Green Chemistry

An ammonium molybdate deposited amorphous silica coated iron oxide magnetic core-shell nanocomposite for the efficient synthesis of 2-benzimidazoles using hydrogen peroxide

Guoyi Bai*, Xingwang Lan, Xiaofang Liu, Chen Liu, Lingjuan Shi, Qingzhi Chen, and Guofeng Chen

Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China

Electronic Supplementary Information (ESI)

Supplementary Information Available: complete catalyst characterization data, product characterization data, analytical details.

Table of Contents

General Considerations and Instrumentation	2
SEM images and EDX spectrum	3
TG and DTG analyses	4
TEM images	. 5
Product characterization data (IR, ¹ H NMR, ¹³ C NMR, HRMS)	8
2-Phenyl-1 <i>H</i> -benzimidazole characterization spectrum	12
2-(4-Chlorophenyl)-1 <i>H</i> -benzimidazole characterization spectrum	14
2-(3-Chlorophenyl)-1 <i>H</i> -benzimidazole characterization spectrum	16
2-(2-Chlorophenyl)-1 <i>H</i> -benzimidazole characterization spectrum	18
2-(4-Nitrophenyl)-1 <i>H</i> -benzimidazole characterization spectrum	. 20
2-(4-Methoxyphenyl)-1 <i>H</i> -benzimidazole characterization spectrum	22
2-(4-Methylphenyl)-1 <i>H</i> -benzimidazole characterization spectrum	24
2-(4-Hydroxyphenyl)-1 <i>H</i> -benzimidazole characterization spectrum	. 26
2-(1,3-Benzodioxol-5-yl)-1 <i>H</i> -benzimidazole characterization spectrum	28
5-Methyl-2-phenyl-1 <i>H</i> -benzimidazole characterization spectrum	30
5-Bromo-2-phenyl-1 <i>H</i> -benzimidazole characterization spectrum	32
5-Nitro-2-phenyl-1 <i>H</i> -benzimidazole characterization spectrum	34

General Considerations and Instrumentation

Catalyst characterization

Scanning electron microscopy (SEM) was obtained using a JEOL JSM-7500 electron microscope. Surface compositions were identified by energy-dispersive X-ray (EDX) using a Thermo NORAN System 7 spectrometer.

Thermogravimetric (TG) and differential thermogravimetric (DTG) measurements were carried out on a Netzsch TG 209 F3 thermogravimetric analyzer at a constant heating rate of 30/10.0 (K·min⁻¹)/200 under a nitrogen atmosphere with a gas flow of 25 mL·min⁻¹.

Product characterization

The structures of 2-benzimidazoles were confirmed by IR, NMR, and HRMS. IR spectra were collected on a Bruker Vertex 70 spectrophotometer. ¹H NMR and ¹³C NMR spectra were recorded at 600 MHz and 150 MHz, respectively, on a Bruker spectrometer in DMSO-d₆ using TMS as the internal standard at room temperature. Mass spectrometric data were determined on an IonSpec QFT-MALDI MS (Varian).

SEM images and EDX spectrum

SEM images of the Fe₃O₄@SiO₂@(NH₄)₆Mo₇O₂₄ core-shell nanocomposites showed that the particles were slightly agglomerated (Figure S1 b), due to the Van der Waals force being strengthened in the preparation process, although they still keeping in a nanometer size. EDX from the obtained nanomaterials demonstrated the presence of the expected Mo on the surface of this catalyst (Figure S2), and further supported the fact that the ammonium molybdate species were highly dispersed on the surface.

Figure S1. SEM images of (a) Fe₃O₄@SiO₂ and (b) Fe₃O₄@SiO₂@(NH₄)₆Mo₇O₂₄.

Figure S2. EDX spectrum of Fe₃O₄@SiO₂@(NH₄)₆Mo₇O₂₄.

