Supporting Information

Replacing Stoichiometric Silver Oxidant with Air: Ligated Pd(II)Catalysis to $\boldsymbol{\beta}$-Aryl Carbonyl Derivatives with Improved Chemoselectivity

Mári Vellakkaran, ${ }^{a}$ Murugaiah M. S. Andappan ${ }^{b}$ and Kommu Nagaiah *a
${ }^{a}$ Organic and Biomolecular Chemistry Division, CSIR- Indian Institute of Chemical Technology,
Tarnaka, Hyderabad, India-500007. E-mail:nagaiah@iict.res.in
${ }^{b}$ Syngene, Biocon Park, Bengaluru, India-560009; E-mail: murugaiah.andappan@gmail.com

Table of Contents

Serial No.	Description	Page No.
1.1	General Experimental	S2
1.2	General Experimental Procedure	S2
1.3	Analytical Data	S3-S20
1.4	References	S21
1.5	${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra	S22-S64

1.1 General Experimental Details:

All solvents and reagents were used, as received from the suppliers. TLC was performed on Merck Kiesel gel 60, F_{254} plates with the layer thickness of 0.25 mm . Column chromatography was performed on silica gel (100-200 mesh) using a gradient of ethyl acetate and hexane as mobile phase. Melting points were determined on a Fisher John's melting point apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer RX-1 FTIR system. ${ }^{1} \mathrm{H}$ NMR spectral data were collected at 300 (AVANCE \& JCAMP), 400 (INOVA) \& 500 (INOVA \& AVANCE) MHz, while ${ }^{13} \mathrm{C}$ NMR were recorded at $75,100 \&$ $125 \mathrm{MHz} .{ }^{1} \mathrm{H}$ NMR spectral data are given as chemical shifts in ppm followed by multiplicity (s- singlet; d- doublet; t - triplet; q- quartet; m- multiplet), number of protons and coupling constants. ${ }^{13} \mathrm{C}$ NMR chemical shifts are expressed in ppm. HRMS (ESI) spectral data were collected using Q-star \& ORBITRAP High Resolution Mass Spectrometer. Starting materials were prepared as previously reported [1-(4-Methoxyphenyl)prop-2-en-1-ol, ${ }^{\text {1a }}$ 1-Phenylprop-2-en-1-ol, ${ }^{\text {1a }} \quad 1-p$-Tolylprop-2-en-1-ol, ${ }^{\text {1a }} \quad 1$-(4-Bromophenyl)prop-2-en-1-ol, ${ }^{\text {b }}$ (1Hydroxyallyl)benzonitrile, ${ }^{\text {1c }}$ 1-(Pyridin-3-yl)prop-2-en-1-ol, ${ }^{\text {1d }}$ 1-(Naphthalen-1-yl)prop-2-en-1-ol, ${ }^{\text {1a }} 4,4$-Dimethylpent-1-en-3-ol, ${ }^{\text {le }} 1-\left((R)\right.$-2,2-Dimethyl-1,3-dioxolan-4-yl)prop-2-en-1-ol, ${ }^{\text {1f }}$ 1-((3aR,5S,6S,6aR)-2,2,6-Trimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)prop-2-en-1-ol, ${ }^{\text {1g }}$ (Z)-4-(tert-butyldimethylsilyloxy)but-2-en-1-ol, ${ }^{\text {hh }}$ Butyl-2-(hydroxy(phenyl)methyl)acrylate, ${ }^{1 \mathrm{i}}$ Butyl-2-((4-bromophenyl)(hydroxy)methyl)acrylate, ${ }^{1 i}$ Butyl-2-(hydroxy(4-methoxyphenyl) methyl)acrylate ${ }^{1 i}$]. Oct-1-en-3-ol, Prop-2-en-1-ol and Cyclohex-2-enol were purchased from Aldrich.

1.2 General Procedure for Synthesis of $\boldsymbol{\beta}$-Aryl Carbonyl Compounds from Allyl

Alcohols

A mixture of arylboronic acid (1.5 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.022 \mathrm{~g}, 0.1 \mathrm{mmol})$, and 2,9-dimethyl-1,10-phenanthroline ($0.042 \mathrm{~g}, 0.20 \mathrm{mmol}$), $\mathrm{CuCl}(0.005 \mathrm{~g}, 0.05 \mathrm{mmol})$ and allyl
alcohol (1.0 mmol) was dissolved in DMSO (3 mL) in a 10 mL RB flask closed with air balloon (1atm pressure). The mixture was vigorously stirred at $50^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature, the reaction mixture was partitioned between ethyl acetate (25.0 mL) and water (25 mL) and it was transferred to a separatory funnel. The organic layer was washed with water, and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ and concentrated in vacuo. The residue was purified by column chromatography using a gradient of hexane and ethyl acetate (eluent system) to afford the pure product.

