Supplementary Information

A highly efficient approach to vanillin starting from 4-cresol

Jian-An Jiang,^a Cheng Chen,^a Ying Guo,^a Dao-Hua Liao,^a Xian-Dao Pan^b and Ya-Fei Ji*^a

^aSchool of Pharmacy, East China University of Science and Technology, Campus P. O. Box 363, 130 Meilong Road, Shanghai 200237, P. R. China. E-mail: jyf@ecust.edu.cn.
^bInstitute of Meteria Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, P. R. China.

Table of Contents

1.	General Information	1
2.	General preparation procedure and characterization data	1
3.	References	16
4.	Copies of Spectra	.17

1. General Information

Unless otherwise indicated, all reagents were obtained from commercial sources and used as received without further purification. All reactions were carried out in oven-dried glassware and monitored by thin layer chromatography (TLC, pre-coated silica gel plates containing HF₂₅₄). Reaction products were purified *via* column chromatography on silica gel (300–400 mesh). Melting points were determined using an open capillaries and uncorrected. NMR spectra were determined on Bruker AV400 in CDCl₃ or DMSO-*d*₆ with TMS as internal standard for ¹H NMR (400 MHz) and ¹³C NMR (100 MHz), respectively. HRMS were carried out on a QSTAR Pulsar I LC/TOF MS mass spectrometer or Micromass GCTTM gas chromatograph-mass spectrometer.

2. General preparation procedure and characterization data

- 2.1 Mild and eco-friendly oxybromination.
- 2.1.1 Oxybromination of 4-cresol into 1a.

General procedure: a three-necked flask was charged with 4-cresol (1.08 g, 10 mmol), CH₂Cl₂ (10 mL) and H₂O₂ (30%, 0.58 mL, d = 1.11 g/mL, 5.5 mmol), and then the solution was cooled to 0 °C. Under the temperature, to the solution was slowly added a solution of bromine (0.26 mL, d = 3.12 g/mL, 5.1 mmol) and CH₂Cl₂ (5 mL) over 4 h through a syringe pump. Afterwards, the mixture was further stirred for another 4 h. An aqueous NaHSO₃ (10 mL, 2%) was added to the mixture at 0 °C, and the reaction solution was allowed to stir for 1 h at room temperature. Furthermore, the solution was partitioned into two layers, and the aqueous phase was extracted with CH₂Cl₂ (5 mL × 3). Finally, the combined organic layers were dried over anhydrous Na₂SO₄, and concentrated to give a crude oil, which was purified *via* column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 20:1) to provide the desired product **1a** (chromatographic separation can provide a more credible yield).

OH 1a 2-Bromo-4-methylphenol (1a): yellow oil, 1.80 g (96%); ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.28 (br d, J = 1.6 Hz, 1H), 7.02 (br d, J = 8.0, 1H), 6.92 (br d, J = 8.0 Hz, 1H), 5.40 (br s, 1H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 150.0, 132.1, 131.4, 129.8, 115.8, 109.8, 20.2; HRMS (EI): m/z [M⁺] calcd. for C₇H₇OBr 185.9680, found 185.9682.

OH **2,6-Dibromo-4-methylphenol**:¹ yellow solid, 24 mg (0.9%), m.p. 44–46 °C (lit¹ m.p. 49–51 °C); ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.26 (br s, 2H), 5.71 (br s, 1H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 147.1, 132.4 (4C), 109.4, 20.0; HRMS (EI): *m/z* [M⁺] calcd. for C₇H₆OBr₂ 263.8785, found 263.8787.

2.1.2 Oxybromination of 4-hydroxybenzaldehyde into 2a.

General procedure: a three-necked flask was charged with 4-hydroxybenzaldehyde (1.22 g, 10 mmol), CH₂Cl₂ (10 mL) and H₂O₂ (30%, 0.58 mL, d = 1.11 g/mL, 5.5 mmol), and then the solution was cooled to 0 °C. Under the temperature, to the solution was slowly added a solution of bromine (0.26 mL, d = 3.12 g/mL, 5.1 mmol) and CH₂Cl₂ (5 mL) over 4 h through a syringe pump. Afterwards, the mixture was further stirred for another 4 h. An aqueous NaHSO₃ (10 mL, 2%) was added to the mixture at 0 °C, and the reaction solution was allowed to stir for 1 h at room temperature. Furthermore, the solution was partitioned into two layers, and the aqueous phase was extracted with CH₂Cl₂ (5 mL × 3). Finally, the combined organic layers were dried over anhydrous Na₂SO₄, and concentrated to give a crude oil, which was purified *via* column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 20:1) to provide the desired product **2a** and dibromination product **2g**.

CHO Br OH 2a

OH 2a 3-Bromo-4-hydroxybenzaldehyde (2a):² pale yellow solid, 1.46 g (73% yield), m.p. 130–132 °C (lit² m.p. 130–132 °C); ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.83 (br s, 1H), 8.04 (br s, 1H), 7.77 (br d, J = 8.4 Hz, 1H), 7.15 (br d, J = 8.4 Hz, 1H), 6.43 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 192.7, 151.8, 132.9, 130.3, 128.1, 127.5, 127.4; HRMS (EI): m/z [M⁺] calcd. for C₇H₅O₂Br 199.9473, found 199.9474.

3,5-Dibromo-4-hydroxybenzaldehyde (**2g**).³ white solid, 0.36 g (13%), m.p. 182–184 °C (lit³ m.p. 181–183 °C); ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.80 (br s, 1H), 8.00 (br s, 2H), 6.40 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 188.3, 154.5, 133.8 (2C), 131.5, 110.9 (2C); HRMS (ESI): *m/z* [M–H⁺] calcd. for C₇H₃Br₂O₂ 276.8500, found 276.8517.