TG and DTG analyses

The thermal stability of $Fe_3O_4@SiO_2@(NH_4)_6Mo_7O_{24}$ was evaluated by TG and DTG measurements and compared with those of the unsupported $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$. Figure 3A exhibits the relationship between the residual masses (RM, %) of the two samples and the temperature. It illustrated that the unsupported $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ has a significant mass loss in the range of 353-415 K due to the release of crystal water;^[1] whereas, the $Fe_3O_4@SiO_2@(NH_4)_6Mo_7O_{24}$ has less mass loss in the same range, demonstrating that $(NH_4)_6Mo_7O_{24}$ has been integrally deposited on the surface of $Fe_3O_4@SiO_2$, together with the loss of crystal water during preparation, as also supported by the DTG results of $Fe_3O_4@SiO_2@(NH_4)_6Mo_7O_{24}$ (Figure 3 B, b).

Figure S3. TG (A) and DTG (B) profiles of

(a) (NH₄)₆Mo₇O₂₄·4H₂O and (b) Fe₃O₄@SiO₂@(NH₄)₆Mo₇O₂₄.

TEM images

The surface morphology and the particle distributions of the corresponding magnetic core-shell nanocomposites of Fe₃O₄@SiO₂ (Figure S4 a-c) and Fe₃O₄@SiO₂@(NH₄)₆Mo₇O₂₄ (Figure S4 a'-c') were recorded by transmission electron microscope (TEM) at different bar sizes.

Figure S4. TEM images of (a-c) $Fe_3O_4@SiO_2$ and (a'-c') $Fe_3O_4@SiO_2@(NH_4)_6Mo_7O_{24}$

nanocomposites at different bar sizes.

Product characterization data(IR, ¹H NMR, ¹³C NMR, HRMS)

2-Phenyl-1*H*-benzimidazole:

Pale yellow crystals, IR (KBr): 1626 (C=N), 3436 (NH) cm⁻¹. ¹H NMR (600 MHz, DMSO-d₆) δ 12.96 (s, 1H), 8.21-8.20 (t, *J* = 9.0 Hz, 2H), 7.62-7.49 (m, 5H), 7.23-7.20 (m, 2H). ¹³C NMR (150 MHz, DMSO-d₆) δ 151.70, 130.65, 130.31, 129.42, 126.91, 122.58. HRMS (ESI) Calc. for C₁₃H₁₁N₂ [M+H]⁺: 195.0917, found: 195.0916.

2-(4-Chlorophenyl)-1*H*-benzimidazole:

White crystals, IR (KBr): 1623 (C=N), 3442 (NH) cm⁻¹. ¹H NMR (600 MHz, DMSO-d₆) δ 13.00 (s, 1H), 8.20 (dd, J_1 = 6.6 Hz, J_2 = 1.8 Hz, 2H), 7.65-7.63 (m, 4H), 7.23 (d, J = 3.0 Hz, 2H). ¹³C NMR (150 MHz, DMSO-d₆) δ 150.63, 134.96, 129.53, 128.61, 123.20, 122.29, 119.44, 111.88. HRMS (ESI) Calc. for C₁₃H₁₀ClN₂ [M+H]⁺: 229.0527, found: 229.0523.

2-(3-Chlorophenyl)-1*H*-benzimidazole:

Pale yellow crystals, IR (KBr): 1623 (C=N), 3439 (NH) cm⁻¹. ¹H NMR (600 MHz, DMSO-d₆) δ 13.05 (s, 1H), 8.24 (s, 1H), 8.16-8.15 (m, 1H), 7.61-7.56 (m, 4H), 7.24 (s, 2H). ¹³C NMR (150 MHz, DMSO-d₆) δ 150.20, 134.24, 132.68, 131.41, 130.01, 126.49, 125.48. HRMS (ESI) Calc. for C₁₃H₁₀ClN₂ [M+H]⁺: 229.0527, found: 229.0523.

