Electronic Supporting Information

Tert-Butyl Hydroperoxide (TBHP)-Mediated Oxidative Self-Coupling of Amines to Imines over α-MnO₂Catalyst

Zhe Zhang,^{a,b} Feng Wang,^{a,*} Min Wang,^a Shutao Xu,^a Haijun Chen,^{a,b}

Chaofeng Zhang,^{*a,b*} Jie Xu^{*a,**}

^aState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics,

Chinese Academy of Sciences, Dalian 116023 (P.R. China)

^bGraduate University of Chinese Academy of Sciences, Beijing 100049

(P.R. China)

*Corresponding author: E-mail: wangfeng@dicp.ac.cn; xujie@dicp.ac.cn

Content:

1. Materials

- 2. Preparation of α -MnO₂
- 3. Characterization of catalysts
- 4. Oxidation of amines
- 5. Catalyst recycles
- 6. Filtration experiment
- 7. ATR-IR
- 8. Kinetics
- 9. Mechanism
- 10. Influence of amount of water
- 11. Detection of NH₃

1. Materials

 β -MnO₂^[1], δ -MnO₂^[2], OMS^[3], Mn₂O₃^[4], Mn₃O₄^[4], Co₃O₄^[5], MoO₃^[6]were prepared according to the literature procedures.Fe₂O₃, V₂O₅, CuO were obtained from Tianjin Kermel. KMnO₄ and MnSO₄·H₂O were obtained from Tianjin Kermel and Sinopharm Chemical Reagent. Solvents were obtained from Tianjin Kermel, and substrates were obtained from J&K or Aladdin. TBHP was obtained from Sinopharm Chemical Reagent.

2. Preparation of α -MnO₂

The α -MnO₂ was prepared as follows:^[7] a 10 mL aqueous solution containing KMnO₄ (1 mmol) was mixed with 10 mL aqueous solution containing MnSO₄ (1.5 mmol) and stirred continuously for 6 h. A dark-brown precipitate thus formed and was collected by centrifugation, washed repeatedly with deionized water, and finally dried overnight at 70 °C.

	3.	Characterization	of	catal	ysts
--	----	------------------	----	-------	------

Table S1 Surface area of different catalysts						
Entry	Catalyst	Surface area m ² /g ^[a]				
1	α-MnO₂	127.69				
2	OMS-2	84.70				
3	β-MnO ₂	19.11				
4	δ-MnO ₂	68.57				
5	Mn ₂ O ₃	94.69				
6	Mn ₃ O ₄	50.47				
7	Fe ₂ O ₃	3.58				
8	V ₂ O ₅	12.13				
9	CuO	2.58				
10	Co ₃ O ₄	3.29				
11	MoO ₃	9.14				

[a] Surface area data were characterized using Quantachrome Instruments.

XRD pattern of α -MnO₂

4. Catalytic reaction

A general procedure for the synthesis of imines from amines was as follows: Amine (0.5 mmol), α -MnO₂ catalyst (10 mol%), TBHP (1 mmol) and solvent (2 mL) were placed in a pressure vessel with a magnetic stir bar. The reaction was carried out at room temperature. The product was analyzed by GC-MS using an Agilent 7890A/5975C instrument equipped with an HP-5MS column (30 m in length, 0.25 mm in diameter). The conversion was determined using internal standard method with dodecane as internal standard. The selectivity was determined using area normalization method. After the reaction was complete, used α -MnO₂ catalyst was separated by centrifugation, washed with ethanol and deionized water and dried at 70 °C prior to being recycled.

5. Filtration experiment and ICP analysis

The benzylamine oxidation mixture was quickly filtered through a Teflon-membrane filter after 2 h to another glass reactor, which was placed in the same oil-bath with the previous one. The reaction was then conducted with the filtrate for another 4 hour. Four samples were collected at 3 h, 4 h, 5 h and 6 h, and analyzed.

ICP analysis was conducted after the reaction and the benzyl amine oxidation mixture was filtered through a Teflon-membrane filter.

6. Catalyst recycles

Figure S1 Reusability of $\alpha\text{-}MnO_2$ in the transformation of benzylamine to

N-Benzylidenebenzylamine.

7. ATR-IR

Figure S2 InA (absorbance of 865 cm⁻¹ band collected from ATR-IR) vs. time linear plot of a) 303 K, b) 313 K, c) 323 K, d) 333 K, e) 343 K.

8. Kinetics analysis

Figure S3 In (1-C) vs. time linear plot for the oxidation of substituted benzylamine. a) p-F, b) p-Cl, c) p-OCH₃, d) p-H.

9. Control tests

Scheme S1 Using TEMPO or BHT as additive for the oxidation of benzylamine

Figure S4 Absorbance of 865 cm⁻¹ band collected from ATR-IR vs. time at 30°C.

10. Influence of the amount of water

Anhydrous TBHP was prepared by extraction aqueous TBHP with dichloromethane, followed by drying over 4A zeolite. Acetonitrile was pretreated to remove water.

Figure S5 Influence of the amount of water on the catalytic oxidation of benzylamine.

11. Detection of NH₃

Figure S6 Detection of NH₃ after 4 h catalytic oxidation of benzylamine.

References:

- F. Y. Cheng, T. R. Zhang, Y. Zhang, J. Du, X. P. Han, J. Chen, Angew. Chem. Int. Ed. 2013, 52, 2474-2477.
- [2] S. Devaraj, N. Munichandraiah, J. Phys. Chem. C 2008, 112, 4406-4417.
- [3] B. X. Hu, C. H. Chen, S. J. Frueh, L. Jin, R. Joesten, S. L. Suib, *J. Phys. Chem. C* 2010, *114*, 9835-9844.
- [4] X. Q. Li, J. Xu, F. Wang, J. Gao, L. P. Zhou, G. Y. Yang, *Catal. Lett.* 2006, 108, 137-140.
- [5] X. L. Xiao, X. F. Liu, H. Zhao, D. F. Chen, F. Z. Liu, J. H. Xiang, Z. B. Hu, Y. D. Li, Adv. Mater. 2012, 24, 5762-5766.
- [6] F. Wang, W. Ueda, *Chem. Commun.* **2008**, 3196-3198.
- [7] H. Y. Lee, J. B. Goodenough, J. Solid State Chem. **1999**, 144, 220-223.