2.2 Oxidation of 1a into 2a.

Table S1. Optimizations for the reaction conditions.^a

Entry	Co salt ($n_1 \mod\%$)	NaOH (n_2 equiv)	T. (°C)	Yield (%) ^b
1	CoCl ₂ (3.0)	2.0	50	trace
2	$CoBr_2(3.0)$	2.0	50	trace
3	$CoF_2(3.0)$	2.0	50	trace
4	Cobalt(II) acetylacetonate (3.0)	2.0	50	45
5	Cobalt tetramethoxyphenylporphyrin	2.0	50	13
	(3.0)			
6	$Co(C_2O_4) \cdot 2H_2O(3.0)$	2.0	50	27
7	$Co(OAc)_2 \cdot 4H_2O(3.0)$	2.0	50	53
8	$Co(OAc)_2 \cdot 4H_2O(3.0)$	2.0	60	59
9	$Co(OAc)_2 \cdot 4H_2O(3.0)$	2.0	70	68
10	$Co(OAc)_2 \cdot 4H_2O(3.0)$	2.0	80	76
11	$Co(OAc)_2 \cdot 4H_2O(3.0)$	0	80	0
12	$Co(OAc)_2 \cdot 4H_2O(3.0)$	3.0	80	90
13	$Co(OAc)_2 \cdot 4H_2O(3.0)$	4.0	80	90
14	$Co(OAc)_2 \cdot 4H_2O(2.0)$	4.0	80	90
15	$Co(OAc)_2 \cdot 4H_2O(1.0)$	4.0	80	90
16	$Co(OAc)_2 \cdot 4H_2O(0.5)$	4.0	80	79
17	Co(OAc) ₂ ·4H ₂ O (1.0)	4.0	80	tracec

^aReaction conditions: **1a** (5.0 mmol), cobalt salt (n_1 mol%), NaOH (n_2 equiv), EG (10 mL), O₂ (1.0 atm), 9 h. ^bIsolated yield. ^cPerformed under argon atmosphere.

General procedure: a three-necked flask was charged with EG (10 mL), **1a** (0.94 g, 5.0 mmol), cobalt salt (*n* mol%), and solid NaOH (n_2 equiv), and then the solution was heated to 80 °C. The molecular oxygen was continuously supplied to the reaction through a top tube inlet for 9 h. Hydrochloric acid (10 mL, 10%) and methyl *tert*-butyl ether (MTBE, 15 mL) were successively added to the reaction mixture at room temperature. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (15 mL × 2). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo to give a residue, which was purified *via* column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 20:1) to provide the desired product **2a**.

CHO

OH 2a 3-Bromo-4-hydroxybenzaldehyde (2a):² pale yellow solid, 0.90 g (as the best yield of 90%), m.p. 130–132 °C (lit² m.p. 130–132 °C); ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.83 (br s, 1H), 8.04 (br s, 1H), 7.77 (br d, J = 8.4 Hz, 1H), 7.15 (br d, J = 8.4 Hz, 1H), 6.43 (br s, 1H); ¹³C

NMR (100 MHz, CDCl₃, ppm): δ 192.7, 151.8, 132.9, 130.3, 128.1, 127.5, 127.4; HRMS (EI): m/z [M⁺] calcd. for C₇H₅O₂Br 199.9473, found 199.9474.

2.3 Reaction process analysis for the oxidation of 1a.

2.3.1 The oxidation process of 1a in EG (Fig. 1 in the text).

Oxidation process analysis: a three-necked flask was charged with EG (10 mL), **1a** (0.94 g, 5.0 mmol), $Co(OAc)_2 \cdot 4H_2O$ (12.5 mg, 0.05 mmol) and solid NaOH (0.80 g, 20 mmol), and then the solution was heated to 80 °C. The molecular oxygen was continuously supplied to the reaction through a top tube inlet. About 0.2 mL of sample, withdrawn from the reaction mixture at the specified time (1.5, 3.0, 4.5, 6.0, 7.5 and 9.0 h), was acidified by hydrochloric acid (2.0 M) and was extracted with MTBE. The extracted sample was analyzed by GC-MS to evaluate the product distributions. It should be noted that the sample should be immediately analyzed after extraction.

Besides, another incomplete oxidation reaction (performed for 4 h) was worked up and purified *via* column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 20:1) to provide the intermediates **3a** and **4a** for structure confirmation.

Fig. 1 Time-dependence curves for the oxidation 1a to 2a in EG (percentages as their respective ratios by area normalization method in the total ionization chromatography).

2-Bromo-4-((2-hydroxyethoxy)methyl)phenol (3a): yellow oil, ¹H NMR (400

MHz, CDCl₃, ppm): δ 7.45 (br d, J = 2.0 Hz, 1H), 7.16 (dd, J = 8.0, 2.0 Hz, 1H), 6.95 (br d, J = 8.0 Hz, 1H), 4.44 (s, 2H), 3.76 (t, J = 4.8 Hz, 2H), 3.57 (t, J = 4.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 152.4, 132.2, 131.2, 128.8, 116.2, 110.0, 72.2, 71.3, 61.7; HRMS (ESI): m/z [M-H⁺] calcd. for C₉H₁₀O₃Br 244.9813, found 244.9823.

OH 4a 2-Bromo-4-(hydroxymethyl)phenol (4a):⁴ white solid, m.p. 126–128 °C (lit⁴ m.p. 127–129 °C); ¹H NMR (400 MHz, DMSO- d_6 , ppm): δ 7.41 (br d, J = 2.0 Hz, 1H), 7.11 (dd, J = 8.0, 2.0 Hz, 1H), 6.90 (br d, J = 8.4 Hz, 1H), 4.36 (s, 2H); ¹³C NMR (100 MHz, DMSO- d_6 , ppm): δ 153.2, 135.3, 131.5, 127.5, 116.5, 109.3, 62.4; HRMS (EI): m/z [M⁺] calcd. for C₇H₇O₂Br 201.9629, found 201.9631.

OH 2a 3-Bromo-4-hydroxybenzaldehyde (2a): the spectral data see 2.1 section.

