Electronic Supplementary Material (ESI) for Green Chemistry.
This journal is © The Royal Society of Chemistry 2014

Supporting information of

Direct thermo catalytic transformation of pine wood into low oxygenated bio-fuel
Walid Al Maksoud, ${ }^{\text {ab }}$ Cherif Larabi, ${ }^{\text {a,b }}$ Anthony Garron, ${ }^{\text {a,b }}$ Kai C. Szeto, ${ }^{\text {a }}$ Jean-Jacques Walter ${ }^{\text {b }}$ and Catherine C. Santini** ${ }^{*}$

Fig. S1 X-ray diffractgrams of the different samples.

Fig. S2 ${ }^{31} \mathrm{P}$ and ${ }^{133} \mathrm{Cs}$ solid state MAS NMR of the samples after thermal treatment at $350{ }^{\circ} \mathrm{C}$ under oxygen and hydrogen.

Fig.S3 ${ }^{133}$ Cs solid state MAS NMR of cesium exchange heteropolyanion support dried at room temperature (a) and dried at $200^{\circ} \mathrm{C}$ (b).

Fig. S4 High resolution transmission electron microscopy images of $\mathrm{Ru}_{1.9} \mathrm{Cu}_{1.4} @ \mathrm{CsPW}$ catalyst showing the different structures a) hexagonal $\mathrm{Ru}(0)$, b) tetragonal RuO_{2}, c) cubic RuO_{4} and d) monoclinic CuO . Inset representative of fast fourier transformation power spectra of the particles.

Fig. S5 Energy-dispersive X-ray spectroscopy of two catalysts $\mathrm{Ru}_{1.9} \mathrm{Cu}_{1.4} @ \mathrm{CsPW}$ and $\mathrm{Ru}_{10.8} \mathrm{Cu}_{1.1} @ \mathrm{CsPW}$,showing the presence of copper and ruthenium.

Fig. S6: s-TPR profile of $\mathrm{Cu} 10 \mathrm{wt} \%$ @ $\mathrm{Al}_{2} \mathrm{O}_{3}$ (red) and $\mathrm{Cu} 1 \mathrm{wt} \%$ @ CsWP (blue) catalysts.

Fig. S7: s-TPR profile of Ru1wt\%@CsWP (orange) and $\mathrm{Ru} 2 \mathrm{wt} \% @ \mathrm{Al}_{2} \mathrm{O}_{3}$ (blue) catalysts.

Fig. S8 Transmission electron micfroscopy of a) as prepared $\mathrm{Ru}_{1.9} \mathrm{Cu}_{1.4} @$ CSPW catalyst, b) after the first catalytic cycle, c) after second catalystic cycle and d) after fourth catalytic cycle.

