⁺), 107 (2), 106 (40), 79 (12), 78 (56), 77 (2), 53 (2), 52 (15), 51 (36), 50 (14), 49 (2), 44 (13), 39 (3), 28 (3), 26 (2). This product was known: Tu, T.; Wang, Z.; Liu, Z.; Feng, X.; Wang, Q. *Green. Chem.* **2012**, *14*, 921-924.

2-Chloroisonicotinamide. ¹H NMR (500 MHz, *d*₆-DMSO): δ 8.56 (d, *J* = 5.0 Hz, 1H), 8.33 (b, 1H), 7.88 (b, 2H), 7.78 (dd, *J* = 5.5, J = 1.5 Hz, 1H). ¹³C NMR (125.4 MHz, *d*₆-DMSO): δ 164.8, 150.9, 150.6, 144.9, 122.1, 121.0. MS (EI): m/z (%) 158 (20, M+2), 157 (9, M+1), 156 (75, M⁺), 142 (30), 141 (7), 140 (100), 114 (16), 112 (48), 85 (14), 78 (9), 76 (19), 75 (4), 51 (15), 50 (19), 44(18), 28 (6). This product was known: Sahnoun, S.; Messaoudi, S.; Peyrat, J.; Brion, J.; Alami, M. *Tetrahedron Lett.* 2012, *53*, 2860-2863

Pyrazine-2-Carboxamide. ¹H NMR (500 MHz, d_6 -DMSO): δ 9.20 (d, J = 1.5 Hz, 1H), 8.86 (d, J = 2.5 Hz, 1H), 8.72 (dd, J = 2.5, J = 1.5 Hz, 1H), 8.29 (b, 1H), 7.89 (b, 1H). ¹³C NMR (125.4 MHz, d_6 -DMSO): δ 165.0, 147.4, 145.1, 143.6, 143.4. MS (EI): m/z (%) 124 (7, M+1), 123 (100, M⁺), 81 (4), 80 (80), 79 (18), 54 (2), 53 (51), 52 (32), 51 (9), 44 (18), 40 (2), 28 (12), 26 (15). This product was known: Tamura, M.; Wakasugi, H.; Shimizu, K.; Satsuma, A. *Chem. Eur. J.* **2011**, *17*, 11428-11431.

Thiophene-2-Carboxamide. ¹H NMR (500 MHz, d_6 -DMSO): δ 8.03 (b, 1H), 7.80 (d, J = 4.5 Hz, 2H), 7.45 (b, 1H), 7.19 (t, J = 7.5 Hz, 1H). ¹³C NMR (125.4 MHz, d_6 -DMSO): δ 162.8, 140.3, 130.9, 128.6, 127.9. MS (EI): m/z (%) 129 (4, M+2), 128 (5, M+1), 127(75, M⁺), 113 (6), 112 (7), 111 (100), 83 (13), 82 (8), 81 (7), 58 (13), 57 (18), 54 (4), 53 (4), 50 (5), 45 (19), 44 (18), 39 (60), 38 (10). This product was known: Roc1o, G.-Á.; Josefina, D.; Pascale, C.; Victorio, C. *Organometallics*. **2011**, *30*, 5442-5451.

Me NH₂

Acetamide. ¹H NMR (500 MHz, *d*₆-DMSO): δ 7.30 (b, 1H), 6.70 (b, 1H), 1.76 (s, 3H). ¹³C NMR (125.4 MHz, *d*₆-DMSO): δ 176.9, 27.7. MS (EI): m/z (%) 59 (M⁺). This product was known: Li, Z.; Wang, L.; Zhou, X. *Adv. Synth. Catal.* **2012**, *354*, 584-588.

Pentanamide. ¹H NMR (500 MHz, *d*₆-DMSO): δ 7.24 (b, 1H), 6.70 (b, 1H), 2.03 (t, *J* = 7.5 Hz, 2H), 1.49-1.43 (m, 2H), 1.30-1.22 (m, 2H), 0.87 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (125.4 MHz, *d*₆-DMSO): δ 174.3, 34.8, 27.2, 21.8, 13.7. MS (EI): m/z (%) 86 (7), 85 (5), 73 (4), 72 (18), 60 (8), 59 (100), 57 (16), 55 (9), 44 (30), 43 (7), 42 (6), 41 (10), 39 (5), 29 (19), 28 (9). This product was known: Das, R.; Chakraborty, D. *Catal. Commun.* **2012**, *26*, 48-53.