2.3.2 The oxidation process of 1a in methanol (Fig. S1).

Oxidation process analysis: a three-necked flask was charged with MeOH (10 mL), **1a** (0.94 g, 5.0 mmol), $Co(OAc)_2 4H_2O$ (12.5 mg, 0.05 mmol) and solid NaOH (0.8 g, 20 mmol). The mixture was heated to reflux (about 75 °C), and molecular oxygen was charged to the reaction solution. About 0.2 mL of sample, withdrawn from the reaction mixture at the specified time (12, 24, 36, 48 and 60 h), was acidified by hydrochloric acid (2.0 M) and was extracted with MTBE. The extracted sample was analyzed by GC-MS to evaluate the product distributions. It should be noted that the sample should be immediately analyzed after extraction.

Besides, an incomplete oxidation reaction (performed for 16 h) was worked up and purified via column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 20:1) to provide the intermediates 3a' and 4a for structure confirmation.

Furthermore, a preparation reaction (performed for 60 h) was worked up and purified via column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 20:1) to provide the desired product 2a.

Fig. S1 Time-dependence curves for the oxidation of 1a into 2a in methanol (percentages as their respective ratios by area normalization method in the total ionization chromatography).

2-Bromo-4-(methoxymethyl)phenol (3a'): yellow oil, ¹H NMR (400 MHz, CDCl₃,

ppm): δ 7.39 (br s, 1H), 7.10 (br d, J = 8.0 Hz, 1H), 6.89 (br d, J = 8.0 Hz, 1H), 5.66 (br s, 1H), 4.29 (s, 2H), 3.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 150.8, 130.7, 130.6, 127.8, 114.9, 109.1, 72.5, 56.9; HRMS (EI): *m/z* [M⁺] calcd. for C₈H₉O₂Br 215.9786, found 215.9792.

2-Bromo-4-(hydroxymethyl)phenol (4a): the spectral data see 2.3.2 section.

CHO Br

OH 2a 3-Bromo-4-hydroxybenzaldehyde (2a): pale yellow solid, 0.71 g (71% yield); the spectral data see 2.1 section.

2.4 ¹H NMR spectra of compounds 2a and 5, in CD₃ONa/CD₃OD and CD₃OD, respectively.

OH 2a 3-Bromo-4-hydroxybenzaldehyde (2a): ¹H NMR (400 MHz, CD₃OD, ppm): δ 9.75 (br s, 1H), 8.03 (br d, J = 2.0 Hz, 1H), 7.74 (dd, J = 8.0, 2.0 Hz, 1H), 7.02 (br d, J = 8.0 Hz, 1H).

phenolate of **2a** Sodium 2-bromo-4-formylphenolate: ¹H NMR (400 MHz, CD₃OD, **2a** (6 mg) and CD₃ONa (7 mg) dissolved in 0.5 mL CD₃OD, ppm): δ 9.39 (br s, 1H), 7.89 (br d, J = 2.0 Hz, 1H), 7.51 (dd, J = 8.4, 2.0 Hz, 1H), 6.63 (br d, J = 8.4 Hz, 1H).

OH **5 3,5-Di-tert-butyl-4-hydroxybenzaldehyde (5)**: ¹H NMR (400 MHz, CD₃OD, ppm): δ 9.77 (br s, 1H), 7.75 (br s, 2H), 1.46 (s, 18H).

enolate of 5 Sodium (3,5-di-*tert*-butyl-4-oxocyclohexa-2,5-dienylidene)methanolate:

¹H NMR (400 MHz, CD₃OD, **5** (7 mg) and CD₃ONa (7 mg) dissolved in 0.5 mL CD₃OD, ppm): δ 9.02 (br s, 1H), 7.67 (br s, 1H), 7.25 (br s, 1H), 1.38 (s, 18H).

2.5 Co(OAc)₂·4H₂O-catalyzed oxidation of 2-bromo-4-cresol (1a), 4-cresol (1b) and 2-methoxy-4-cresol (1c, Scheme 5 in the text).

Scheme 5. Oxidations of **1a**, **1b** and **1c** under the standard conditions. Reaction performed with **1** (5.0 mmol), $Co(OAc)_2 \cdot 4H_2O$ (0.05 mmol), NaOH (20 mmol), EG (10 mL) and O_2 (1.0 atm) at 80 °C for 9 h.

General procedure: a three-necked flask was charged with EG (10 mL), **1a**, **1b** or **1c** (5.0 mmol), Co(OAc)₂·4H₂O (12.5 mg, 0.05 mmol) and solid NaOH (0.80 g, 20 mmol), and then the solution was heated to 80 °C. The molecular oxygen was continuously supplied to the reaction through a top tube inlet for 9 h. Hydrochloric acid (10 mL, 10%) and methyl *tert*-butyl ether (MTBE, 15 mL) were successively added to the reaction mixture at room temperature. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (15 mL × 2). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo to give a residue, which was purified *via* column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 20:1) to provide **2** and dimer **6**, respectively.

OH 2a 3-Bromo-4-hydroxybenzaldehyde (2a): pale yellow solid, 0.90 g (90%); the spectral data see 2.1 section.

OH **2b 4-Hydroxybenzaldehyde (2b)**:⁵ yellow solid, 0.49 g (81% yield), m.p. 116–118 °C ((lit⁵ m.p. 115–118 °C); ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.87 (br s, 1H), 7.83 (br d, J = 8.8 Hz, 2H), 7.98 (br d, J = 8.8 Hz, 2H), 6.29 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 191.2, 161.5, 132.5 (2C), 129.9, 116.0 (2C); HRMS (EI): m/z [M⁺] calcd. for C₇H₆O₂ 122.0368, found 122.0367.

5,5'-Dimethylbiphenyl-2,2'-diol (6b):6 white solid, 32.1 mg (6% yield), m.p.

