## **Electronic Supplementary Information (ESI)**

# **Can Ionic Liquids Be Cheap?**

Long Chen, <sup>*a, b, §*</sup> Mahdi Sharifzadeh, <sup>*c, §*</sup> Niall Mac Dowell, <sup>*c*</sup> Tom Welton, <sup>*b*</sup> Nilay Shah, <sup>*c*</sup> and Jason P. Hallett<sup> $c^*$ </sup>

<sup>a</sup>State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. <sup>b</sup>Department of Chemistry, Imperial College London, London, SW7 2AZ, UK. <sup>c</sup>Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK <u>\*j.hallett@imperial.ac.uk</u> § Both of these authors contributed equally to this work.

This document reports the details of the methods and results and consists of three main sections. In the first section, experimental details of ILs synthesis are reported. In the second section, details of the simulations and their results are presented for both the conventional and intensified process scenarios. In the third section, the details of the economic analysis and corresponding assumptions are discussed.

### 1. ILs synthesis

[HNEt<sub>3</sub>][HSO<sub>4</sub>] (IL1) synthesis: Triethylamine (10.1 g, 0.1 mol) was mixed with 50 ml water and the mixture cooled to 0°C. Sulfuric acid (9.8 g, 0.1 mol) was added drop wise while stirring. The stirring was continued for 1 h at room temperature. <sup>1</sup>H-NMR and mass spectra are shown in Figures S1 and S2, respectively.

[HC<sub>1</sub>im][HSO<sub>4</sub>] (IL2) synthesis: 1-methylimidazole (8.2 g, 0.1 mol) was mixed with 50 ml water and the mixture cooled to 0°C. Sulfuric acid (9.8 g, 0.1 mol) was added drop wise while stirring. The stirring was continued for 1 h at room temperature. <sup>1</sup>H-NMR and mass spectra are shown in Figures S3 and S4, respectively.







Figure S2 Mass spectra of IL1









Figure S4 Mass spectra of IL2

### 2. Simulation results

The following section describes the simulation and reactor design for production of IL1 and IL2. The results are presented for the conventional process and intensified process, respectively.

### 2.1 The conventional process for IL1

The process configuration is shown in Figure S5 and consists of a single reactor which runs in adiabatic mode. This is because the heat transfer area of a CSTR reactor would be too small to remove the reaction heat and the temperature rise needs to be controlled by a diluting media. In this process water is added to the mixture to an extent that the temperature of the rector is limited to 90°C. Then the pressure is reduced and the medium is heated up and enters a flash drum. The temperature of the flash drum is selected so the concentration of water is reduced from 58.6%wt to 20%wt. The remaining 20% is needed in order to reduce the IL viscosity to a convenient level (~3cP). The separated water needs to be condensed and pumped back for recycle/reuse.

The required power for pumping is calculated based on the parameters in Table S2. The heat duties of coolers/heaters are calculated based on Table S2. The stream data is shown in Table S3. This information will be later applied to make a comparison with the intensified process.

| rubie 51 model builling (pumps)     |         |         |         |         |  |  |  |  |  |  |  |
|-------------------------------------|---------|---------|---------|---------|--|--|--|--|--|--|--|
| Name                                | P-1     | P-2     | P-3     | P-4     |  |  |  |  |  |  |  |
| Electricity [kW]                    | 2.56922 | 2.64357 | 4.65179 | 6.63282 |  |  |  |  |  |  |  |
| Volumetric flow rate [cum/hr]       | 4.57766 | 4.87975 | 12.7403 | 21.3423 |  |  |  |  |  |  |  |
| Calculated discharge pressure [bar] | 7       | 7       | 7       | 7       |  |  |  |  |  |  |  |

| Table  | <b>S</b> 1 | Model  | summary | (numps) |
|--------|------------|--------|---------|---------|
| I abic | 91         | widuci | summary | (pumps) |

| Table S2  | Model   | summary | (cool | ers) | ١. |
|-----------|---------|---------|-------|------|----|
| I dole of | 1110401 | Sammary | (0001 | •••• | 1  |

| Name                           | CONDSR  | нтх     | PROD-CLR  |
|--------------------------------|---------|---------|-----------|
| Specified pressure [bar]       | -0.3    | -0.3    | -0.3      |
| Specified temperature [C]      | 25      |         | 25        |
| Specified vapor fraction       |         | 0.766   |           |
| Calculated heat duty [Gcal/hr] | -13.228 | 12.1722 | -0.888768 |



Figure S5 Process flow diagram for the conventional process for IL1 production.