1.3 Analytical data for products

3-Phenyl-1-p-tolylpropan-1-one (1) ${ }^{2 \mathrm{a}}$

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4\% ethyl acetate in hexane as eluent) to afford the title product as a colourless solid ($0.208 \mathrm{~g}, 93 \%$). M.p. 62$63{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.20(\mathrm{~m}, 7 \mathrm{H}), 3.31(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.9$, 143.9, 141.4, 134.4, 129.3, 128.6, 128.5, 128.2, 126.1, 40.4, 30.3, 21.7; (IR, Neat): 3060, 1681, 1606, 1451, 1292, 1180, 974, $700 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ONa}\right]^{+}$ 247.1098; Found 247.1103.

3-(4-Methoxyphenyl)-1-p-tolylpropan-1-one (2) ${ }^{2 \mathrm{a}}$

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 3-4\% ethyl acetate in hexane as eluent) to afford the title product as a colourless solid ($0.213 \mathrm{~g}, 84 \%$). M.p. $112-114{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.0,158.0,143.8,134.5,133.5,129.4,129.3,128.2,114.0,55.3,40.6$,
29.4, 21.6; (IR, Neat): 3016, 1678, 1607, 1512, 1216, $746 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{2}\right]^{+}$255.13796; Found 255.13807.

N-(4-(3-Oxo-3-p-tolylpropyl)phenyl)acetamide (3)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 10\% ethyl acetate in hexane as eluent) to afford the title product as a colourless solid ($0.214 \mathrm{~g}, 76 \%$). M.p. $142-143{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 3.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.1, 168.6, 143.9, 137.4, 136.1, 134.4, 129.3, 128.9, 128.2, 120.3, 40.3, 29.6, 24.4, 21.6; (IR, Neat): 3017, 1674, 1369, 1215, $743 \mathrm{~cm}^{-1} ;$ HRMS (ESI): Calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{NNa}\right]^{+}$304.13080; Found 304.13092.

3-(4-Acetylphenyl)-1-p-tolylpropan-1-one (4)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 7-8 \% ethyl acetate in hexane as eluent) to afford the title product as a colourless solid ($0.205 \mathrm{~g}, 77 \%$). M.p. $138-140{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88$ (dd, J $=11.0,8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.35(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.13(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.3$, 197.8, 147.3, 144.1, 135.2, 134.2, 129.3, 128.7, 128.7, 128.1, 39.6, 30.1, 26.6, 21.7; (IR, Neat): 3019, 1679, 1607, 1412, 1215, 743, $667 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2}\right]^{+}$267.13796; Found 267.13821.

4-(3-Oxo-3-p-tolylpropyl)benzonitrile (5) ${ }^{\text {2b }}$

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4% ethyl
acetate in hexane as eluent) to afford the title product as a colourless solid $(0.219 \mathrm{~g}, 88 \%)$. M.p. $130-132{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.34-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.9, 147.1, 144.2, 134.1, 132.3, 129.4, 129.4, 128.1, 119.0, 110.0, 39.3, 30.1, 21.7; (IR, Neat): 3020, 2223, 1678, 1481, 1214, 742 $\mathrm{cm}^{-1} ;$ HRMS (ESI): Calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NONa}\right]^{+}$272.10512; Found 272.10514.

3-(4-Nitrophenyl)-1-p-tolylpropan-1-one (6)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4 \% ethyl acetate in hexane as eluent) to afford the title product as a colourless solid ($0.234 \mathrm{~g}, 87 \%$). M.p. $110-112{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{~d}, J$ $=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $197.8,149.3,144.2,134.1,129.4,128.3,128.1,124.4,123.7,39.3,29.8,21.6$; (IR, Neat): 3020, 1679, 1519, 1215, $742 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{3}\right]^{+}$270.11247; Found 270.11251.

3-o-Tolyl-1-p-tolylpropan-1-one (7)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4\% ethyl acetate in hexane as eluent) to afford the title product as a colourless solid ($0.193 \mathrm{~g}, 81 \%$). M.p. $86-88{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85$ (d, $J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{ddd}, J=13.1,6.3,3.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.20(\mathrm{t}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.0, 143.9, 139.5, 136.0, 134.5, 130.4, 129.3, 128.8, 128.2, 126.3, 126.2, 39.0, 27.7, 21.7, 19.4; (IR, Neat): 3018, 1679, 1607, 1570, 1216, 1180, 974, $743 \mathrm{~cm}^{-1}$; HRMS (ESI):

Calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}\right]^{+}$239.14304; Found 239.14325

3-Mesityl-1-p-tolylpropan-1-one (8)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4\% ethyl acetate in hexane as eluent) to afford the title product as a colourless solid ($0.210 \mathrm{~g}, 79 \%$). M.p. $112-114^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), $6.93(\mathrm{~s}, 2 \mathrm{H}), 3.22-3.02(\mathrm{~m}, 4 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 6 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.9,148.5,140.7,140.1,139.5,139.0,133.9,133.7,132.7,42.4,28.4$, 26.2, 25.4, 24.4; (IR, Neat): 3011, 1677, 1447, 1180, 748, cm^{-1}; HRMS (ESI): Calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}\right]^{+}$267.17434; Found 267.17463.

