Supporting Information

Acylation of cellulose in reversible ionic liquids

Yunlong Yang,^{a,b} Haibo Xie^{b,c,*} Enhui Liu,^{a,*}

^aKey Laboratory of Environmentally Friendly Chemistry and Applications of Ministry

of Education, College of Chemistry, Xiangtan University, Xiangtan, China, 411105

^bDivision of Biotechnology, Dalian Institute of Chemical Physicals, Chinese

Academy of Sciences, Dalian, 116023

^cBioenergy Research Division, Dalian National Laboratory for Clean Energy, Dalian, 116023

1. Experimental Details

1.1 Materials

Microcrystalline cellulose (MCC) with a degree of polymerization (DP) of 240 was obtained from Aladdin Commerce Reagent Co., Ltd. and dried at 60 °C for 24 h in vacuum oven before use. CO₂ with a purity of >99.999% was supplied from Beijing Bei Temperature Gas Factory. DMSO was purchased from Beijing Chemcial Reagent Co., Ltd. Methanol was purchased from Tianjing Damao Chemcial Reagent Factory. Acetic anhydride (Ac₂O) was purchased from Sinopharm Chemcial Reagent Co., Ltd. 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), propionic anhydride (Pr₂O) and

butyric anhydride (Bu₂O) were purchased from Aladdin Commerce Reagent Co., Ltd. and used as received. All chemical reagents were analytical reagents and used without further purification.

1.2 Measurements

The IR spectra of the samples were recorded with a Fourier transform IR spectrometer (FTIR PE-2000, the United States). The test specimens were prepared by the KBr-disk method.

¹H NMR spectrum were recorded on a Bruker AV 500 spectrometer with 16 scans in DMSO-d₆ or CDCl₃. The DS of cellulose ester was calculated by Eq. (1):

$$DS = \frac{7 * (I_{-CH3})}{3 * I_{H,AGU}}$$

Where I_{CH3} is the peak integral of methyl protons and I_{AGU} is the peak integral of anhydroglucose unit.

The ¹³C NMR spectra of cellulose ester in DMSO-d₆ were recorded at 100 °C on a Bruker AV-500 instrument. Each spectrum was obtained with an accumulation of 1000 scans. Wide-angle X-ray powder diffraction (WAXD) was performed by X'pert Pro-1 X-ray diffractometer using Ni-filtered Cu KR radiation (40 kV, 30 mA) with 5°/min scanning rate at room temperature. Diffraction intensity was measured in a range of 2θ =5-60°.

1.3 Dissolution of cellulose in *in situ* formed [DBUH][O₂COCH₃]/DMSO (X_{RILs}=0.2)

A mixture of MCC (1.3 g), DMSO (14.4 g, 184 mmol), methanol (1.5 g, 46 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (7.0 g, 46 mmol) was added into a high pressure reactor, and then 0.5 MPa of CO₂ was introduced into the system to stabilize for 5 min till the pressure of CO₂ stabilize. Then the solution was heated to 60 °C for 3 h with vigorous magnetic stirring. When the temperature was decrease to

room temperature, the CO₂ was released slowly, and a 5 wt% of cellulose [DBUH] $[O_2COCH_3]/DMSO (X_{RILs}=0.2)$ solution was obtained, and was ready for subsequent reactions. The dissolved cellulose can be regenerated by adding methanol in to the solution, and then washed by methanol (100 mL X 3) to remove the solvents and dried in a vacuum oven at 60 °C for about 24 h for WXRD analysis.

1.4 Esterification Procedure

A typical esterification procedure was used as follows: Acetic anhydride (2.86 g, 28 mmol) was dropped with a pipet into 10 g of 5 wt% of cellulose $[DBUH][O_2COCH_3]$ (X_{RILs}=0.2) solution in a flask equipped with a mechanical stirrer under N₂ atmosphere at room temperature, and then the reaction temperature was increased to 80 °C for 5 h with vigorous mechanical stirring. After the reaction, the cellulose acetate was precipitated by adding 5-fold amount of methanol, and separated by filtration. Cellulose acetate (0.63 g, 90% yield, DS=2.25) was obtained after subsequent wash with water (100 mL x 3) with distilled water, and dried in a vacuum oven at 60 °C for about 24 h.

1.5 Supplemental Tables and Figures

Code	Total DS	Distribution of substituents ^a		
		C ₆	C_2	C ₃
CA-9	0.98	0.71	0.16	0.11
CA-10	2.25	0.91	0.87	0.47
CA-6	2.51	0.99	0.89	0.63
CA-7	2.71	1.0	0.91	0.80

Table S1 Primary evaluation of the distribution trend of acetyl moiety among the three OH groups of AGU in CAs

^aThe results were primary calculated from the quantitative integration of acetyl methyl protons area of the ¹H NMR spectra.

Figure S1 Comparative ¹H NMR spectra of A: DBU+Methanol (1:1, molar ratio) and B: the formed [DBUH][O₂COCH₃] in DMSO-d6 after CO₂ capture

Figure S2 Comparative ¹³C NMR spectra of A: DBU+Methanol (1:1, molar ratio) and B: the formed [DBUH] [O₂COCH₃] in DMSO-d6 after CO₂ capture

Figure S3 ¹H NMR spectrum of methyl acetate in CDCl₃

Figure S4 ¹³C NMR spectrum of methyl acetate in CDCl₃

Figure S5 The flowchart of the whole procedure used in this study

Figure S6 Comparative ¹H NMR spectra of fresh DBU and recycled DBU.

Figure S7 Comparative ¹³C NMR spectra of fresh DBU and recycled DBU.

Figure S8 ¹H NMR spectra of fresh DMSO and recycled DMSO.

Figure S9¹³C NMR spectra of fresh DMSO and recycled DMSO.