| Steam Tag         | ATMP     | EFFLNT   | ETN3FD1  | ETN3FEED | H2SO4FD  | H2SO4FD1 | IL1      | IONIC-L1 | MIX      | OVHD     | RCYL     | TO-FLASH | WATER   | WATER1  | WTR-RCYL  |
|-------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------|---------|-----------|
| Temperature C     | 90       | 90       | 25.9     | 25       | 25       | 26.2     | 118.8    | 25       | 25.4     | 118.8    | 25.3     | 124.6    | 25      | 25.5    | 25        |
| Pressure bar      | 2        | 6.7      | 7        | 1        | 1        | 7        | 1.4      | 1.1      | 7        | 1.4      | 7        | 1.7      | 1       | 7       | 1.1       |
| Vapor Frac        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 1        | 0        | 0.766    | 0       | 0       | 0         |
| Mole Flow kmol/hr | 1521.385 | 1521.385 | 91.25    | 91.25    | 91.25    | 91.25    | 343.868  | 343.868  | 1521.385 | 1177.517 | 1177.517 | 1521.385 | 252.563 | 252.563 | 1177.517  |
| Mass Flow kg/hr   | 43947.81 | 43947.81 | 9233.755 | 9233.755 | 8949.753 | 8949.753 | 22734.51 | 22734.51 | 34714.03 | 21213.29 | 21213.29 | 43947.81 | 4550    | 4550    | 21213.293 |
| Mole Flow kmol/hr |          |          |          |          |          |          |          |          |          |          |          |          |         |         |           |
| H2SO4             | 0        | 0        | 0        | 0        | 91.25    | 91.25    | 0        | 0        | 91.25    | 0        | 0        | 0        | 0       | 0       | 0         |
| ETN3              | 0        | 0        | 91.25    | 91.25    | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0       | 0         |
| H2O               | 1430.135 | 1430.135 | 0        | 0        | 0        | 0        | 252.618  | 252.618  | 1430.135 | 1177.517 | 1177.517 | 1430.135 | 252.563 | 252.563 | 1177.517  |
| IL1               | 91.25    | 91.25    | 0        | 0        | 0        | 0        | 91.25    | 91.25    | 0        | 0        | 0        | 91.25    | 0       | 0       | 0         |
| Mole Frac         |          |          |          |          |          |          |          |          |          |          |          |          |         |         |           |
| H2SO4             | 0        | 0        | 0        | 0        | 1        | 1        | 0        | 0        | 0.06     | 0        | 0        | 0        | 0       | 0       | 0         |
| ETN3              | 0        | 0        | 1        | 1        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0       | 0         |
| H2O               | 0.94     | 0.94     | 0        | 0        | 0        | 0        | 0.735    | 0.735    | 0.94     | 1        | 1        | 0.94     | 1       | 1       | 1         |
| IL1               | 0.06     | 0.06     | 0        | 0        | 0        | 0        | 0.265    | 0.265    | 0        | 0        | 0        | 0.06     | 0       | 0       | 0         |

| Table S3 | Stream | table f | for 1 | Figure | S: | 5 |
|----------|--------|---------|-------|--------|----|---|
|          |        |         |       |        | _  | _ |

### 2.2 The intensified process for IL1

The simplified process configuration is shown in Figure S6 and consists of a series of reactors with interstage coolers. Each reactor operates in an adiabatic mode and is designed based on 100% conversion of sulfuric acid. Sulfuric acid is the limiting reactant and is fed between the stages. The heat of the exothermic reaction results in a temperature rise in the reactor which is a process design decision variable. The extent of interstage cooling is also another decision variable as it affects the temperature of the next reactor. Finally and most importantly, the number of stages is an important design variable and determines the extent of reaction in each stage so the overall reaction will reach completion at the end of the reactor network.

The design specifications applied in this study are shown in Table 1. The IL is solid in the pure state at room temperature. Therefore, the sulfuric acid is diluted with water to maintain a liquid state. The extent of this dilution is adjusted so the ultimate product contains 20 wt % water. The justification for the other specification is to ensure safe operation. For example, the specification of maximum temperature of 90 °C and minimum pressure of 4 bar will ensure that no evaporation will happen inside the reactor. The analysis shows that avoiding such a limit without using diluting water requires that the extent of the reaction conversion be limited to less than 12.5%, therefore, at least eight reactors are needed. Table S4 reports the stream data. The required power for pumping is reported in Table S5. The heat duties of coolers are reported in Table S6. This information will be applied later for evaluating the operating and capital costs.

The detailed design of reactors was conducted using the results from the simplified flow diagram. In this research, in order to avoid any uncertainty associated with the physical properties of the new ionic liquid product, the heat duties of all reactors are overdesigned up to 100%. The selected material was titanium, to prevent corrosion. The Exchanger Design and Rating software applied built-in optimization in order to minimize the total costs.

The results for the detailed reactor design are shown in Table S7. In addition, Figure S3 shows the diagram of the 8<sup>th</sup> reactor. The overall bare equipment cost is minimized to only 116800\$ and there is no need for extra diluting water and associated costs of separation and recycling.



Figure S6 Process flow diagram for the intensified process for IL1 production.

| <b>1 able 54</b> Stream table for Figure | m table for Figure S6 | Table S4 Stream |
|------------------------------------------|-----------------------|-----------------|
|------------------------------------------|-----------------------|-----------------|

