Supporting information of

Direct thermo catalytic transformation of pine wood into low oxygenated bio-fuel

Walid Al Maksoud,^{a b} Cherif Larabi,^{a,b} Anthony Garron,^{a,b} Kai C. Szeto,^a Jean-Jacques Walter^b and Catherine C. Santini^{*a}

Fig. S1 X-ray diffractgrams of the different samples.

Fig. S2 ³¹P and ¹³³Cs solid state MAS NMR of the samples after thermal treatment at 350 °C under oxygen and hydrogen.

Fig .S3 133 Cs solid state MAS NMR of cesium exchange heteropolyanion support dried at room temperature (a) and dried at 200 °C (b).

Fig. S4 High resolution transmission electron microscopy images of $Ru_{1.9}Cu_{1.4}$ @CsPW catalyst showing the different structures a) hexagonal Ru(0), b) tetragonal RuO_2 , c) cubic RuO_4 and d) monoclinic CuO. Inset representative of fast fourier transformation power spectra of the particles.

Fig. S5 Energy-dispersive X-ray spectroscopy of two catalysts $Ru_{1.9}Cu_{1.4}@CsPW$ and $Ru_{10.8}Cu_{1.1}@CsPW$, showing the presence of copper and ruthenium.

Fig. S7: s-TPR profile of Ru1wt% @CsWP (orange) and Ru2wt% @ $\rm Al_2O_3$ (blue) catalysts.

Fig. S8 Transmission electron micfroscopy of a) as prepared $Ru_{1,9}Cu_{1,4}@CSPW$ catalyst, b) after the first catalytic cycle, c) after second catalystic cycle and d) after fourth catalytic cycle.