Cyclopropanecarboxamide. ¹H NMR (500 MHz, d_6 -DMSO): δ 7.53 (b, 1H), 6.78 (b, 1H), 1.53-1.48 (m, 1H), 0.64-0.61 (m, 4H). ¹³C NMR (125.4 MHz, d_6 -DMSO): δ 174.6, 13.2, 6.2. MS (EI): m/z (%) 85 (8, M⁺), 84 (61), 69 (25), 68 (8), 54 (5), 44 (100), 43 (8), 42 (41), 41 (70), 40 (14), 39 (90), 38 (27), 37 (15), 28 (26), 27 (26), 26 (12), 16 (17), 15 (9), 14 (8). This product was known: Jiang, D.; Yuan, F.; Jiang, B.; Li, C. *Faming Zhuanli Shenqing*. **2011**, *CN*, 102249949 A 20111123.

2-Phenylacetamide. ¹H NMR (500 MHz, CDCl₃): δ 7.48 (b, 1H), 7.32-7.26 (m, 4H), 7.24-7.21 (m, 1H), 6.89 (b, 1H), 3.38 (s, 2H). ¹³C NMR (125.4 MHz, CDCl₃): δ 172.2, 136.5, 129.0, 128.1, 126.2, 42.2. MS (EI): m/z (%) 135 (18, M⁺), 93 (7), 92 (92), 91 (100), 90 (5), 89 (8), 65 (27), 64 (9), 63 (11), 51 (5), 50 (6), 44 (11), 41 (3), 39 (14), 38 (5). This product was known: Li, Z.; Wang, L.; Zhou, X. *Adv. Synth. Catal.* **2012**, *354*, 584-588.

2-(4-Chlorophenyl)acetamide. ¹H NMR (500 MHz, d_6 -DMSO): δ 7.50 (b, 1H), 7.36-7.35 (m, 2H), 7.28 (d, J = 8.5 Hz, 2H), 6.93 (b, 1H), 3.37 (s, 2H). ¹³C NMR (125.4 MHz, d_6 -DMSO): δ 171.8, 135.5, 131.0, 130.90, 128.0, 41.3. MS (EI): m/z (%) 158 (14), 156 (41), 128 (15), 127 (24), 126 (46), 125 (63), 112 (4), 99 (6), 92 (8), 91 (100), 90 (9), 89 (6), 77 (16), 65 (15), 63 (9), 51 (6), 39 (7), 31 (17). This product was known: Khodaei, M. M.; Nazari, E. *Tetrahedron Lett.* **2012**, *53*, 2881-2884.

2-(4-Chlorophenyl)acetamide. ¹H NMR (500 MHz, d_6 -DMSO): δ 7.50-7.48 (m, 3H), 7.22 (d, J = 8.5 Hz, 2H), 6.93 (b, 1H), 3.36 (s, 2H). ¹³C NMR (125.4 MHz, d_6 -DMSO): δ 171.7, 135.9, 131.3,

130.9, 119.4, 41.4. MS (EI): m/z (%) 215 (27, M+2), 213 (28, M⁺), 174 (7), 173 (96), 172 (11), 171 (100), 145 (8), 143 (8), 119 (5), 92 (44), 91 (22), 90 (9), 75 (6), 65 (31), 64 (20), 63 (35), 62 (12), 61 (5), 52 (6), 50 (10), 43 (70), 39 (14), 38 (12), 28 (3). This product was known: Yoshimura, A.; Middleton, K. R.; Luedtke, M. W.; Zhu, C. J.; Zhdankin, V. *J. Org. Chem.* **2012**, 77, 11399-11404.