|                    | ACID-1   | ACID-2   | ACID-3   | ACID-4   | ACID-5   | ACID-6   | ACID-7   | ACID-8   | EF1      | EF2      | EF3      | EF4      | EF5      | EF6      | EF7      | EF8      |
|--------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Temperature C      | 25.7     | 25.7     | 25.7     | 25.7     | 25.7     | 25.7     | 25.7     | 25.7     | 74.9     | 82.8     | 79.2     | 77.1     | 75.7     | 74.5     | 73.6     | 72.9     |
| Pressure bar       | 7        | 7        | 7        | 7        | 7        | 7        | 7        | 7        | 7        | 6.7      | 6.4      | 6.1      | 5.8      | 5.5      | 5.2      | 4.9      |
| Vapor Frac         | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| Mole Flow kmol/hr  | 42.949   | 42.949   | 42.949   | 42.949   | 42.949   | 42.949   | 42.949   | 42.949   | 122.793  | 154.336  | 185.879  | 217.422  | 248.965  | 280.508  | 312.051  | 343.593  |
| Mass Flow kg/hr    | 1686.974 | 1686.974 | 1686.974 | 1686.974 | 1686.974 | 1686.974 | 1686.974 | 1686.974 | 10920.73 | 12607.71 | 14294.68 | 15981.66 | 17668.64 | 19355.61 | 21042.59 | 22729.56 |
| Volume Flow cum/hr | 1.372    | 1.372    | 1.372    | 1.372    | 1.372    | 1.372    | 1.372    | 1.372    | 14.788   | 16.341   | 17.881   | 19.523   | 21.222   | 22.957   | 24.717   | 26.495   |
| Mole Flow kmol/hr  |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| H2SO4              | 11.406   | 11.406   | 11.406   | 11.406   | 11.406   | 11.406   | 11.406   | 11.406   | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| ETN3               | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 79.844   | 68.438   | 57.031   | 45.625   | 34.219   | 22.813   | 11.406   | 0        |
| H2O                | 31.543   | 31.543   | 31.543   | 31.543   | 31.543   | 31.543   | 31.543   | 31.543   | 31.543   | 63.086   | 94.629   | 126.172  | 157.715  | 189.258  | 220.801  | 252.343  |
| IL1                | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 11.406   | 22.813   | 34.219   | 45.625   | 57.031   | 68.438   | 79.844   | 91.25    |
| Mole Frac          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| H2SO4              | 0.266    | 0.266    | 0.266    | 0.266    | 0.266    | 0.266    | 0.266    | 0.266    | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| ETN3               | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0.65     | 0.443    | 0.307    | 0.21     | 0.137    | 0.081    | 0.037    | 0        |
| H2O                | 0.734    | 0.734    | 0.734    | 0.734    | 0.734    | 0.734    | 0.734    | 0.734    | 0.257    | 0.409    | 0.509    | 0.58     | 0.633    | 0.675    | 0.708    | 0.734    |
| IL1                | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0.093    | 0.148    | 0.184    | 0.21     | 0.229    | 0.244    | 0.256    | 0.266    |

|                   | ETN3FEED | FEED2    | FEED3    | FEED4    | FEED5    | FEED6    | FEED7    | FEED8    | H2SO4FD  | IONIC-L  | MIX      | WATER    |
|-------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Temperature C     | 25       | 50       | 50       | 50       | 50       | 50       | 50       | 50       | 25       | 25       | 25.7     | 25       |
| Pressure bar      | 1        | 6.7      | 6.4      | 6.1      | 5.8      | 5.5      | 5.2      | 4.9      | 1        | 4.6      | 7        | 1        |
| Vapor Frac        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| Mole Flow kmol/hr | 91.25    | 122.793  | 154.336  | 185.879  | 217.422  | 248.965  | 280.508  | 312.051  | 91.25    | 343.593  | 343.593  | 252.343  |
| Mass Flow kg/hr   | 9233.755 | 10920.73 | 12607.71 | 14294.68 | 15981.66 | 17668.64 | 19355.61 | 21042.59 | 8949.753 | 22729.56 | 13495.79 | 4546.038 |
| Mole Flow kmol/hr |          |          |          |          |          |          |          |          |          |          |          |          |
| H2SO4             | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 91.25    | 0        | 91.25    | 0        |
| ETN3              | 91.25    | 79.844   | 68.438   | 57.031   | 45.625   | 34.219   | 22.813   | 11.406   | 0        | 0        | 0        | 0        |
| H2O               | 0        | 31.543   | 63.086   | 94.629   | 126.172  | 157.715  | 189.258  | 220.801  | 0        | 252.343  | 252.343  | 252.343  |
| IL1               | 0        | 11.406   | 22.813   | 34.219   | 45.625   | 57.031   | 68.438   | 79.844   | 0        | 91.25    | 0        | 0        |
| Mole Frac         |          |          |          |          |          |          |          |          |          |          |          |          |
| H2SO4             | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 1        | 0        | 0.266    | 0        |
| ETN3              | 1        | 0.65     | 0.443    | 0.307    | 0.21     | 0.137    | 0.081    | 0.037    | 0        | 0        | 0        | 0        |
| H2O               | 0        | 0.257    | 0.409    | 0.509    | 0.58     | 0.633    | 0.675    | 0.708    | 0        | 0.734    | 0.734    | 1        |
| IL1               | 0        | 0.093    | 0.148    | 0.184    | 0.21     | 0.229    | 0.244    | 0.256    | 0        | 0.266    | 0        | 0        |

#### **Table S4** Stream table for Figure S6 (continued)

#### Table S5 Model summary (pumps)

| Name                                | P-1     | P-2     | P-3     |
|-------------------------------------|---------|---------|---------|
| Electricity [kW]                    | 2.56825 | 2.64357 | 4.65179 |
| Volumetric flow rate [cum/hr]       | 4.57368 | 4.87975 | 12.7403 |
| Calculated discharge pressure [bar] | 7       | 7       | 7       |