2-(2-Chlorophenyl)-1*H*-benzimidazole:

White crystals, IR (KBr): 1623 (C=N), 3433 (NH) cm⁻¹. ¹H NMR (600 MHz, DMSO-d₆) δ 12.73 (s, 1H), 7.92 (dd, J_1 = 7.8 Hz, J_2 = 1.8 Hz, 1H), 7.67 (dd, J_1 = 8.4 Hz, J_2 = 1.2 Hz, 2H), 7.57-7.52

(m, 3H), 7.25 (s, 2H). ¹³C NMR (150 MHz, DMSO-d₆) δ 149.57, 132.56, 132.11, 131.67, 130.82,
130.45, 127.91. HRMS (ESI) Calc. for C₁₃H₁₀ClN₂ [M+H]⁺: 229.0527, found: 229.0523.

2-(4-Nitrophenyl)-1*H*-benzimidazole:

Yellow crystals, IR (KBr): 1338, 1516 (NO₂), 1607 (C=N), 3436 (NH) cm⁻¹. ¹H NMR (600 MHz, DMSO-d₆) δ 13.31 (s, 1H), 8.44-8.41 (m, 4H), 7.73-7.66 (m, 2H), 7.28 (s, 2H).¹³C NMR (150 MHz, DMSO-d₆) δ 149.46, 148.26, 136.50, 127.85, 124.76. HRMS (ESI) Calc. for C₁₃H₁₀N₃O₂ [M+H]⁺: 240.0768, found: 240.0768.

2-(4-Methoxyphenyl)-1*H*-benzimidazole:

White crystals, IR (KBr): 1244 (C-O), 1613 (C=N), 2965 (CH₃), 3439 (NH) cm⁻¹. ¹H NMR (600 MHz, DMSO-d₆) δ 12.76 (s, 1H), 8.13 (d, *J* = 3.0 Hz, 2H), 7.56 (s, 2H), 7.18 (dd, *J*₁=5.4 Hz, *J*₂ = 3.0 Hz, 2H), 7.13 (d, *J* = 2.4 Hz, 2H), 3.85 (s, 3H). ¹³C NMR (150 MHz, DMSO-d₆) δ 161.07, 151.82, 128.48, 123.18, 122.21, 114.83, 55.79. HRMS (ESI) Calc. for C₁₄H₁₃N₂O [M+H]⁺: 225.1022, found: 225.1021.

2-(4-Methylphenyl)-1*H*-benzimidazole:

Yellow crystals, IR (KBr): 1623 (C=N), 2965 (CH₃), 3449 (NH) cm⁻¹. ¹H NMR (600 MHz, DMSO-d₆) δ 12.83 (s, 1H), 8.08 (d, *J* = 8.4 Hz, 2H), 7.58 (s, 2H), 7.37 (d, *J* = 7.8 Hz, 2H), 7.20 (dd, *J*₁=6.0 Hz, *J*₂ = 3.0 Hz, 2H), 2.39 (s, 3H). ¹³C NMR (150 MHz, DMSO-d₆) δ 151.84, 140.04, 129.98, 127.90, 126.87, 122.43, 21.44. HRMS (ESI) Calc. for C₁₄H₁₃N₂ [M+H]⁺: 209.1073, found: 209.1072.

2-(4-Hydroxyphenyl)-1*H*-benzimidazole:

Orange crystals, IR (KBr): 1610 (C=N), 3308 (OH, NH) cm⁻¹. ¹H NMR (600 MHz, DMSO-d₆) δ 12.65 (s, 1H), 9.96 (s, 1H), 8.01 (d, J = 2.4 Hz, 2H), 7.53 (s, 2H), 7.16 (dd, $J_I = 6.0$ Hz, $J_2 = 3.0$ Hz, 2H), 6.92 (d, J = 3.6 Hz, 2H). ¹³C NMR (150 MHz, DMSO-d₆) δ 159.59, 152.25, 128.62, 122.07, 121.62, 116.15. HRMS (ESI) Calc. for C₁₃H₁₁N₂O [M+H]⁺: 211.0866, found: 211.0863.

