SUPPORTING INFORMATION

Characterization of Organosolv Switchgrass Lignin by Using High Performance Liquid

Chromatography / High Resolution Tandem Mass Spectrometry Using Hydroxide-Doped

Negative-Ion Mode Electrospray Ionization

Tiffany M. Jarrell, Christopher L. Marcum, Huaming Sheng, Benjamin C. Owen, C. J. O'Lenick, Hagen Maraun, Joseph J. Bozell, and Hilkka I. Kenttämaa*

**E-mail: hilkka@purdue.edu*

Table of Contents

- **Table S1.** Elemental compositions obtained from exact mass measurements for the deprotonated carbohydrates and fatty acids in the organosolv switchgrass sample.
- **Table S2.** Deprotonated molecules formed upon negative-ion mode ESI from monomeric lignin model compounds, and the fragment ions of the deprotonated molecules with their relative abundances, and the fragment ions' fragment ions with their relative abundances, formed in consecutive ion isolation/CAD experiments.
- **Table S3.** Deprotonated molecules formed upon negative-ion mode ESI from dimeric lignin model compounds, the fragment ions of the deprotonated molecules with their relative abundances, and the fragment ions' fragment ions with their relative abundances, formed in consecutive ion isolation/CAD experiments. Data for G(8-8)G, G(8-5)G, and G(8-8)FA were obtained from literature.
- **Table S4.** Ions formed upon negative-ion mode ESI for organosolv switchgrass mixture that show fragmentation that matches that of a deprotonated model compound studied as well as their fragment ions, with their relative abundances, formed in consecutive ion isolation/CAD experiments
- Figure S1. An HPLC chromatogram measured for the organosolv switchgrass sample after spiking it with a tetrameric model compound and the negative-ion mode ESI mass spectrum measured for the dopant.

Elemental	Retention Time	Exact Mass	Error (± mmu from	DBE	Analyte Type
Composition			expected mass)		5 51
C ₁₂ H ₂₃ O ₂	26.74	199.1706	1.4	1	Fatty Acid
C ₁₄ H ₂₇ O ₂	29.01	227.2019	1.3	1	Fatty Acid
C ₁₅ H ₂₉ O ₂	29.62	241.2176	1.4	1	Fatty Acid
C ₆ H ₉ O ₅	3.56	161.0459	1.4	2	Saccharide
C ₁₀ H ₁₅ O ₇	3.60	247.0825	1.3	3	Saccharide

Table S1. Elemental compositions obtained from exact mass measurements for the deprotonated carbohydrates and fatty acids in the organosolv switchgrass sample.

Table S2. Deprotonated molecules formed upon negative-ion mode ESI from monomeric lignin model compounds, and the fragment ions of the deprotonated molecules with their relative abundances, and the fragment ions' fragment ions with their relative abundances, formed in consecutive ion isolation/CAD experiments.^a

Model Compounds		MS ² /CAD Product Ions	s (m/z)	MS ³ /CAD Product Ions ^a (m/z)		
(m/z o	f [M-H] ⁻)	and Their Relative Abundances		and Their Relative Abundances		
Vanilli	in (151)	151-CH ₃ (136)	100%	136-CO (108)	100%	
- _o				136-CO ₂ (92)	15%	

^a MS³ was performed only for the most abundant product ion in the MS² spectra to avoid sacrificing the duty cycle of the instrument.

Table S3. Deprotonated molecules formed upon negative-ion mode ESI from dimeric lignin model compounds, the fragment ions of the deprotonated molecules with their relative abundances, and the fragment ions' fragment ions with their relative abundances, formed in consecutive ion isolation/CAD experiments.^a Data for G(8-8)G, G(8-5)G, and G(8-8)FA were obtained from literature.^b