Table S6 Model summary (coolers). Please note that the heat duty of each cooler is equal to the heat generated by the reaction at that stage.

| Name                           | COOLER-1  | COOLER-2  | COOLER-3 | COOLER-4 | COOLER-5 | COOLER-6 | COOLER-7 | PROD-CLR |
|--------------------------------|-----------|-----------|----------|----------|----------|----------|----------|----------|
| Specified pressure [bar]       | -0.3      | -0.3      | -0.3     | -0.3     | -0.3     | -0.3     | -0.3     | -0.3     |
| Specified temperature [C]      | 50        | 50        | 50       | 50       | 50       | 50       | 50       | 25       |
| Specified vapor fraction       |           |           |          |          |          |          |          |          |
| Calculated heat duty [Gcal/hr] | -0.154792 | -0.234397 | -0.22839 | -0.22583 | -0.22321 | -0.22012 | -0.21671 | -0.43641 |



Figure S7 The geometric diagram of the final reactor (R-8).

Table S7 The results of the detailed reactor design for IL1 (intensified).

|       | Heat duty<br>(kw)<br>Overdesign | Heat duty<br>(kw) Actual | Maximum<br>allowable<br>temperature (°C) | Exit<br>temperature<br>(°C) | Overall heat<br>transfer<br>coefficient | Effective<br>Heat transfer<br>area (m <sup>2</sup> ) | Number<br>of plates | Material | Costs<br>(USD) |
|-------|---------------------------------|--------------------------|------------------------------------------|-----------------------------|-----------------------------------------|------------------------------------------------------|---------------------|----------|----------------|
| R-1   | -360                            | -180.02314               | 75                                       | 50                          | 2017.5                                  | 5.3                                                  | 29                  | Titanium | 6130           |
| R-2   | -540                            | -272.60389               | 83                                       | 50                          | 1560.7                                  | 8.8                                                  | 35                  | Titanium | 9604           |
| R-3   | -530                            | -265.62234               | 79                                       | 50                          | 1475                                    | 8.8                                                  | 35                  | Titanium | 9604           |
| R-4   | -520                            | -262.64477               | 77                                       | 50                          | 1198.2                                  | 9.9                                                  | 39                  | Titanium | 10678          |
| R-5   | -520                            | -259.58718               | 76                                       | 50                          | 1526.2                                  | 8.6                                                  | 21                  | Titanium | 9300           |
| R-6   | -510                            | -256.00292               | 75                                       | 50                          | 1307.6                                  | 9.5                                                  | 23                  | Titanium | 10194          |
| R-7   | -500                            | -252.03838               | 74                                       | 50                          | 1316.4                                  | 9.5                                                  | 23                  | Titanium | 10194          |
| R-8   | -1000                           | -507.5398                | 73                                       | 25                          | 1033                                    | 50.8                                                 | 129                 | Titanium | 51095          |
| Total |                                 |                          |                                          |                             |                                         |                                                      |                     |          | 116799         |

### 2.3 The conventional process for IL2

The process configuration is shown in Figure S8 and consists of a single reactor which runs in adiabatic mode. The reason is that the heat transfer area of a CSTR reactor would be too small to remove the heat of reaction and the temperature rise needs to be controlled by adding a diluent. In this process water is added to the mixture to an extent that the temperature of the rector is limited to 90°C. Then the pressure is reduced and the medium is heated up and enters a flash drum. The temperature of the flash drum is selected so the concentration of water is reduced from 65%wt to 20%wt. The remaining 20% is needed in order to reduce the IL viscosity to a level (~3cP) convenient for storage and transportation. The separated water needs to be condensed and pumped back for recycle / reuse. The required power for pumping is reported in Table S8. The heat duties of coolers are reported in Table S9. The stream data is shown in Table S10. This information will be later applied to make a comparison with the intensified process.

Table S8Model summary (pumps).

| Name                                  | P-1       | P-2      | P-3        | P-4        |
|---------------------------------------|-----------|----------|------------|------------|
| Electricity [Watt]                    | 2442.58   | 2698.08  | 2911.94    | 7613.68    |
| Volumetric flow rate [cum/sec]        | 0.0011463 | 0.001272 | 0.00149883 | 0.00816004 |
| Calculated discharge pressure [N/sqm] | 730000    | 730000   | 730000     | 700000     |

| Table S9   | Model summary         | (coolers). | Please note | that the hea | t duty c | of each | cooler | is equal | to the hea | t generated |
|------------|-----------------------|------------|-------------|--------------|----------|---------|--------|----------|------------|-------------|
| by the rea | iction at that stage. | •          |             |              |          |         |        |          |            |             |

| Name                       | CONDSR   | нтх     | PROD-CLR |
|----------------------------|----------|---------|----------|
| Specified pressure [N/sqm] | -0.3     | -30000  | -30000   |
| Specified temperature [C]  | 25       | 125.85  | 25       |
| Specified vapor fraction   |          |         |          |
| Calculated heat duty [kW]  | -21284.5 | 19612.8 | -1451.6  |



Figure S8 Process flow diagram of the conventional process for IL2 production.