2-(1,3-Benzodioxol-5-yl)-1*H*-benzimidazole:

Yellow crystals, IR (KBr): 1226, 1245 (C-O), 1626 (C=N), 2879 (CH₂) 3452 (NH) cm⁻¹. ¹H NMR (600 MHz, DMSO-d₆) δ 12.75 (s, 1H), 7.73 (dd, *J*₁ = 2.4 Hz, *J*₂ = 1.2 Hz, 1H), 7.69 (d, *J* = 1.8 Hz, 1H), 7.56 (s, 2H), 7.20-7.18 (m, 2H), 7.11 (d, *J* = 1.8 Hz, 1H), 6.13 (s, 2H). ¹³C NMR (150 MHz, DMSO-d₆) δ 151.62, 149.20, 148.34, 124.79, 122.36, 121.37, 109.18, 106.98. 102.03. HRMS (ESI) Calc. for C₁₄H₁₁N₂O₂ [M+H]⁺: 239.0815, found: 239.0811.

5-Methyl-2-phenyl-1*H*-benzimidazole:

White crystals, IR (KBr): 1631 (C=N), 2919 (CH₃), 3435 (NH). ¹H NMR (600 MHz, DMSO-d₆) δ 12.78 (s, 1H), 8.17 (d, *J*=7.2 Hz, 2H), 7.56-7.38 (m, 5H), 7.04 (d, *J*=8.4, 1H), 2.43 (s, 3H). ¹³C NMR (150 MHz, DMSO-d₆) δ 135.46, 134.78, 134.04, 131.44, 26.48. HRMS (ESI) Calc. for C₁₄H₁₃N₂[M+H]⁺: 209.1073, found: 209.1070.

5-Bromo-2-phenyl-1*H*-benzimidazole:

Yellow crystals, IR (KBr): 1617 (C=N), 3435 (NH). ¹H NMR (600 MHz, DMSO-d₆) δ 13.15 (s,

1H), 8.19-8.17 (m, 2H), 7.80 (s, 1H), 7.59-7.51 (m, 4H), 7.36-7.35 (dd, *J*₁=9.0 Hz, *J*₂=8.4 Hz, 1H).
¹³C NMR (150 MHz, DMSO-d₆) δ 152.93, 130.71, 130.11, 129.49, 127.08, 125.45, 114.74.
HRMS (ESI) Calc. for C₁₃H₁₀BrN₂[M+H]⁺: 273.0022, found: 273.0019.

5-Nitro-2-phenyl-1*H*-benzimidazole:

Yellow crystals, IR (KBr): 1334, 1512 (NO₂), 1624 (C=N), 3436 (NH). ¹H NMR (600 MHz, DMSO-d₆) δ 13.64 (s, 1H), 8.51 (s, 1H), 8.23-8.14 (m, 3H), 7.78 (s, 1H), 7.62 (d, *J*=6.6 Hz, 3H). ¹³C NMR (150 MHz, DMSO-d₆) δ 143.18, 131.43, 129.62, 129.51, 127.46, 118.44. HRMS (ESI) Calc. for C₁₃H₁₀N₃O₂[M+H]⁺: 240.0768, found: 240.0763.

Reference:

[1] L. X. Song, M. Wang, Z. Dang, F. Y. Du, J. Phys. Chem. B 2010, 114, 3404-3410.