148–150 °C (lit⁶ m.p. 155 °C); ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.11 (dd, J = 8.0, 1.6 Hz, 2H), 7.06 (br d, J = 1.6 Hz, 2H), 6.92 (br d, J = 8.0 Hz, 2H), 5.43 (br s, 2H), 2.32 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 150.6 (2C), 131.6 (2C), 130.8 (2C), 130.3 (2C), 123.7 (2C), 116.5 (2C), 20.5 (2C); HRMS (EI): m/z [M⁺] calcd. for C₁₄H₁₄O₂ 214.0994, found 214.0992.

OH 2c Vanillin (2c):⁷ white solid, 0.42 g (55%), m.p. 82–83 °C (lit⁷ m.p. 80–81 °C); ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.82 (br s, 1H), 7.43–7.41 (m, 2H), 7.04 (br d, J = 8.8 Hz, 1H), 6.30 (br s, 1H), 3.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 191.1, 151.8, 147.2, 129.8, 127.6, 114.5, 108.9, 56.1; HRMS (ESI): m/z [M-H⁺] calcd. for C₈H₇O₃ 151.0395, found 151.0400.

6C 3,3'-Dimethoxy-5,5'-dimethylbiphenyl-2,2'-diol (6c):⁸ brown solid, 75.4 mg (11% yield), m.p. 132–134 °C (lit⁸ m.p. 133–135 °C); ¹H NMR (400 MHz, CDCl₃, ppm): δ 6.73 (br s, 2H), 6.72 (br s, 2H), 5.96 (br s, 2H), 3.91 (s, 6H), 2.33 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 147.1 (2C), 140.3 (2C), 129.6 (2C), 124.4 (2C), 123.4 (2C), 111.3 (2C), 56.0 (2C), 21.2 (2C); HRMS (ESI): *m/z* [M+H⁺] calcd. for C₁₆H₁₉O₄ 275.1283, found 275.1283.

2.6 Co(OAc)₂·4H₂O-catalyzed oxidation of 1 (Table 2 in the text).

Table 2. Co(OAc)₂-catalyzed oxidation of 1.^a

^aReaction conditions: substrates **1** (5.0 mmol), $Co(OAc)_2 H_2O$ (0.05 mmol), NaOH (20.0 mmol), EG (10 mL) and O₂ (1.0 atm) at 80 °C for 9 h. ^b Isolated yield *via* column chromatography. ^cPerformed with NaOH (10.0 mmol).

General procedure: a three-necked flask was charged with EG (10 mL), **1** (5.0 mmol), $Co(OAc)_2 \cdot 4H_2O$ (12.5 mg, 0.05 mmol) and solid NaOH (0.80 g, 20 mmol for **1d**, **1e**, **1f**; 0.40 g, 10 mmol for **2g**, **2h**, **2i**, **2j**, **2k**), and then the solution was heated to 80 °C. The molecular oxygen was continuously supplied to the reaction through a top tube inlet for 9 h. Hydrochloric acid (10 mL, 10%) and methyl *tert*-butyl ether (MTBE, 15 mL) were successively added to the reaction mixture at room temperature. The MTBE phase was separated, and the aqueous phase was further extracted with MTBE (15 mL × 2). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo to give a residue, which was purified *via* column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 20:1) to provide the desired products **2**.

 $\dot{O}H^{2d}_{3-Chloro-4-hydroxybenzaldehyde}$ (2d): yellow oil, 0.68 g (87%); ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.85 (br s, 1H), 7.54 (br d, J = 2.4 Hz, 1H), 7.47 (dd, J = 8.8, 2.4 Hz, 1H), 6.96 (br d, J = 8.8 Hz, 1H), 5.98 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 195.6, 160.3, 137.1, 132.7, 124.8, 121.3, 119.6; HRMS (EI): m/z [M⁺] calcd. for C₇H₅ClO₂ 155.9978, found 155.9977.

OH **2e** 3-Fluoro-4-hydroxybenzaldehyde (2e): yellow oil, 0.60 g (85%); ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.85 (br s, 1H), 7.67-7.61 (m, 2H), 7.15 (br d, J = 8.0 Hz, 1H), 5.98 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 190.2 (d, J = 2.2 Hz), 151.2 (d, J = 239.8 Hz), 149.6 (d, J = 14.7 Hz), 130.2 (d, J = 4.8 Hz), 128.6 (d, J = 2.8 Hz), 117.6 (d, J = 1.9 Hz), 115.8 (d, J = 18.3 Hz); HRMS (EI): m/z [M⁺] calcd. for C₇H₅FO₂ 140.0274, found 140.0270.

OH2f 5-Formyl-2-hydroxybenzonitrile (2f): yellow oil, 0.61 g (83%); ¹H NMR (400 MHz, CDCl₃, ppm): δ 12.35 (br s, 1H), 9.83 (br s, 1H), 8.24 (br d, J = 2.4 Hz, 1H), 8.02 (dd, J = 8.8, 2.0 Hz, 1H), 7.18 (br d, J = 8.8 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6 , ppm): δ 190.5, 165.4, 137.4, 135.3, 128.9, 117.3, 116.4, 100.1; HRMS (ESI): m/z [M–H ⁺] calcd. for C₈H₄NO₂ 146.0242, found 146.0258.

OH 2g 3,5-Dibromo-4-hydroxybenzaldehyde (2g): white solid, 1.26 g (90%); the spectra see 2.1 section.

OH ²ⁿ **3,5-Dichloro-4-hydroxybenzaldehyde (2h)**:⁹ white solid, 0.87 g (91% yield), m.p. 158–160 °C (lit⁹ m.p. 157 °C); ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.81 (br s, 1H), 7.83 (br s, 2H), 6.43 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 188.6, 153.1, 130.3 (2C), 129.9 (2C), 122.4; HRMS (ESI): *m/z* [M–H⁺] calcd. for C₇H₃Cl₂O₂ 188.9510, found 188.9511.