|                    | ATMSPHR | EFFLNT | H2SO4  | H2SO4FD | H2SO4FD1 | IL2    | IONIC-L | M-IM-FD | M-IM-FD1 | MIX    | RCYL   | STEAM  | TO-FLASH | WATER  | WATER1 | WTR-RCYL |
|--------------------|---------|--------|--------|---------|----------|--------|---------|---------|----------|--------|--------|--------|----------|--------|--------|----------|
| Temperature K      | 363.1   | 363.1  | 343.1  | 298.1   | 298.9    | 399    | 298.1   | 298.1   | 298.7    | 298.5  | 298.4  | 399    | 399      | 298.1  | 298.7  | 298.1    |
| Pressure N/sqm     | 200000  | 700000 | 500000 | 100000  | 730000   | 170000 | 140000  | 100000  | 730000   | 700000 | 700000 | 170000 | 170000   | 100000 | 730000 | 169999.7 |
| Vapor Frac         | 0       | 0      | 0      | 0       | 0        | 0      | 0       | 0       | 0        | 0      | 0      | 1      | 0.821    | 0      | 0      | 0        |
| Mole Flow kmol/sec | 0.548   | 0.548  | 0.001  | 0.028   | 0.028    | 0.098  | 0.098   | 0.028   | 0.028    | 0.548  | 0.45   | 0.45   | 0.548    | 0.07   | 0.07   | 0.45     |
| Mass Flow kg/sec   | 14.425  | 14.425 | 0.098  | 2.749   | 2.749    | 6.314  | 6.314   | 2.301   | 2.301    | 12.124 | 8.111  | 8.111  | 14.425   | 1.264  | 1.264  | 8.111    |
| Mole Flow kmol/sec |         |        |        |         |          |        |         |         |          |        |        |        |          |        |        |          |
| H2SO4              | 0       | 0      | 0.001  | 0.028   | 0.028    | 0      | 0       | 0       | 0        | 0.028  | 0      | 0      | 0        | 0      | 0      | 0        |
| H2O                | 0.52    | 0.52   | 0      | 0       | 0        | 0.07   | 0.07    | 0       | 0        | 0.52   | 0.45   | 0.45   | 0.52     | 0.07   | 0.07   | 0.45     |
| M-IMIDAZ           | 0       | 0      | 0      | 0       | 0        | 0      | 0       | 0.028   | 0.028    | 0      | 0      | 0      | 0        | 0      | 0      | 0        |
| IL2                | 0.028   | 0.028  | 0      | 0       | 0        | 0.028  | 0.028   | 0       | 0        | 0      | 0      | 0      | 0.028    | 0      | 0      | 0        |
| Mole Frac          |         |        |        |         |          |        |         |         |          |        |        |        |          |        |        |          |
| H2SO4              | 0       | 0      | 1      | 1       | 1        | 0      | 0       | 0       | 0        | 0.051  | 0      | 0      | 0        | 0      | 0      | 0        |
| H2O                | 0.949   | 0.949  | 0      | 0       | 0        | 0.715  | 0.715   | 0       | 0        | 0.949  | 1      | 1      | 0.949    | 1      | 1      | 1        |
| M-IMIDAZ           | 0       | 0      | 0      | 0       | 0        | 0      | 0       | 1       | 1        | 0      | 0      | 0      | 0        | 0      | 0      | 0        |
| IL2                | 0.051   | 0.051  | 0      | 0       | 0        | 0.285  | 0.285   | 0       | 0        | 0      | 0      | 0      | 0.051    | 0      | 0      | 0        |

**Table S10** Stream table for Figure S8

### 2.4 The intensified process for IL2

The simplified version of the process configuration is shown in Figure S9 and consists of a series of reactors with interstage coolers. Each reactor operates in an adiabatic mode and is designed based on 100% conversion of sulfuric acid which is the limiting reactant and is fed between the stages. The heat of the exothermic reaction results in a temperature rise in the reactor which is a process design decision variable. The extent of interstage cooling is also another decision variable as it affects the temperature of the next reactor. Finally and most importantly, the number of stages is an important design variable and determines the extent of reaction in each stage so the overall reaction will reach completion at the end of the reactor train.

The design specifications applied in this study are shown in Table 1. The IL is a solid in the pure state at room temperature. Therefore, the sulfuric acid is diluted with water in order to maintain a liquid state. The extent of this dilution is selected so the ultimate product contains 20% wt water. The justification for the other specification is to ensure safe operation. For example, the specification of maximum temperature of 95 °C and minimum pressure of 4 bar will ensure that no evaporation will happen inside the reactor. The analysis shows that avoiding such a limit requires that the extent of the reaction conversion be limited to 9% and eleven reactors are needed. Table S11 reports the stream data. The required power for pumping is reported in Table S12. The heat duties of coolers are reported in Table S13. This information will be applied later for evaluating the operating and capital costs.

The detailed design of reactors was conducted using the results from the simplified simulation. In this research, in order to avoid any uncertainty associated with the physical properties of the new product and materials, the heat duties of all reactors are overdesigned up to 100%. The selected material was titanium. The Exchanger Design and Rating software applied built-in optimization in order to minimize the total costs.