3-(4-Chlorophenyl)-1-p-tolylpropan-1-one (9) ${ }^{2 \mathrm{a}}$

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4\% ethyl acetate in hexane as eluent) to afford the title product as a colourless solid ($0.230 \mathrm{~g}, 89 \%$). M.p. $101-102{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.17(\mathrm{~m}, 6 \mathrm{H}), 3.27(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) δ 198.5, 144.0, 139.9, 134.3, 131.8, 129.8, 129.3, 128.6, 128.1, 40.1, 29.5, 21.7; (IR, Neat): 3025, 1668, 1603, 1219, 808, $771 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{OCl}\right]^{+}$259.08842; Found 259.08863.

3-(4-Bromophenyl)-1-p-tolylpropan-1-one (10)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4\% ethyl acetate in hexane as eluent) to afford the title product as a colourless solid ($0.284 \mathrm{~g}, 94 \%$). M.p. $104-106{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.24$
$(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 198.4, 144.0, 140.4, 134.3, 131.5, 130.2, 129.3, 128.1, 119.9, 39.9, 29.6, 21.6; (IR, Neat): 3020, 1678, 1214, 747, $667 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{OBr}\right]^{+} 303.03790$; Found 303.03843.

3-(4-Iodophenyl)-1-p-tolylpropan-1-one (11)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4% ethyl acetate in hexane as eluent) to afford the title product as a colourless solid ($0.312 \mathrm{~g}, 89 \%$). M.p. $105-106{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.23$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 198.4, 144.0, 141.1, 137.5, 134.3, 130.6, 129.3, 128.2, 91.2, 39.9, 29.6, 21.7; (IR, Neat): 3018, 1679, 1607, 1447, 1215, 745, $666 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{OI}\right]^{+}$ 351.02403; Found 351.02450.

3-(3,5-Dichlorophenyl)-1-p-tolylpropan-1-one (12)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4\% ethyl acetate in hexane as eluent) to afford the title product as a colourless solid ($0.228 \mathrm{~g}, 78 \%$). M.p. $118-119{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.28-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.8, 144.9, 144.1, 134.8, 134.1, 129.4, 128.1, 127.1, 126.3, 39.4, 29.4, 21.7; (IR, Neat): 3019, 1680, 1566, 1214, $745,667 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{OCl}_{2}\right]^{+}$ 293.04945; Found 293.04980.

3-(Biphenyl-4-yl)-1-p-tolylpropan-1-one (13)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4\% ethyl acetate in hexane as eluent) to afford the title product as a colourless solid ($0.246 \mathrm{~g}, 82 \%$). M.p. $109-110^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{dd}, J=14.4,8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H})$, $7.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.9,143.9,141.0,140.6,139.1,134.4,129.4,128.9,128.8$, 128.2, 127.3, 127.2, 127.1, 40.3, 29.9, 21.7; (IR, Neat): 3017, 1601, 1420, 1214, 981, $743 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}\right]^{+} 301.15869$; Found 301.15892 .

3-(Naphthalen-2-yl)-1-p-tolylpropan-1-one (14)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4% ethyl acetate in hexane as eluent) to afford the title product as a colourless solid ($0.225 \mathrm{~g}, 82 \%$). M.p. $89-90{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85$ (d, $J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.32(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 198.9,143.9,139.0,134.5,133.7,132.2,129.3,128.2,128.1,127.7,127.5,127.2$, 126.5, 126.0, 125.3, 40.3, 30.4, 21.7; (IR, Neat): $3018,1679,1409,1215,742 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}\right]^{+}$275.14304; Found 275.14341.

1,3-Diphenylpropan-1-one (15) ${ }^{\text {2c,4 }}$

 Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4\% ethyl acetate in hexane as eluent) to afford the title product as a colourless solid ($0.185 \mathrm{~g}, 88 \%$). M.p. $62-63{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.04-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 2 \mathrm{H})$,
$7.35-7.22(\mathrm{~m}, 5 \mathrm{H}), 3.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 199.2, 141.3, 136.8, 133.0, 128.6, 128.5, 128.4, 128.0, 126.1, 40.4, 30.1; (IR, KBr): 3059, 1679, 1593, 1446, 1207, 975, 746, $693 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ONa}\right]^{+}$233.0942; Found 233.0939.