3-Bromo-5-fluoro-4-hydroxybenzaldehyde (2i): white solid, 0.96 g (88% yield), m.p. 138–140 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.74 (d, J = 2.0 Hz, 1H), 7.78 (t, J = 1.6 Hz, 1H), 7.54 (dd, J = 9.6, 1.6 Hz, 1H), 6.33 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 188.8, 151.2 (d, J = 247.3 Hz), 147.3 (d, J = 15.0 Hz), 130.7 (d, J = 2.7 Hz), 130.1 (d, J = 5.4 Hz), 115.7 (d, J = 18.8 Hz), 111.6 (d, J = 1.4 Hz); HRMS (ESI): m/z [M–H⁺] calcd. for C₇H₃BrFO₂ 216.9300, found 216.9296.

3-Fluoro-4-hydroxy-5-methoxybenzaldehyde (2j): white solid, 0.76 g (89% yield), m.p. 116–118 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.81 (br s, 1H), 7.32–7.26 (m, 2H), 5.98 (br s, 1H), 4.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 190.2 (d, J = 2.3 Hz), 150.6 (d, J = 243.8 Hz), 148.8 (d, J = 5.3 Hz), 140.1 (d, J = 13.5 Hz), 128.2 (d, J = 6.3 Hz), 113.1 (d, J = 18.5 Hz), 106.1 (d, J = 1.7 Hz), 56.8; HRMS (ESI): m/z [M–H⁺] calcd. for C₈H₆FO₃ 169.0301, found 169.0305.

5-Formyl-2-hydroxy-3-methoxybenzonitrile (2k): white solid, 0.76 g (86% yield), m.p. 196–198 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.83 (br s, 1H), 7.66 (br s, 1H), 7.58 (br s, 1H), 6.90 (br s, 1H), 4.03 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆, ppm): δ 190.2, 155.6, 148.5, 129.2, 128.7, 115.8, 113.1, 99.3, 56.4; HRMS (ESI): *m/z* [M–H⁺] calcd. for C₉H₆NO₃ 176.0348, found 176.0361.

2.7 Methoxylation of 2a for preparing vanillin (Scheme 7 in the text).

General procedure: the Teflon-lined autoclave (25 mL) was charged with **2a** (0.80 g, 4.0 mmol), MeOH (5 mL), MeONa (0.65 g, 12 mmol), CuCl (15.8 mg, 0.16 mmol) and HCOOMe (0.10 mL, d = 0.97 g/mL, 1.6 mmol). The autoclave was heated to 115 °C and stirred for 2 h. After the completion of reaction, the reactor was cooled to room temperature. The reaction mixture was stirred for 0.5 h in open system, and then concentrated to recover pure MeOH. To the residue was added MTBE (5 mL) and diluted hydrochloric acid (1.0 M, 8 mL) to adjust pH to 2.0–3.0. Furthermore, the solution was partitioned into two layers, and the aqueous phase was extracted with MTBE (5 mL × 3). The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated in vacuo to give a solid, which was purified *via* column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 15:1) to provide the desired vanillin. Besides, the purity of the recovered MeOH was more than 99% measured by GC, and water content of the recovered MeOH was less than 0.12% measured by Karl Fischer method.

CHO OMe

OH vanillin Vanillin: white solid, 596.4 mg (98% yield); the spectral data see 2.5 section.

2.8 CuCl/HCOOMe-catalyzed methoxylation (Table 3 in the text).

Table 3. CuCl/HCOOMe-catalyzed methoxylation.^a

^a Reaction conditions: aryl bromides (4.0 mmol), MeOH (5 mL), MeONa (0.65 g, 12 mmol), CuCl (15.8 mg, 0.16 mmol) and HCOOMe (0.10 mL, d = 0.97 g/mL, 1.6 mmol). ^b Isolated yield *via*

column chromatography. ^c Conv. (%)/Sele. (%) determined by GC-MS by area normalization method in the total ionization chromatography.

General procedure: the Teflon-lined (25 mL) was charged with the aryl bromides (4.0 mmol), MeOH (5 mL), freshly prepared MeONa (0.65 g, 12 mmol), CuCl (15.8 mg, 0.16 mmol) and HCOOMe (0.10 mL, d = 0.97 g/mL, 1.6 mmol). The autoclave was heated to 110 °C and stirred for 2 h. After the completion of reaction, the reactor was cooled to room temperature. The reaction mixture was stirred for 0.5 h in open system, and then concentrated to recover pure MeOH. To the residue was added MTBE (5 mL) and diluted hydrochloric acid (1.0 M, 8 mL) to adjust pH to 2.0–3.0. Furthermore, the solution was partitioned into two layers, and the aqueous phase was extracted with MTBE (5 mL × 3). The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated to give a crude product, which was purified *via* column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 15:1) to provide the desired vanillin. Generally, the purity of the recovered MeOH was more than 99% measured by GC, and water content of the recovered MeOH was used to determine conversion and selectivity by GC-MS by area normalization method in the total ionization chromatography.

OMe

7a 1,3-Dimethoxybenzene (7a): colorless oil, 541.6 mg (98% yield); ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.19 (t, J = 8.0 Hz, 1H),6.52 (dd, J = 8.0, 2.0 Hz, 2H), 6.48 (t, J = 2.0 Hz, 1H), 3.80 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 160.9, 129.9, 106.2 (2C), 100.5 (2C), 55.2 (2C); HRMS (EI): m/z [M⁺] calcd. for C₈H₁₀O₂ 138.0681, found 138.0680.

ОМе

Ƴ OMe**7**

ÓMe **7b 1,4-Dimethoxy-2-methylbenzene (7b):** colorless oil, 596.6 mg (98% yield); ¹H NMR (400 MHz, CDCl₃, ppm): δ 6.76 (br d, J = 8.8 Hz, 2H), 6.69 (dd, J = 8.8, 3.2 Hz, 1H), 3.79 (s, 3H), 3.76 (s, 3H), 2.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 153.5, 152.2, 127.8, 117.1, 110.9, 110.8, 55.8, 55.6, 16.4; HRMS (ESI): m/z [M+H⁺] calcd. for C₉H₁₃O₂ 153.0916, found 153.0924.