The results for detailed reactor design are shown in Table S14. In addition, Figure S10 shows the diagram of the 11<sup>th</sup> reactor. The overall equipment costs are minimized to only 110000\$ and there is no need for extra diluting water and associated costs of separation and recycling. The costs are based on 2008 and will be later converted to 2012.



Figure S9 The flow diagram of the intensified process for IL2 production.

| <b>Table SIT</b> Stream table for Figure S | Table S11 | Stream table f | or Figure S9. |
|--------------------------------------------|-----------|----------------|---------------|
|--------------------------------------------|-----------|----------------|---------------|

|                   | ACID-1   | ACID-2   | ACID-3   | ACID-4   | ACID-5   | ACID-6   | ACID-7   | ACID-8   | ACID-9   | ACID-10  | ACID-11  |
|-------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                   |          |          |          |          |          |          |          |          |          |          |          |
| Temperature K     | 298.8    | 298.8    | 298.8    | 298.8    | 298.8    | 298.8    | 298.8    | 298.8    | 298.8    | 298.8    | 298.8    |
| Pressure atm      | 7.205    | 7.205    | 7.205    | 7.205    | 7.205    | 7.205    | 7.205    | 7.205    | 7.205    | 7.205    | 7.205    |
| Vapor Frac        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| Mole Flow kmol/hr | 35.434   | 31.891   | 31.891   | 31.891   | 31.891   | 31.891   | 31.891   | 31.891   | 31.891   | 31.891   | 31.891   |
| Mass Flow kg/hr   | 1446.199 | 1301.579 | 1301.579 | 1301.579 | 1301.579 | 1301.579 | 1301.579 | 1301.579 | 1301.579 | 1301.579 | 1301.579 |
| Mole Flow kmol/hr |          |          |          |          |          |          |          |          |          |          |          |
| H2SO4             | 10.09    | 9.081    | 9.081    | 9.081    | 9.081    | 9.081    | 9.081    | 9.081    | 9.081    | 9.081    | 9.081    |
| H2O               | 25.344   | 22.809   | 22.809   | 22.809   | 22.809   | 22.809   | 22.809   | 22.809   | 22.809   | 22.809   | 22.809   |
| M-IMIDAZ          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| IL2               | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| Mole Frac         |          |          |          |          |          |          |          |          |          |          |          |
| H2SO4             | 0.285    | 0.285    | 0.285    | 0.285    | 0.285    | 0.285    | 0.285    | 0.285    | 0.285    | 0.285    | 0.285    |
| H2O               | 0.715    | 0.715    | 0.715    | 0.715    | 0.715    | 0.715    | 0.715    | 0.715    | 0.715    | 0.715    | 0.715    |
| M-IMIDAZ          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| IL2               | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |

| <b>Table STI</b> Stream table for Figure S9 (Continue |
|-------------------------------------------------------|
|-------------------------------------------------------|

|                   | EF1      | EF2      | EF3      | EF4      | EF5      | EF6      | EF7     | EF8      | EF9      | EF10     | EF11    |
|-------------------|----------|----------|----------|----------|----------|----------|---------|----------|----------|----------|---------|
|                   |          |          |          |          |          |          |         |          |          |          |         |
| Temperature K     | 359.2    | 365.5    | 360.1    | 355.9    | 352.5    | 349.8    | 347.6   | 345.7    | 344      | 342.6    | 341.4   |
| Pressure atm      | 7.205    | 6.908    | 6.612    | 6.316    | 6.02     | 5.724    | 5.428   | 5.132    | 4.836    | 4.54     | 4.244   |
| Vapor Frac        | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0        | 0        | 0       |
| Mole Flow kmol/hr | 126.244  | 149.053  | 171.863  | 194.672  | 217.482  | 240.291  | 263.101 | 285.91   | 308.72   | 331.529  | 354.339 |
| Mass Flow kg/hr   | 9730.141 | 11031.77 | 12333.39 | 13635.02 | 14936.64 | 16238.27 | 17539.9 | 18841.52 | 20143.15 | 21444.77 | 22746.4 |
| Mole Flow kmol/hr |          |          |          |          |          |          |         |          |          |          |         |
| H2SO4             | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0        | 0        | 0       |
| H2O               | 25.344   | 48.153   | 70.963   | 93.772   | 116.582  | 139.391  | 162.201 | 185.01   | 207.82   | 230.629  | 253.439 |
| M-IMIDAZ          | 90.81    | 81.729   | 72.648   | 63.567   | 54.486   | 45.405   | 36.324  | 27.243   | 18.162   | 9.081    | 0       |
| IL2               | 10.09    | 19.171   | 28.252   | 37.333   | 46.414   | 55.495   | 64.576  | 73.657   | 82.738   | 91.819   | 100.9   |
| Mole Frac         |          |          |          |          |          |          |         |          |          |          |         |
| H2SO4             | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0        | 0        | 0       |
| H2O               | 0.201    | 0.323    | 0.413    | 0.482    | 0.536    | 0.58     | 0.616   | 0.647    | 0.673    | 0.696    | 0.715   |
| M-IMIDAZ          | 0.719    | 0.548    | 0.423    | 0.327    | 0.251    | 0.189    | 0.138   | 0.095    | 0.059    | 0.027    | 0       |
| IL2               | 0.08     | 0.129    | 0.164    | 0.192    | 0.213    | 0.231    | 0.245   | 0.258    | 0.268    | 0.277    | 0.285   |