2-(4-Methoxyphenyl)acetamide. ¹H NMR (500 MHz, d_6 -DMSO): δ 7.39 (b, 1H), 7.17 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.5 Hz, 2H), 6.82 (b, 1H), 3.73 (s, 3H), 3.29 (s, 2H). ¹³C NMR (125.4 MHz, d_6 -DMSO): δ 172.6, 157.8, 130.0, 128.4, 113.6, 55.0, 41.3. MS (EI): m/z (%) 166 (2, M+1), 165 (20, M⁺), 122 (12), 121 (100), 107 (4), 91 (8), 89 (4), 78 (12), 77 (16), 65 (4), 63 (4), 52 (6), 51 (8), 50 (4), 44 (8), 39 (4). This product was known: Yoshimura, A.; Middleton, K. R.; Luedtke, M. W.; Zhu, C. J.; Zhdankin, V. J. Org. Chem. **2012**, 77, 11399-11404.

Cinnamamide. ¹H NMR (500 MHz, d_6 -DMSO): δ 7.58-7.56 (m, 3H), 7.45-7.38 (m, 4H), 7.14 (b, 1H), 6.62 (d, J = 16.0 Hz, 1H). ¹³C NMR (125.4 MHz, d_6 -DMSO): δ 166.7, 139.1, 134.9, 129.4, 128.9, 127.5, 122.3. MS (EI): m/z (%) 148 (6, M+1), 147 (59, M⁺), 146 (100), 131 (60), 130 (22), 129 (65), 128 (19), 104 (12), 103 (80), 102 (35), 78 (12), 77 (49), 76 (10), 63 (11), 51 (32), 50 (13), 44 (11), 39 (7). This product was known: Li, Z.; Wang, L.; Zhou, X. *Adv. Synth. Catal.* **2012**, *354*, 584-588.

Mechanistic studies and Secondary Mass Analysis of ¹⁶O- and ¹⁸O-Isotopic **Products:**

1. Quality report of commercial ¹⁸O-H₂O (¹⁸O: 98%):

Huayi Isotopes Co.

The leading manufacturer of Oxygen 18 Water & PET Precursons

Certificate of Analysis

Product Name: Oxygen-18 Water 98 % CAS No.: [14314-42-2] Lot No.: WT-121201 Manufacturing Date: Dec 2012 Expiry Date: Dec 2014

Test	Method	Specifications	Results U	Inits
Isotopic composition				
O ₁₈	MS	>98.00	98.03 A	tom %
O ₁₇	MS	<1.00	0.52 A	tom %
O ₁₆	MS	<2.00	1.45 A	tom %
Deuterium(D)		Normalized	Normalized	
Chemical composition				
Chemical Purity		>99.9	99.99	%
Sodium (Na ⁺)	ICP-MS	<0.1	0.014	ma/L
Potassium (K ⁺)	ICP-MS	<0.1	0.004	ma/L
Calcium (Ca ²⁺)	ICP-MS	<0.05	0.01	ma/L
Magnesium (Mg ²⁺)	ICP-MS	<0.05	0.0002	ma/L
Iron (Fe ²⁺)	ICP-MS	<0.05	0.005	ma/L
Copper (Cu ²⁺)	ICP-MS	<0.05	0.0009	ma/L
Zinc (Zn ²⁺)	ICP-MS	<0.05	0.0012	ma/L
Fluoride (F)	IC	<0.1	<0.01	ma/L
Chloride (Cl ⁻)	IC	<0.5	<0.02	mg/L
Bromide (Br ⁻)	IC	<0.5	<0.04	ma/L
lodide (l`)	IC	<0.5	<0.03	mg/L
Nitrate (NO3)	IC	<0.5	<0.05	mg/L
Sulfur (SO42-)	IC	<0.5	<0.1	mg/L
Phosphate (PO₄3-)	IC	<0.5	<0.1	mg/L
Ammonium (NH₄⁺)	IC	<0.5	<0.1	mg/L
Total Organic Carbon (TOC)	тос	<1.0	0.97	mg/L
Appearance	Organoleptic	Clear and colorless liquid	Clear and colorless liquic	
PH	PH meter	6.0 -8.0	7.65	
Conductivity	Cond. meter	<1.00	0.95	uS/cm
Pyrogen	LAL	<0.25	<0.03	i.U./ml
Sterility	USP	Sterile	Sterile	

<u>Note</u>

.*

Manufactured according to requirements of cGMP, ISO 9001:2008 and ISO 14001:2004. Store the product at room temperature. For use by qualified personnel only.