1-(4-Methoxyphenyl)-3-phenylpropan-1-one (16) ${ }^{2 c, 3}$

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4\% ethyl acetate in hexane as eluent) to afford the title product as a colourless solid ($0.226 \mathrm{~g}, 94 \%$). M.p. $98-99{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.14(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{t}, J=7.9 \mathrm{~Hz}$, 2H), $3.05(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.8,163.4,141.5,130.3$, $130.0,128.5,128.4,126.1,113.7,55.4,40.1,30.3$; (IR, KBr): 3003, 1668, 1602, 1450, 1256, 1174, 1026, 841, $660 \mathrm{~cm}^{-1}$; HRMS (ESI) Calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}\right]^{+}$263.1035; Found 263.1038.

1-(4-Bromophenyl)-3-phenylpropan-1-one (17)

colourless solid ($0.268 \mathrm{~g}, 93 \%$). M.p. $97-98{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.79$ (m, 2H), $7.63-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.18(\mathrm{~m}, 5 \mathrm{H}), 3.28(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) δ 198.1, 141.0, 135.5, 131.9, 129.5, 128.5, 128.4, 128.2, 126.2, 40.4, 30.0; (IR, KBr): 3054, 1656, 1595, 1483, 1210, 991, $760 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrONa}\right]^{+} 311.0047$; Found 311.0041.

4-(3-Phenylpropanoyl)benzonitrile (18)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4\% ethyl acetate in hexane as eluent) to afford the title product as a colourless solid ($0.212 \mathrm{~g}, 90 \%$). M.p. $57-58{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07-8.02$ $(\mathrm{m}, 2 \mathrm{H}), 7.80-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.19(\mathrm{~m}, 5 \mathrm{H}), 3.30(\mathrm{dd}, J=8.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.8,146.6,132.5,131.2,129.1,128.6,128.4$, 126.4, 121.2, 117.9, 40.7, 29.8; (IR, KBr): 3035, 2224, 1682, 1597, 1402, 1205, 985, $774 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ESI) Calculate for $\left[\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NONa}\right]^{+} 258.0895$; Found 258.0923 .

1-(2-Hydroxyphenyl)-3-phenylpropan-1-one (19) ${ }^{\text {5a }}$

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 10% ethyl acetate in hexane as eluent) to afford the title product as a pale yellowish coloured oil ($0.201 \mathrm{~g}, 89 \%$); ${ }^{1} \mathrm{H}$ NMR (300 MHz ,) $\delta 12.30(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dt}, J=11.8,6.4 \mathrm{~Hz}, 5 \mathrm{H}), 6.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $205.3,162.4,140.6,136.2,129.7,128.5,128.3,126.2,119.2,118.8,118.5,39.9,29.9$; (IR, Neat): 3358, 2995, 1658, 1450, 1219, $772 \mathrm{~cm}^{-1}$; HRMS (ESI) Calculate for $\left[\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}\right]^{+}$ 249.08860; Found 249.08883.

3-Phenyl-1-(pyridin-3-yl)-propan-1-one (20)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 35% ethyl acetate in hexane as eluent) to afford the title product as a colourless liquid ($0.165 \mathrm{~g}, 78 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.16(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{dd}, J=4.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{dt}, J=7.9$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=7.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.16(\mathrm{~m}, 5 \mathrm{H}), 3.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.09$
$(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 197.8,153.4,149.6,140.7,135.3,132.1$, 128.6, 128.4, 126.3, 123.6, 40.7, 29.8; (IR, Neat): 3028, 1690, 1585, 1495, 1294, 1024, 772 $\mathrm{cm}^{-1} ;$ HRMS (ESI): Calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}\right]^{+}$212.1075; Found 212.1071.

1-(Naphthalen-2-yl)-3-phenylpropan-1-one (21)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4\% ethyl acetate in hexane as eluent) to afford the title product as a colourless liquid ($0.208 \mathrm{~g}, 80 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.57(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.21(\mathrm{~m}, 5 \mathrm{H}), 3.39$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.5,141.1$, $135.9,133.9,132.5,128.5,128.4,128.4,127.8,127.4,126.4,126.1,125.7,124.3,43.8,30.6$; (IR, Neat): 3056, 1681, 1597, 1400, 1231, 1098, $776 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ONa}\right]^{+}$283.1098; Found 283.1100.

1-Phenyloctan-3-one (22) ${ }^{\text {2c }}$

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 3% ethyl acetate in hexane as eluent) to afford the title product as a colourless liquid $(0.200 \mathrm{~g}$, $98 \%) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 3 \mathrm{H}), 2.87(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.55(\mathrm{dt}, J=14.9,7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.34-1.20(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.3$, 141.1, 128.4, 128.3, 126.0, 44.2, 43.0, 31.3, 29.7, 23.4, 22.4, 13.9; (IR, Neat): 2955, 1713, 1602, 1456, 1127, 1029, $699 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ONa}\right]^{+}$227.1411; Found 227.1416.