 Table S11
 Stream table for Figure S9 (Continued).

|                   | FEED3    | FEED4    | FEED5    | FEED6    | FEED7    | FEED8   | FEED9    | FEED10   | FEED11   | H2SO4FD | IL      | IONIC-L | M-IM-FD | MIX       | WATER    |
|-------------------|----------|----------|----------|----------|----------|---------|----------|----------|----------|---------|---------|---------|---------|-----------|----------|
|                   |          |          |          |          |          |         |          |          |          |         |         |         |         |           |          |
| Temperature K     | 323.1    | 323.1    | 323.1    | 323.1    | 323.1    | 323.1   | 323.1    | 323.1    | 323.1    | 298.1   | 343.1   | 298.1   | 298.1   | 298.8     | 298.1    |
| Pressure atm      | 6.612    | 6.316    | 6.02     | 5.724    | 5.428    | 5.132   | 4.836    | 4.54     | 4.244    | 0.987   | 4.935   | 3.948   | 0.987   | 7.205     | 0.987    |
| Vapor Frac        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0        | 0        | 0       | 0       | 0       | 0       | 0         | 0        |
| Mole Flow kmol/hr | 149.053  | 171.863  | 194.672  | 217.482  | 240.291  | 263.101 | 285.91   | 308.72   | 331.529  | 100.9   | 3.6     | 354.339 | 100.9   | 354.339   | 253.439  |
| Mass Flow kg/hr   | 11031.77 | 12333.39 | 13635.02 | 14936.64 | 16238.27 | 17539.9 | 18841.52 | 20143.15 | 21444.77 | 9896.22 | 648.665 | 22746.4 | 8283.89 | 14461.992 | 4565.773 |
| Mole Flow kmol/hr |          |          |          |          |          |         |          |          |          |         |         |         |         |           |          |
| H2SO4             | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0        | 0        | 100.9   | 0       | 0       | 0       | 100.9     | 0        |
| H2O               | 48.153   | 70.963   | 93.772   | 116.582  | 139.391  | 162.201 | 185.01   | 207.82   | 230.629  | 0       | 0       | 253.439 | 0       | 253.439   | 253.439  |
| M-IMIDAZ          | 81.729   | 72.648   | 63.567   | 54.486   | 45.405   | 36.324  | 27.243   | 18.162   | 9.081    | 0       | 0       | 0       | 100.9   | 0         | 0        |
| IL2               | 19.171   | 28.252   | 37.333   | 46.414   | 55.495   | 64.576  | 73.657   | 82.738   | 91.819   | 0       | 3.6     | 100.9   | 0       | 0         | 0        |
| Mole Frac         |          |          |          |          |          |         |          |          |          |         |         |         |         |           |          |
| H2SO4             | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0        | 0        | 1       | 0       | 0       | 0       | 0.285     | 0        |
| H2O               | 0.323    | 0.413    | 0.482    | 0.536    | 0.58     | 0.616   | 0.647    | 0.673    | 0.696    | 0       | 0       | 0.715   | 0       | 0.715     | 1        |
| M-IMIDAZ          | 0.548    | 0.423    | 0.327    | 0.251    | 0.189    | 0.138   | 0.095    | 0.059    | 0.027    | 0       | 0       | 0       | 1       | 0         | 0        |
| IL2               | 0.129    | 0.164    | 0.192    | 0.213    | 0.231    | 0.245   | 0.258    | 0.268    | 0.277    | 0       | 1       | 0.285   | 0       | 0         | 0        |

### Table S12 Model summary (pumps).

| Name                                  | P-1      | P-2      | P-3      |
|---------------------------------------|----------|----------|----------|
| Electricity [Watt]                    | 2442.58  | 2701.75  | 2911.94  |
| Volumetric flow rate [cum/sec]        | 0.001146 | 0.001276 | 0.001499 |
| Calculated discharge pressure [N/sqm] | 730000   | 730000   | 730000   |

 Table S13
 Model summary (coolers). Please note that the heat duty of each cooler is equal to the heat generated by reaction at that stage.

| Name                        | COOLER-1 | COOLER-2 | COOLER-3 | COOLER-4 | COOLER-5 | COOLER-6 | COOLER-7 | COOLER-8 | COOLER-9 | COOLER10 | CWCAL  | HEATER | PROD-CLR |
|-----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------|--------|----------|
| Calculated pressure [N/sqm] | 700000   | 670000   | 640000   | 610000   | 580000   | 550000   | 520000   | 490000   | 460000   | 430000   | 670000 | 100000 | 400000   |
| Calculated temperature [K]  | 323.15   | 323.15   | 323.15   | 323.15   | 323.15   | 323.15   | 323.15   | 323.15   | 323.15   | 323.15   | 298.15 | 284.2  | 298.15   |
| Calculated vapor fraction   | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0      | 0      | 0        |
| Calculated heat duty [kW]   | -186.36  | -258.263 | -258.279 | -258.292 | -258.302 | -258.311 | -258.319 | -258.326 | -258.331 | -258.337 | 150    | 0.29   | -603.929 |



|                                 |         | Plate thickness               | 0.6 mm   |
|---------------------------------|---------|-------------------------------|----------|
| Actual surface area             | 29.2 m2 | Compressed plate pitch        | 4.11 mm  |
| Number of passes Stream 1/2     | 2/1     | Area of each plate            | .4 m2    |
| Effective channels Stream 1 / 2 | 36/36   | Chevron angle (to horizontal) | 45       |
| Number of exchangers            | 1       | Material type                 | Titanium |
|                                 |         | Port diameter                 | 100 m m  |

Figure S10 The geometric diagram of the 11<sup>th</sup> reactor.