OMe OH 7c

4-Methyl-2-methoxyphenol (7c): colorless oil, 541.6 mg (98% yield); ¹H NMR (400 MHz, CDCl₃, ppm): $\delta 6.82$ (br d, J = 8.0 Hz, 1H), 6.69 (br s, 1H), 6.68 (br d, J = 8.0 Hz, 1H), 5.50 (br s, 1H), 3.87 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 146.3, 143.4, 129.7, 121.6, 111.8, 55.9, 21.1; HRMS (EI): m/z [M⁺] calcd. for C₈H₁₀O₂ 138.0681, found 138.0682.

OMe

 \sim **7d 5-Methoxybenzo[d]1,3-dioxole (7d):** pale yellow oil, 596.4 mg (98% yield); ¹H NMR (400 MHz, CDCl₃, ppm): δ 6.71 (br d, J = 8.4 Hz, 1H), 6.49 (br s, 1H), 6.32 (br d, J = 8.4 Hz, 1H), 5.91 (s, 2H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 155.2, 148.3, 141.6, 107.9, 104.7, 101.1, 97.5, 56.0; HRMS (ESI): m/z [M+H⁺] calcd. for C₈H₉O₃ 153.0552, found 153.0531.

OMe OH

7e 2-Methoxy-4,6-dimethylphenol (7e):¹⁰ pale yellow solid, 596.6 mg (98% yield), m.p. 28–30 °C (lit¹⁰ m.p. 34–35 °C); ¹H NMR (400 MHz, CDCl₃, ppm): δ 6.57 (br s, 1H), 6.55 (br s, 1H), 5.53 (br s, 1H), 3.86 (s, 3H), 2.27 (s, 3H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 146.1, 141.5, 128.6 (2C), 123.6, 109.2, 56.0, 21.1, 15.4; HRMS (ESI): *m/z* [M+H⁺] calcd. for C₉H₁₃O₂ 153.0916, found 153.0893.

7f CL1 **2-Ethoxy-6-methoxy-4-methylphenol (7f):** pale yellow oil, 721.6 mg (99% yield); ¹H NMR (400 MHz, CDCl₃, ppm): δ 6.38 (br s, 2H), 5.36 (br s, 1H), 4.09 (q, J = 6.8 Hz, 2H), 3.87 (s, 3H), 2.28 (s, 3H), 1.43 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 146.9, 146.1, 132.7, 128.7, 106.7, 105.7, 64.7, 56.2, 21.6, 15.0; HRMS (ESI): m/z [M+H⁺] calcd. for C₁₀H₁₅O₃ 183.1021, found 183.1023.

OH **7g 4-Methoxy-2,3,6-trimethylphenol** (**7g**):¹¹ white solid, 651.6 mg (98% yield), m.p. 104–106 °C (lit¹¹ m.p. 101–102 °C); ¹H NMR (400 MHz, CDCl₃, ppm): δ 6.52 (s, 1H), 4.26 (br s, 1H), 3.76 (s, 3H), 2.24 (s, 3H), 2.18 (s, 3H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 151.3, 145.9, 123.9, 123.6, 120.0, 110.9, 56.3, 16.3, 12.2, 11.9; HRMS (ESI): *m/z* [M+H⁺] calcd. for C₁₀H₁₅O₂ 167.1072, found 167.1071.

7h Methyl 3-methoxybenzoate (7h): colorless oil, 651.4 mg (98% yield); ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.64 (dt, J = 8.0, 1.2 Hz, 1H), 7.56 (dd, J = 2.8, 1.6 Hz, 1H), 7.34 (t, J = 8.0 Hz, 1H), 7.10 (ddd, J = 8.0, 2.8 Hz, 2.4 Hz, 1H), 3.92 (s, 3H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 167.0, 159.5, 131.4, 129.4, 122.0, 119.5, 113.9, 55.4, 52.2; HRMS (ESI): m/z [M+H⁺] calcd. for C₉H₁₁O₃ 167.0708, found 167.0719.

2.9 CuCl-catalyzed methoxylation of 2a with different co-catalysts (Table 4 in the text).

Table 4. CuCl-catalyzed methoxylation of 2a with different co-catalysts.^a

	CHO Br OH 2a	MeONa (3 MeOH, 11 CuCl (4 mo co-catalyst	.0 equiv) $5 ^{\circ}C, 2 h$ $5 ^{\circ}C, 1 \rightarrow$ $5 ^{\circ}C, 2 h \rightarrow$	OMe OH vanillin	
Entry	Co-catalyst	$n_1 \mod \%$	Conv./Sele. (%) ^b	Yield (%) ^c	
1	HCOOMe	40	100/100	98	
2	MeCOOMe	40	100/95	91	
3	DME	40	100/94	89	

^a Reaction conditions: **2a** (4.0 mmol), MeOH (5 mL), MeONa (0.65 g, 12 mmol), CuCl (15.8 mg, 0.16 mmol) and co-catalyst (n_1 mol%). ^b Determined by GC-MS. ^c Isolated yield *via* column chromatography.

General procedure: the Teflon-lined autoclave (25 mL) was charged with **2a** (0.80 g, 4.0 mmol), MeOH (5 mL), MeONa (0.65 g, 12 mmol), CuCl (15.8 mg, 0.16 mmol) and co-catalyst (n_1 mol%). The autoclave was heated to 115 °C and stirred for 2 h. After the completion of reaction, the reactor was cooled to room temperature. The reaction mixture was stirred for 0.5 h in open system, and then concentrated to recover pure MeOH. To the residue was added MTBE (5 mL) and diluted hydrochloric acid (1.0 M, 8 mL) to adjust pH to 2.0–3.0. Furthermore, the solution was partitioned into two layers, and the aqueous phase was extracted with MTBE (5 mL × 3). The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated in vacuo to give a crude product, which was purified *via* column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 15:1) to provide the desired vanillin. In particular, the sample of the crude product was used to determine conversion and selectivity with GC-MS by area normalization method in the total ionization chromatography.

СНО

CHO

OH vanillin Vanillin: white solid, 596.4 mg (98% yield with HCOOMe as co-catalyst); the spectral data see 2.5 section.