1-(4-Iodophenyl)-octan-3-one (23)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 3\% ethyl acetate in hexane as eluent) to afford the title product as a colourless liquid ($0.314 \mathrm{~g}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $6.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.57-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 205.2,136.2,132.8,125.8,86.4,39.1,38.3,26.7,24.5,18.8,17.7,9.2$ (IR, Neat): 2925, 1712, 1461, 1218, $771 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{OINa}\right]^{+}$353.03728; Found 353.03858.

4,4-Dimethyl-1-phenylpentan-3-one (24) ${ }^{2 \mathrm{c}}$

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 3% ethyl acetate in hexane as eluent) to afford the title product as a colourless liquid ($0.182 \mathrm{~g}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{dd}, J=8.8,5.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18 - $7.12(\mathrm{~m}, 3 \mathrm{H}), 2.90-$ $2.83(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.73(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.8,141.5$, 128.4, 127.8, 126.0, 44.0, 38.4, 30.1, 26.3; (IR, Neat): 2966, 1704, 1606, 1454, 1218, 1076, $761,699 \mathrm{~cm}^{-1} ;$ HRMS (ESI): Calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ONa}\right]^{+}$213.1255; Found 213.1248.

(R)-1-(2,2-Dimethyl-1,3-dioxolan-4-yl)-3-phenylpropan-1-one (25)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 10% ethyl acetate in hexane as eluent) to afford the title product as a colourless liquid $(0.215 \mathrm{~g}, 92 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.11(\mathrm{~m}, 5 \mathrm{H}), 4.39(\mathrm{dd}, J=7.2,6.0 \mathrm{~Hz}$, 1H), 4.14 (t, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90$ (dd, $J=8.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.76$ (m, 4H), 1.43 (s, 3H), $1.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.9,140.9,128.5,128.3,126.1,110.9$,
80.3, 66.4, 40.2, 29.0, 26.0, 25.0; (IR, Neat): 3028, 1718, 1495, 1217, 1081, 752, $700 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}\right]^{+} 257.1153$; Found 257.1143.

(R)-3-(4-Chlorophenyl)-1-(2,2-dimethyl-1,3-dioxolan-4-yl)propan-1-one (26)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 10% ethyl acetate in hexane as eluent) to afford the title product as a colourless liquid ($0.249 \mathrm{~g}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.14(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{dd}, J=7.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=8.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ (dd, $J=8.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.84(\mathrm{~m}, 4 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 209.8,139.4,131.9,129.7,128.6,111.0,80.2,66.4,40.0,28.2,26.0,24.9$; (IR, Neat): 2988, 1716, 1491, 1374, 1217, 1063, $772 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Cl}\right]^{+}$269.0944; Found 269.0947.

1-((3aR,5S,6R,6aR)-6-(Benzyloxy)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)-3-phenylpropan-1-one (27)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 15% ethyl acetate in hexane as eluent) to afford the title product as a colourless liquid ($0.336 \mathrm{~g}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.23$ - $7.14(\mathrm{~m}, 5 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52$ (dd, $J=7.7,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.79(\mathrm{~m}$, $4 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 207.7, 141.1, 136.9, 128.5, $128.3,128.1,127.7,126.2,125.9,112.3,105.9,85.4,83.7,81.8,72.5,46.7,44.6,42.2,29.7$, 28.6, 26.9, 26.3; (IR, Neat): 2928, 1717, 1655, 1454, 1219, 1076, $856 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Na}\right]^{+}$405.1677; Found 405.1692.

3-(4-Methoxyphenyl)-cyclohexanone (28) ${ }^{\text {5b }}$

 Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4\% ethyl acetate in hexane as eluent) to afford the title product as a colourless liquid (0.177 g , $87 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.79$ (s, 3H), $3.01-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.18-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{ddd}, J=12.7$, $6.5,2.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.5,158.3,136.5,127.4,114.0,96.2,55.1$, 49.2, 44.0, 41.2, 33.1, 29.8, 25.5; (IR, Neat): 2926, 1709, 1608, 1512, 1456, 1251, 1033, 828 cm^{-1}; HRMS (ESI): Calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}\right]^{+}$227.1047; Found 227.1049.

Butyl 2-benzyl-3-oxo-3-phenylpropanoate (29)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 3\% ethyl acetate in hexane as eluent) to afford the title product as a colourless liquid ($0.285 \mathrm{~g}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01$ (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.61(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.68(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.08(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{dd}, J=14.3,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.21$ (dt, $J=14.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 194.4, $169.3,138.4,136.2,133.4,128.9,128.6,128.6,128.5,126.6,65.3,56.2,34.7,30.4,18.8$, 13.5; (IR, Neat): 2960, 1733, 1685, 1450, 1181, 1078, $772 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{3}\right]^{+} 311.1641$; Found 311.1640.