Model Compounds (m/z of [M-H] ⁻)	MS ² /CAD Product Ions (m/z) and Their Relative Abundances		MS ³ /CAD Product Ions ^a (m/z) and Their Relative Abundances		
$\begin{array}{c} G(\beta \text{-}\beta)G^{b}\left(357\right) \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ - 0 \end{array} \xrightarrow{\textbf{A}} \xrightarrow{\textbf{O}} \textbf{$	357-A (151) 10 357-CH ₂ O (327) 3 357-A-CH ₃ (136) 2 357-HCOOH (311) 1 257-CH (242) 1	00% 64% 23% 5%	Not reported ^b		
G(β-5)G ^b (359) A ← → → → → → → → → → → → → → → → → → →	359-A (223)	0%	Not reported ^b		
$\begin{array}{c} G(\beta - \beta)FA^{b}(371) \\ \circ \\ - \circ \\ - \circ \end{array} \xrightarrow{\circ} \\ - \circ \\ - \circ \end{array} \xrightarrow{\circ} \\ - \circ \\ -$	371-CO ₂ (327) 10	0%	Not reported ^b		
G(β-O-4)G: 319 OH O - OH O OH O OH O OH	319-H ₂ O-CH ₂ O(271) 10 319-A (195)	0% 8%	271-CH ₃ (256) 100% 271-A (164) 18%		

^a MS³ was performed only for the most abundant product ion in the MS² spectra to avoid sacrificing the duty cycle of the instrument.

^b Reference 40.

Identified Analytes: m/z of [M-H] ⁻		MS ² /CAD Product Ion and Their Relative Abundances	s (m/z)	MS ³ /CAD Product Ions ^a (m/z) and Their Relative Abundances		
A ₁ : 167	HO	167-CH ₃ (152) 167-CO ₂ (123)	100% 45%	152-CO ₂ (108)	100%	
A ₂ : 121		121-CO (93) 121-COH (92)	100% 21%	93: No further fragmentation		
A ₃ : 151		151-CH ₃ (136)	100%	136-CO (108) 136-CO ₂ (92)	100% 14%	
A ₄ : 181		181-CH ₃ (166)	100%	166-CH ₃ (151)	100%	
A ₅ : 147		147-CO (119) 147- C ₃ H ₄ O (103)	100% 10%	119: No further fragmentation		
A ₆ : 177		177-CH ₃ (162)	100%	162-CO (134) 162-COH (133) 162-C ₃ H ₄ O (106)	100% 36% 13%	
A ₇ : 207		207-CH ₃ (192)	100%	192-CH ₃ (162)	100%	
A₈: 163	но	163-CO ₂ (119)	100%	119:No further fragmentation		
A ₉ : 193	HOLOGIC	193- CO ₂ -CH ₃ (134) 193-CO ₂ (149) 193-CH ₃ (178)	100% 45% 8%	134: No further fragmen	tation	
A ₁₁ : 191		$\begin{array}{c} 191\text{-}C_{2}H_{4}\ (163)\\ 191\text{-}C_{2}H_{6}O\ (145)\\ 191\text{-}C_{2}H_{4}\ \text{-}CO_{2}\ (119)\\ 191\text{-}C_{2}H_{5}\ (162) \end{array}$	100% 22% 14% 7%	163-CO ₂ (119)	100%	
A ₁₂ : 221		221-CH ₃ (206)	100%	206-C ₂ H ₅ (177) 206-C ₂ H ₅ - CO ₂ (133) 206-C ₂ H ₄ (178) 206-C ₂ H ₄ - CO ₂ (134)	100% 33% 25% 8%	
B ₆ : 371		371-CO ₂ (327)	100%	327-CH ₂ O (297) 327-Y (175) 327-CH ₃ (312)	100% 20% 19%	

Table S4. Ions formed upon negative-ion mode ESI for organosolv switchgrass mixture that show fragmentation that matches that of a deprotonated model compound studied as well as their fragment ions, with their relative abundances, formed in consecutive ion isolation/CAD experiments.^a

^a MS³ was performed only for the most abundant product ion in the MS² spectra to avoid sacrificing the duty cycle of the instrument.

Figure S1. An HPLC chromatogram measured for the organosolv switchgrass sample after spiking it with a tetrameric model compound (0.1 mM) and the negative-ion mode ESI mass spectrum measured for the dopant.