OMe

OH vanillin Vanillin: white solid, 553.8 mg (91% yield with MeCOOMe as co-catalyst); the

spectral data see 2.5 section.

CHO OMe

OH vanillin Vanillin: white solid, 541.6 mg (89% yield with DMF as co-catalyst); the spectral data see 2.5 section.

3. References

[1] S. Adimurthy, G. Ramachandraiah, A. V. Bedekar, S. Ghosh, B. C. Ranu and P. K. Ghosh, *Green Chem.*, 2006, **8**, 916.

[2] J.-A. Jiang, C. Chen, J.-G. Huang, H.-W. Liu, S. Cao and Y.-F. Ji. *Green Chem.*, DOI: 10.1039/C3GC41946K.

[3] L. He, L. Zhang, X. Liu, X. Li, M. Zheng, H. Li, K. Yu, K. Chen, X. Shen, H. Jiang and H. Liu, *J. Med. Chem.*, 2009, **52**, 2465.

[4] L. W. Woo Lawrence, C. Bubert, O. B. Sutcliffe, A. Smith, S. K. Chander, M. F. Mahon, A. Purohit, M. J. Reed and B. V. L. Potter, *J. Med. Chem.*, 2007, **50**, 3540.

[5] J. Magano, M. H. Chen, J. D. Clark and T. Nussbaumer, J. Org. Chem., 2006, 71, 7103.

[6] I. M. Malkowsky, C. E. Rommel, R. Froehlich, U. Griesbach, H. Puetter and S. R. Waldvogel, *Chem. Eur. J.*, 2006, **12**, 7482.

[7] J. KamLet and E. Conn, US Pat., 2640083, 1953.

[8] A. Alexakis, D. Polet, S. Rosset and S. March, J. Org. Chem., 2004, 69, 5660.

[9] M. Beller, M. Eckert and E. Holla Wolfgang, J. Org. Chem., 1998, 63, 5658.

[10] D.-S. Hsu, C.-C. Liao, Org. Lett., 2007, 9, 4563.

[11] K. A. Kun and H. G. Cassidy, J. Org. Chem., 1962, 27, 841.

4. Copies of Spectra

4.1 Copies of spectra for oxybromination of 4-cresol into 1a.

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions

72 formula(e) evaluated with 11 results within limits (up to 50 closest results for each mass)

Elements Used:

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

19 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-7 H: 0-6 Br: 0-2 O: 0-4

4.2 Copies of spectra for oxybromination of 4-hydroxybenzaldehyde into 2a.

ÇНО

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions

85 formula(e) evaluated with 12 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-7 H: 0-5 0:0-2 79Br: 0-1 81Br: 0-1 j**ylja-11** 2013071394(1*5*66) Cm(94-9:11) Waters GCT Remier 02-04-2013 17:34:20 TOF/NSE+ 1.82e+004 2009398 100-201,9455 1729433 1429605 2029507 1169352 1739602 399666 121.0286 125.1347 630235 155,1797 169,9392 530038 97,1034 859752 111.1183 141,9355. 1459527 185,9837 195,1122 215,9666 170 175 195 200 205 210 215 4D 100 105 110 115 120 125 130 135 140 145 190 195 180 165 180 185 190 70 75 80 en. 3.00 -1.5 Minimum: Maximum: 100.00 5.0 10.0 50.0 Mass RA Calc. Mass PPM DBE i-FIT Formula mDa 199.9474 199.9473 0.5 5.0 8332.2 C7 H5 O2 79Br 0.1 64.49

сно

ÓН

Elemental Composition Report

276.8517 276.8500 1.7 6.1 5.5 46.5 0.0 C7 H3 O2 Br2

Page 1

4.3 Copies of spectra for the oxidation process of 1a in EG. 激素文件: C:\CHEM32\1\DATA\13-000539.D 样晶名林: 5#

操作者				
61/ 255	- 49 BS 1		位置, 橙泉斑 」	01
法经日期	- 12-Wow-13, 10:54:0	4	連邦な数・1	-01
AT 1+ H 3H	. 12-200-15, 10.54.0	-	油烧兽 、 无动	
军争 会社	- C+) CMCM2 2) 1) MCTMOD	の 会 細 作 会 4 回 う		
本我方应 马口族政	- 2012-11-12 10-F0-2	ວາວ 1951 10 10 10 10 10 ຂ	n	
取信服員	2013-11-12 10:50:3	0 m		
分析方法	 C: \CHERG2\I\RETHUD COLD_11_10_10_1000 	51字 滅化合物	n	
最后隙成	: 2013-11-12 14:16:3)	8		
	(汎用/5階の)			
PA -	i (
800	4 4			
800 -				
700				
600				
500 -				
	1 1			
400 -				
200				
			<u></u>	
200			15.	
100 -			1	
=				
6	0 10	12	14 16	10 min
	而沒了	日分比 报告		
				-
44 戊	· 店里			
承知四子 。	: 18 ¹ 9	1.0000		
****		1.0000		
师程因于: 古福德用新的空	: 	1.0000		
的保健用器积固	ナ和郡師四千			
信号 1: FID1 A	,			
-				
峭 保留时间 类	建二磷寬 噴面积	峰鎬	時面积	
<pre>f [min]</pre>	[min] [pA*s]	[pA]	1	
-		-	1	
1 6.707 B	V 0.0280 3085.84058	1715.18091 5	8.19582	
2 8.632 B	V 0.0525 4650.44141	1485.76208 3	7.56209	
3 9.365 V	V 0.0262 17.95808	10.39642	0.22228	
4 15.263 W	B 0.0437 324.76053	106.20811	4.01981	
息景 :	8079,00059	3317.54752		
	00101000000	0011001100		
				-