Butyl 2-benzyl-3-oxo-3-p-tolylpropanoate (30)

 colourless liquid ($0.269 \mathrm{~g}, 83 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$),
$7.59(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{dd}, J=18.0,8.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.63(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.43(\mathrm{~m}$, $2 \mathrm{H}), 1.19(\mathrm{dt}, J=14.7,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.84(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $194.5,169.4,136.2,136.1,135.3,133.5,129.2,128.8,128.6,65.3,56.3,34.3,30.4,21.0$, 18.9, 13.5; (IR, Neat): 3021, 1733, 1687, 1515, 1448, 1217, 907, $728 \mathrm{~cm}^{-1} ;$ HRMS (ESI): Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}\right]^{+}$347.1617; Found 347.1609.

Butyl 2-benzyl-3-(4-methoxyphenyl)-3-oxopropanoate (31)

 as a colourless liquid $(0.286 \mathrm{~g}, 84 \%) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 2H), $7.22-7.09(\mathrm{~m}, 5 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.95(\mathrm{~m}$, $2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{dd}, J=7.2,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.48-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{dq}, J=15.2,7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 0.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.0,169.2,163.7,138.7$, $131.0,129.4,129.0,128.5,126.5,113.8,65.0,56.0,55.3,34.8,30.5,19.0,13.7$; (IR, KBr): 2959, 1773, 1676, 1420, 1294, 1222, 1026, 840, $698 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}\right]^{+}$363.1572; Found 363.1588.

Butyl 2-benzyl-3-(4-nitrophenyl)-3-oxopropanoate (32)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4$5 \%$ ethyl acetate in hexane as eluent) to afford the title product as a colourless solid ($0.323 \mathrm{~g}, 91 \%$). M.p. $87-88{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 5 \mathrm{H}), 4.62(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 1H), 4.05 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.36$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.08(\mathrm{~m}$, $2 \mathrm{H}), 0.82(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.4,168.6,150.4,140.9$,
$137.8,129.6,128.9,128.7,126.9,123.9,65.8,56.7,34.6,30.4,18.9,13.6$; (IR, Neat): 3020, 1737, 1696, 1529, 1347, 1215, $667 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{5}\right]^{+}$ 356.14925; Found 356.14947.

Butyl 2-benzyl-3-(4-bromophenyl)-3-oxopropanoate (33)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4\% ethyl acetate in hexane as eluent) to afford the title product as a colourless liquid ($0.334 \mathrm{~g}, 86 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 5 \mathrm{H}), 4.59(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.35(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{dd}, J=15.1,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.85(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.5,169.0,138.2,135.0,132.0,130.1,128.8$, $128.5,127.8,126.7,65.4,56.1,34.6,30.3,18.8,13.5$; (IR, Neat): 2958, 1737, 1689, 1488, 1273, 1071, $771 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BrO}_{3}\right]^{+}$389.0746; Found 389.0752.

Butyl 2-benzyl-3-(4-cyanophenyl)-3-oxopropanoate (34)

colourless liquid ($0.298 \mathrm{~g}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.75(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.16(\mathrm{~m}, 5 \mathrm{H}), 4.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{td}, J=6.6,1.7$ $\mathrm{Hz}, 2 \mathrm{H}), 3.33$ (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.49$ (ddd, $J=13.3,8.7,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.25-1.17$ (m, 2H), $0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.4,168.6,139.3,137.8,132.5$, $128.9,128.8,128.6,126.8,117.7,116.7,65.7,56.4,34.5,30.3,18.8,13.5$; (IR, KBr): 2926, 2232, 1734, 1694, 1373, 1220, 940, $771 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{Na}\right]^{+}$ 358.1419; Found 358.1420.

Butyl 3-(4-cyanophenyl)-2-(4-iodobenzyl)-3-oxopropanoate (35)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4% ethyl acetate in hexane as eluent) to afford the title product as a colourless solid ($0.401 \mathrm{~g}, 87 \%$). M.p. $89-91{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $4.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{dd}, J=7.4,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.47-1.42$ $(\mathrm{m}, 2 \mathrm{H}), 1.19-1.13(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.0$, $168.4,139.1,137.7,137.5,132.6,131.0,129.0,117.7,116.9,92.2,65.8,56.2,33.9,30.3$, 18.9, 13.6; (IR, Neat): 2929, 1734, 1694, 1217, $746 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for: $\left[\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NIO}_{3}\right]^{+} 462.05606$; Found 462.05606.

3-Phenylpropanal (36) ${ }^{\text {3,6a }}$

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 3% ethyl acetate in hexane as eluent) to afford the title product as a colourless liquid ($0.118 \mathrm{~g}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.18(\mathrm{~m}, 5 \mathrm{H}), 2.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 201.5,140.3,128.5,128.2,126.2,45.2,28.0$; (IR, Neat): 3028, $2924,1704,1412,1214,925,695 \mathrm{~cm}^{-1}$.