2-Phenyl-1*H*-benzimidazole characterization spectrum

¹H NMR Spectrum of 2-phenyl-1*H*-benzimidazole

¹³C NMR Spectrum of 2-phenyl-1*H*-benzimidazole

HRMS Spectrum of 2-phenyl-1H-benzimidazole

2-(4-Chlorophenyl)-1H-benzimidazole characterization spectrum

¹³C NMR Spectrum of 2-(4-chlorophenyl)-1*H*-benzimidazole

HRMS Spectrum of 2-(4-chlorophenyl)-1H-benzimidazole

2-(3-Chlorophenyl)-1*H*-benzimidazole characterization spectrum

¹³C NMR Spectrum of 2-(3-chlorophenyl)-1*H*-benzimidazole

HRMS Spectrum of 2-(3-chlorophenyl)-1H-benzimidazole

even

ok

2-(2-Chlorophenyl)-1H-benzimidazole characterization spectrum

¹H NMR Spectrum of 2-(2-chlorophenyl)-1*H*-benzimidazole

¹³C NMR Spectrum of 2-(2-chlorophenyl)-1*H*-benzimidazole

HRMS Spectrum of 2-(2-chlorophenyl)-1H-benzimidazole

210 200

¹³C NMR Spectrum of 2-(4-nitrophenyl)-1*H*-benzimidazole

-20000

10000

-10000

0

0 -10

Acquisition Paramet	er				
Polarity	Positive	Source	APCI	No. of Laser Shots	20
Averaged Scans	2	No. of Cell Fills	1	Laser Power	51.0 %
Broadband Low Mass	100.3 m/z	End Plate	1500.0 V	MALDI Plate	300.0 V
Broadband High Mass	1000.0 m/z	Capillary Entrance	2000.0 V	Imaging Spot Diameter	2000.0 µm
Acquisition Mode	Single MS	Skimmer 1	20.0 V		
Pulse Program	basic	Drying Gas Temperature	180.0 °C	Calibration Date	Sat Apr 6 08:55:38 2013
Source Accumulation	0.0 sec	Drying Gas Flow Rate	4.0 L/min	Data Acquisition Size	131072
Ion Accumulation Time	0.0 sec	Nebulizer Gas Flow Rate	1.0 L/min	Apodization	Sine-Bell Multiplication
Flight Time to Acq. Cell	0.0 sec				

HRMS Spectrum of 2-(4-nitrophenyl)-1H-benzimidazole

2-(4-Methoxyphenyl)-1H-benzimidazole characterization spectrum

¹³C NMR Spectrum of 2-(4-methoxyphenyl)-1*H*-benzimidazole

HRMS Spectrum of 2-(4-methoxyphenyl)-1H-benzimidazole

2-(4-Methylphenyl)-1H-benzimidazole characterization spectrum

¹³C NMR Spectrum of 2-(4-methylphenyl)-1*H*-benzimidazole

HRMS Spectrum of 2-(4-methylphenyl)-1H-benzimidazole

2-(4-Hydroxyphenyl)-1*H*-benzimidazole characterization spectrum

¹³C NMR Spectrum of 2-(4-hydroxyphenyl)-1*H*-benzimidazole

HRMS Spectrum of 2-(4-hydroxyphenyl)-1H-benzimidazole

¹³C NMR Spectrum of 2-(1,3-benzodioxol-5-yl)-1*H*-benzimidazole

HRMS Spectrum of 2-(1,3-benzodioxol-5-yl)-1H-benzimidazole

5-Methyl-2-phenyl-1*H*-benzimidazole characterization spectrum

¹³C NMR Spectrum of 5-methyl-2-phenyl-1*H*-benzimidazole

m/z

HRMS Spectrum of 5-methyl-2-phenyl-1H-benzimidazole

5-Bromo-2-phenyl-1*H*-benzimidazole characterization spectrum

¹³C NMR Spectrum of 5-bromo-2-phenyl-1*H*-benzimidazole

90

80

70 60 50

40 30 20 10

-10

0

110 100 f1 (ppm)

150 140 130 120

210 200

190 180 170 160

HRMS Spectrum of 5-bromo-2-phenyl-1H-benzimidazole

5-Nitro-2-phenyl-1*H*-benzimidazole characterization spectrum

¹H NMR Spectrum of 5-nitro-2-phenyl-1*H*-benzimidazole

¹³C NMR Spectrum of 5-nitro-2-phenyl-1*H*-benzimidazole

 Meas.m/z
 # Formula
 Score
 m/z
 err [mDa]
 err [ppm]
 mSigma
 rdb
 ej¥Conf
 N-Rule

 240.07634
 1
 C 13 H 10 N 3 O 2
 100.00
 240.07675
 0.4
 1.7
 6.2
 10.5
 even
 ok

HRMS Spectrum of 5-nitro-2-phenyl-1H-benzimidazole