۶

۶

Quality Control		Quality Assurance			
A he	he		1 Ver		
Wanwan Liang	Date:	2012, 12, 18	Dr. Zhihong Xu	Date:	m12.12.10

Version 3.0

Lot No.: WT-121201

Page 1 of 1

18 Fuyu Road, Haiyu Town, Changshu City, Jiangsu Province, P.R.CHINA Zip: 215522 Tel: +86 512 52491118 Fax: +86 512 52451806 E-mail: Info@huayi-isotopes.com Http:// www.huayi-isotopes.com

2. Preparation of ¹⁸O-DMSO and Purity Determination of by Secondary Mass Analysis: ¹⁸O-DMSO was prepared according to the literature method (Fenselau, A. H.; Moffatt, J. G. *J. Am. Chem. Soc.* **1966**, *88*, 1762) by using above commercial ¹⁸O-H₂O (98%) and then its purity determined by secondary mass.

m/z	Intensity	Ratio%	0%	DMSO	DMSO%
79.3	74910	0.76	14.02	¹⁶ O-DMSO	14
81.3	456707	4.66	85.98	¹⁸ O-DMSO	86

3. Comparison of PhCONH₂ (2a) obtained from hydration reactions of PhCN (1a) using 16 O-or 18 O-DMSO and 16 O-H₂O.

3.1 $^{16}\text{O-PhCONH}_2$ (2a) obtained under standard conditions using normal $^{16}\text{O-DMSO}$ and normal $^{16}\text{O-H}_2\text{O}.$

3.2 $^{16/18}$ O-PhCONH₂ (2a) obtained from hydration reaction using 18 O-DMSO (86% 18 O) and normal 16 O-H₂O at room temperature.

3.3 Comparison and Tentative Conclusion:

In the case of a normal sample of **2a** (results in section 3.1), since no any ¹⁸O sources were available in the reaction, secondary mass analysis showed that it contains no ¹⁸O-**2a** at all. In contrast, by using prepared ¹⁸O-DMSO (containing 86% ¹⁸O), the product obtained was determined to contain 3.3% ¹⁸O-**2a** as analyzed by secondary mass (results in section 3.2). Addition of 20 mol% CsOH equals to generation of at best ~17 mol% ¹⁸O-dimethylsulfinyl anion (**I**) and ~3 mol% ¹⁶O-**I** as catalysts, which may suggested that a considerable extent of ¹⁸O-DMSO-participated reaction have occurred. Since ¹⁸O-DMSO is the only ¹⁸O source in the reaction, this amount of ¹⁸O-**2a** must have been generated from the reaction of ¹⁸O-DMSO. Since O-attack reactions of DMSO and other sulfoxides toward various electrophiles and O-transfer reactions have been the common reactions among DMSO and other sulfoxides (ref. 18 of the text), *the only explanation for the formation of* ¹⁸O-**2a** *is that an O-transfer reaction from DMSO to 1a have occurred to give ¹⁸O-2a (path a in Scheme 1 of the text) in the present nitrile hydration reaction.*

4. Direct hydration reactions of PhCN (1a) with ¹⁸O-H₂O and secondary mass analysis of product benzamide (2a).

4.3 Comparison and Tentative Conclusion:

In the above two parallel reactions, ¹⁶O-DMSO-participated indirect hydration of **1a** involving ¹⁶O-transfer from ¹⁶O-DMSO to **1a** to give ¹⁶O-**2a** increased by 17~60% from the reaction at 100 °C (reaction 4.1) to the reaction at room temperature (reaction 4.2). This is most possibly due to the lower reactivity of ¹⁸O-H₂O toward **1a** at room temperature than the one at higher temperature, and stronger interaction between ¹⁶O-dimethylsulfinyl anion (**I**) and **1a**, which consequently led to more effective O-attack of ¹⁶O-**I** at **1a** to give enhanced yields of ¹⁶O-**2a** at room temperature. *These results also support that DMSO-participated indirect hydration process involving O-transfer from DMSO to nitriles to give amides (path a in Scheme 1 of the text) is a possible process in the present nitrile hydration reaction.*

S33

110 100 f1 (ppm) Ó. -10

-10 f1 (ppm) ó