3-Mesitylpropanal (37)

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4% ethyl acetate in hexane as eluent) to afford the title product as a colourless liquid ($0.139 \mathrm{~g}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.85(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 2 \mathrm{H}), 2.96-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}$, 6 H), 2.24 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.7, 133.9, 133.7, 132.0, 127.1, 121.5, 41.3, 19.6, 18.8, 17.7; (IR, Neat): 2951, 1724, 1448, 1219, $772 \mathrm{~cm}^{-1}$; Calculated for
$\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ONa}\right]^{+}$199.1093; Found 199.1099.

3-(4-Acetylphenyl)propanal (38) ${ }^{6 \mathrm{a}}$

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 20% ethyl acetate in hexane as eluent) to afford the title product as a colourless liquid ($0.157 \mathrm{~g}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.8$, 197.8, 146.1, 135.5, 130.9, 128.8, 128.6, 44.7, 28.0, 26.6; (IR, Neat): 2961, 2933, 1679, 1605, 1359, 1268, $772 \mathrm{~cm}^{-1}$; HRMS (ESI): Calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2}\right]^{+}$177.0910; Found 177.0916.

3-(4-Chlorophenyl)propanal (39) ${ }^{\text {6b }}$

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4% ethyl acetate in hexane as eluent) to afford the title product as a colourless liquid ($0.146 \mathrm{~g}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=$ 7.2 Hz, 2H), $2.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.1,138.9,132.0$, 129.7, 128.7, 45.1, 27.4; (IR, Neat): 2923, 1710, 1491, 1219, 1091, $772 \mathrm{~cm}^{-1}$.

3-(4-Bromophenyl)propanal (40) ${ }^{7 \mathrm{a}}$

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4\% ethyl acetate in hexane as eluent) to afford the title product as a colourless liquid ($0.191 \mathrm{~g}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.66(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.0,139.1,131.6$, 130.1, 120.2, 35.4, 29.9; (IR, Neat): 2915, 1692, 1432, 1270, 1073, $817 \mathrm{~cm}^{-1}$.

3-(4-Iodophenyl)propanal (41) ${ }^{7 b}$

Following the general procedure, the residue was purified by column chromatography (silica gel 100-200 mesh, 4% ethyl acetate in hexane as eluent) to afford the title product as a colourless liquid ($0.244 \mathrm{~g}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=6.9 \mathrm{~Hz}$, 2H), $2.79(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.0,140.1,137.6,130.4,91.9$, 45.0, 27.5; (IR, Neat): 2922, 1729, 1512, 1219, 1072, $772 \mathrm{~cm}^{-1}$.

Deuterium Labeling Experiment:

1-(4-methoxyphenyl)prop-2-en-1-one ${ }^{8 a}$

1-(4-methoxyphenyl)prop-1-($\left.{ }^{2} \mathbf{H}_{1}\right)$-2-en-1-ol (Ib- $\left.\boldsymbol{d}_{1}\right)^{8 \mathrm{aa}}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.2$
$\mathrm{Hz}, 2 \mathrm{H}), 6.02(\mathrm{dd}, J=17.1,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=17.1,1.4 \mathrm{~Hz}$,
$\left.\mathrm{lb}-\mathrm{d}_{1} 1 \mathrm{H}\right), 5.17(\mathrm{dd}, J=10.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$.

1-(4-methoxyphenyl)-3-phenyl-2($\left.{ }^{2} \mathrm{H}_{1}\right)$-propan-1-one (16- $\left.\boldsymbol{d}_{1}\right)^{8 \mathrm{bb}}$

A mixture of phenylboronic acid IIa ($0.183 \mathrm{~g}, 1.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.022 \mathrm{~g}, 0.1 \mathrm{mmol})$, and 2,9-dimethyl-1,10-phenanthroline ($0.042 \mathrm{~g}, 0.20 \mathrm{mmol}), \mathrm{CuCl}(0.005 \mathrm{~g}, 0.05 \mathrm{mmol})$, Deuterium-labelled propenol $\left(\mathbf{I b}-\boldsymbol{d}_{\mathbf{1}}\right)(0.165 \mathrm{~g}, 1.0 \mathrm{mmol})$ \{prepared as per the literature procedure $\left.{ }^{8 \mathrm{a}}\right\}$, was dissolved in DMSO (3 mL) in a 10 mL RB flask closed with air balloon (1atm pressure). The mixture was vigorously stirred at $50^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature, the reaction mixture was partitioned between ethyl acetate $(25.0 \mathrm{~mL})$ and water $(25 \mathrm{~mL})$ and it was transferred to a separatory funnel. The organic layer was washed with water, and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (s) and concentrated in vacuo. The residue was purified by column chromatography (silica gel 100-200 mesh, 4% ethyl acetate in hexane as eluent) to afford the title product $\mathbf{1 6}-\boldsymbol{d}_{\mathbf{1}}$ as a colourless solid ($0.203 \mathrm{~g}, 84 \%$). M.p. 100-101 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=10.1,4.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.25(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.28$ - $3.19(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.9,163.5,141.5$, $130.3,130,128.5,128.4,126.1,113.8,77.3,77.1,76.8,55.5,39.8$ (t, $J=38.2 \mathrm{~Hz}, \mathrm{CHD}$), 30.3; HRMS (ESI): Calculated for [$\left.\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{DO}_{2}\right]^{+}$242.12858; Found 242.12697.