*** 报告结末 ***

议器 1 2013-11-12 14:17:05

面积百分比报告

数:	据路径	: E:\2013-2	\			
数	据文件	: 13-0655.E)			
釆	集	: 25 Oct 20	13 14:54			
样	H	:药学院				
峰	R.T.	起始 TO	P 截止 🤘	雀 峰飛	高 修正面积	%
#	分钟	扫描 扫描	黄扫描 峰	类型	总面积	比总数
1	5.997	744 758	778 BB	6086961	93257278	32.515%
2	8.011	1134 1149	1181 BB	7613886 1	70161516	53.855%
3	10.711	1660 1672	1692 BB	1414163	28206104	2.927%
4	14.037	2298 2318	2332 BB	1278196	24336551	10.702%
			修正后	的面积和:	315961448	

散霜文件: C:\CHEM32\1\DàTà\13-000524.0 样晶名称: 1#

议器 1 2013-11-12 14:15:10

数据文件: C:\CHEM32\1\DATA\13-000518.D

*** 报告结束 ***

仪题 1 2013-11-5 15:23:08

议器 1 2013-11-12 14:13:33

数据文件: C:\CHEM32\1\DàTA\13-000540.D 样晶名称: 6#

*** 报告结束 ***

议器 1 2013-11-12 14:09:09

m/z-->

Single Mass Analysis Tolerance = 30.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions 52 formula(e) evaluated with 11 results within limits (up to 1 closest results for each mass)

Elements Used: C: 0-35 H: 0-100 O: 0-10 Br: 0-1

OH.

ÓH

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions

226 formula(e) evaluated with 35 results within limits (up to 50 closest results for each mass)

Elements Used:

4.4 Copies of spectra for the oxidation process of 1a in methanol.

丰度 TIC: 13-0434. D\data.ma 38000001 3600000 3400000 13. 735 3200000 3000000 2800000 2600000 2400000 2200000 2000000 1800000 1800000 1200000 1000000 800000 800000 400000 200000 14.766 16.539 18.00 14,00 11,00 12,00 13.00 15.00 8400--> Area Percent Report Data Path : E:/msdata / test / Data File : 12-0445.D :12 May 2012 14:35 Acq On Operator 1 Sample : 1# Misc 1 ALS Vial : 1 Sample Multiplier: 1 Integration Parameters : autointl.e Integrator : ChemStation Method : C: / msdchem / 1 / METHODS / 30 (3) - 8 - 280 . M Title 1 : TIC: G120168 . D /data . ms Signal Peak R.T. first max last PK corr. % of peak corr. # scan scan TY min scan height area % max total ----____ 1 13.735 1964 1983 2154 BB 3292515181419490 100.00% 98.963% 2 16.539 2154 2175 2189 BB 2 65489 1525770 0.85% 0.832%

3

14.766 2485

2505 2514 BV

25086

375587

0.21% 0.205%

Analysis & Research Center ECUST

m/z-->

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions

382 formula(e) evaluated with 25 results within limits (up to 50 closest results for each mass)

Elements Used:

4.5 Copies of ¹H NMR spectra for compounds 2a and 5, in CD3ONa/CD3OD and CD3OD, respectively.

4.6 Copies of spectra for Co(OAc)₂·4H₂O-catalyzed oxidation of 1a, 1b and 1c.

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron lons

19 formula(e) evaluated with 9 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-7 H: 0-6 O: 0-2

CHO

ÓН

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Monoisotopic Mass, Odd and Even Electron Ions

68 formula(e) evaluated with 20 results within limits (up to 50 closest results for each mass)

Elements Used:

ပ်မ လ်မ

4.7 Copies of spectra for Co(OAc)₂·4H₂O-catalyzed oxidation of 1.

ĊНО

Monoisotopic Mass, Odd and Even Electron Ions

109 formula(e) evaluated with 19 results within limits (up to 50 closest results for each mass)

çно

ÓH 2h

CHO

4.8 Copies of spectra for CuCl/HCOOMe-catalyzed methoxylation.

OMe OMe 7a

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50

Monoisotopic Mass, Odd and Even Electron Ions

63 formula(e) evaluated with 23 results within limits (up to 50 closest results for each mass)

Elements Used: C: 0-8 H: 0-10 O: 0-2

OMe

OMe

QМе

Page 1

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50

Monoisotopic Mass, Odd and Even Electron Ions

40 formula(e) evaluated with 16 results within limits (up to 50 closest results for each mass)

Elements Used: C: 0-8 H: 0-10 O: 0-2

OMe

Page 1

,OMe Single Mass Analysis Tolerance = 30.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2 Monoisotopic Mass, Even Electron Ions 10 formula(e) evaluated with 3 results within limits (up to 1 closest results for each mass) Elements Used: C: 0-35 H: 0-50 O: 0-3 YE-JI ECUST institute of Fine Chem 15-Nov-2013 12:51:21 1: TOF MS ES+ JYF-JA-4 2 (0.160) Cm (1:5) 8.68e+001 153.0531 100-154.0605 161.0201 155.0655 %-151.0343 139.1200 0rigring m/z 152.0 154.0 140.0 142.0 144.0 146.0 148.0 150.0 156.0 158.0 160.0 Minimum: -1.5 Maximum: 30.0 50.0 100.0 Calc. Mass PPM DBE i-FIT i-FIT (Norm) Formula Mass mDa 0.0 153.0531 -2.1 -13.74.5 11.8 153.0552 C8 H9 O3

Page 1

OMe OH 7g

Single Mass Analysis Tolerance = 30.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off

Elemental Composition Report

4.9 Copies of GC-MS for CuCl/HCOOMe-catalyzed methoxylation of aryl bromides.


```
le :D:\data\2013-03-29\2013-03-29-3.D
erator :
quired : 29 Mar 2013 14:06 using AcqMethod METHOD-01.M
istrument : GC-MSD
.mple Name: 2013-03-29-6
.sc Info :
.al Number: 16
```


using AcqMethod METHOD-01.M

4.10 Copies of GC-MS for CuCl-catalyzed methoxylation of 2a with different co-catalysts.

仪器 1 2013-12-5 15:14:59

页 1/1