Table S14. The results of the detailed reactor design for IL2 (intensified).

|            | Heat duty<br>(kw)<br>Overdesign | Heat<br>duty<br>(kw)<br>Actual | Maximum<br>allowable<br>temperature<br>(oC) | Exit<br>temperature<br>(oC) | Overall heat<br>transfer<br>coefficient | Effective Heat<br>transfer area<br>(m2) | Number of plates | Material | Costs<br>(USD) |
|------------|---------------------------------|--------------------------------|---------------------------------------------|-----------------------------|-----------------------------------------|-----------------------------------------|------------------|----------|----------------|
| R-1        | -370                            | -186.4                         | 86                                          | 50                          | 1072.6                                  | 7.1                                     | 49               | Titanium | 8074           |
| R-2        | -520                            | -258.3                         | 93                                          | 50                          | 1021.1                                  | 9.9                                     | 39               | Titanium | 10678          |
| R-3        | -520                            | -258.3                         | 87                                          | 50                          | 1477.6                                  | 7.8                                     | 31               | Titanium | 8529           |
| R-4        | -520                            | -258.3                         | 83                                          | 50                          | 1695.8                                  | 7.8                                     | 31               | Titanium | 8529           |
| R-5        | -520                            | -258.3                         | 80                                          | 50                          | 1485.7                                  | 7.7                                     | 19               | Titanium | 8407           |
| R-6        | -520                            | -258.3                         | 77                                          | 50                          | 1710.3                                  | 7.2                                     | 29               | Titanium | 7991           |
| <b>R-7</b> | -520                            | -258.4                         | 75                                          | 50                          | 2017.5                                  | 6.1                                     | 25               | Titanium | 6916           |
| R-8        | -520                            | -258.4                         | 73                                          | 50                          | 2127.8                                  | 6.1                                     | 25               | Titanium | 6916           |
| R-9        | -520                            | -258.4                         | 71                                          | 50                          | 2132.7                                  | 6.8                                     | 17               | Titanium | 7512           |
| R-10       | -520                            | -258.4                         | 70                                          | 50                          | 2212.4                                  | 6.8                                     | 17               | Titanium | 7512           |
| R-11       | -1200                           | -603.6                         | 69                                          | 25                          | 2051.7                                  | 28.4                                    | 73               | Titanium | 28926          |
| Total      |                                 |                                |                                             |                             |                                         |                                         |                  |          | 109990         |

### 3. Economic assessment

The purchase cost for a given component reflects a baseline equipment size. As changes are made to the process, the plant capacity may be different from what was originally designed, which will accordingly affect the equipment purchased cost. A common guideline for extrapolation of cost estimation to a different volume is the six-tenths rule:

New Cost = (Base Cost)(
$$\frac{New Size}{Base Size}$$
)<sup>0.6</sup>

So the new equipment purchased cost can be easily estimated as changes are made to the plant capacity.

 $C_{OL}$  is determined based on data obtained from five chemical companies and correlated by W.A. Alkayatet al.<sup>9</sup> According to this method, the operating labour requirement for chemical processing plants is given by

 $N_{OL} = (6.29 + 31.7 P^2 + 0.23 N_{np})^{0.5}$ 

where  $N_{OL}$  is the number of operators per shift, P is the number of processing steps involving the handling of particulate solids—for example, transportation and distribution, particulate size control, and particulate removal.  $N_{np}$  is the number of non-particulate processing steps and includes compression, heating and cooling, mixing and reaction. In this IL preparation process, there is no solid participating in the system. For instance, in the intensified process for ILs production,  $N_{np}$  is determined as 8 (8 reactors). So  $N_{OL}$  of this system is calculated as 2.85.

A single operator is assumed to work on average 49 weeks a year (3 weeks' time off for vacation and sick leave), with five 8-hour shifts a week. This amounts to (49 weeks/year  $\times$  5 shifts/week) 245 shifts per operator per year. A chemical plant normally operates 24 hours/day. This requires (330 days/year  $\times$  3 shifts/day) 990 operating shifts per year. The number of operators needed to provide this number of shifts is [(990 shifts/yr)/(245 shifts/operator/yr)] or approximately 4 operators. Four operators are hired for each operator needed in the plant at any time. This provides the needed operating labour but does not include any support or supervisory staff. The number of operators required per shift is 2.85. So 11.4 (4 $\times$ 2.85) operators are needed totally (rounding up to the nearest integer yields 12 operators).

From the US Department of Labour (<u>http://www.bls.gov/oes/current/oes\_nat.htm#51-0000</u>), it is known that the operators' annual mean wages are generally around \$50,000 in 2012. Herein, we adopt \$50,000 for the labour cost calculation.