1.4 References

[1] a) A. Bartoszewicz and B. Martín-Matute, Org.Lett., 2009, 11, 1749 ; b) A. Bouziane, B. Carboni, C. Bruneau, F. Carreaux and J. Renaud, Tetrahedron, 2008, 64, 11745; c) N. Marion, R. Gealageas and S. P. Nolan, Org.Lett., 2007, 9, 2653; d) G. Zhang, T. Kumamoto, T. Heima and T. Ishikawa, Tetrahedron Lett., 2010, 51, 3927; e) P. D. Hammen, A. C. Braisted and D. L. Northrup, Synth Commun, 1991, 21, 2157; f) J. Nokami, H. Ogawa, S. Miyamoto, T. Mandai, S. Wakabayashi and J. Tsuji, Tetrahedron Lett., 1988, 29, 5181; g) S. D. Markad, N. S. Karanjule, T. Sharma, S. G. Sabharwal, V. G. Puranik and D. D. Dhavale, Org. Biomol. Chem., 2006, 4, 2549; h) G. Righi, G. Pescatore, F. Bonadies, C. Bonini, Tetrahedron, 2001, 57, 5649; i) Y. Song, H. Ke, N. Wang, L. Wang, G. Zou, Tetrahedron, 2009, 65, 9086.
[2] a) R. Martinez, D. J. Ramon, and M. Yus, Tetrahedron, 2006, 62, 8988; b) M. Schedler, D. S. Wang, and F. Glorius, Angew. Chem, Int. Ed., 2013, 52, 2585; c) M. S. Know, N. Kim, S. H. Seo, I. S. Park, R. K. Cheedrala and J. Park, Angew. Chem, Int. Ed., 2005, 44, 6913.
[3] P. Colbon, J. Ruan, M.Purdie, K. Mulholland and J. Xiao, Org. Lett., 2011, 13, 5456.
[4] A. Briot, C. Baehr, R. Brouillard, A. Wagner and C. Mioskowst, J. Org. Chem., 2004, 69, 1374.
[5] a) C. S. Cho and S. C. Shim, J. Organomet. Chem. 2006, 691, 4329; b) X. Lu and S. Lin, J. Org. Chem., 2005, 70, 9651.
[6] a) J. W. Yang, M. T. H. Fonseca, and B. List, Angew. Chem, Int. Ed., 2004, 43, 6660; b) H. Zhao, M. C. Zhong, R. H. Hu, C. S. Song, Synthetic Communication, 2001, 31, 3665.
[7] a) C. G. Frost and B. C. Hartley, J. Org. Chem., 2009, 74, 3599; X. -Q. Pan, L. Wang, J. -P. Zou, and W. Zhang, Chem. Commn., 2011, 47, 7875; b) M. Chena, J. Wanga, Z. Chaia, C. Youa, A. Leia, Adv. Synth. Catal, 2012, 354, 341.
[8] a) D. Cuperly, J. Petrignet, C. Christophe, R. Gree, Chem. Eur. J., 2006, 12, 3261; b) Z. Wang, G. Zou and J. Tang, Chem. Commn., 2004, 1192.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for compounds (1-41)

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30		10

$\stackrel{\circ}{1}$

it ${ }^{\circ}$

 $\stackrel{\circ}{\circ}$

[^0]

$\stackrel{\sim}{i}$

ㅇํำ號 गTरुस
$\frac{3}{4}$
$\hat{i}^{\hat{i}} \hat{i}$

品

14

15

$\stackrel{\vec{j}}{\stackrel{\rightharpoonup}{\top}}$

17

19

$\stackrel{\sim}{\sim} \underset{\sim}{\sim}$

$\stackrel{8}{1}$

21

22

22

(

24

早竨鲌

25

～ٌ

～～
角 曁

25

$\stackrel{8}{9}$

26

26

根琵琵
（～）

ま

$\stackrel{\stackrel{6}{\tilde{m}}}{\stackrel{1}{1}}$
$\stackrel{m}{6}$
$\stackrel{\oplus}{\oplus}$
$\stackrel{1}{\mid}$

i

i.

$\stackrel{n}{\stackrel{n}{2}}$
筞
군운

36

41

[^0]:

