Supplementary Information

Highly efficient visible-light-driven photoelectrocatalytic selective aerobic oxidation of biomass alcohols to aldehydes

Yajun Zhang, Guohua Zhao*, Yanan Zhang, Xiaofeng Huang

Department of Chemistry, Key Laboratory of Yangtze River Water Environment,

Tongji University, Shanghai 200092, People's Republic of China

*Corresponding Author: *Phone:* (86)-21-65988570-8244. Fax: (86)-21-65982287 . *E-mail:* <u>g.zhao@mail.tongji.edu.cn</u>.

Preparation of TiO₂ NTs

Highly ordered TiO₂ NTs were prepared by electrochemical anodic oxidation of Ti sheets in a two-electrode cell according to the literature.³³ Ti sheets were pretreated by mechanical polishing and ultrasonic washing in twice-distilled water and acetone, respectively. During the anodization process, pretreated Ti sheet was anodized at the applied voltage of 60 V with Pt foil serving as the counter electrode for 2 h at 25 °C. The electrolyte consisted of 0.3 wt % NH₄F and 2.0 vol % H₂O in ethylene glycol. Then, the anodized TiO₂ NTs samples were rinsed with water and ethanol successively and were dried at 50 °C for subsequent use.

Preparation of Au (λ_{534nm})/CeO₂/Ti photocathode

Ti sheets were pretreated by mechanical polishing and ultrasonic washing in twice-distilled water and acetone, respectively. Prior to electrodeposition, the Ti sheets were immersed in the deposition solution (0.1 mol L⁻¹ CeCl₃ ethanol solution) for 1 h. The electrodeposition quality of CeO₂ onto the Ti substrate was the same as the deposition of CeO₂ onto the TiO₂ NTs (about1.6943 g m⁻²), and the electrodeposition time was about 18s, and then the preparation of Au nanoparticle on the CeO₂/Ti substrate electrode was also via the photocatalytic reduction method, the Au (λ_{534nm})/CeO₂/Ti photocathode material was obtained.

SI-Fig.1 PCE of CeO₂-TiO₂ NTs as a function of the amount of CeO₂ NPs loaded on the TiO₂ NTs substrate electrode. CeO₂-TiO₂ NTs electrodes were used as photocathode and the measurement was conducted in 0.1mol L⁻¹ Na₂SO₄ solution under the visible light irradiation.

SI-Fig.2 XRD patterns of pure TiO_2 NTs and CeO_2 - TiO_2 NTs.

SI-Fig.3 Raman scattering spectra of pure TiO_2 NTs and CeO_2 - TiO_2 NTs.

SI-Fig.4 FT-IR spectra of pure TiO_2 NTs and CeO_2 - TiO_2 NTs.

SI-Fig.5 SEM image of Au ($\lambda_{480 \text{ nm}}$)/CeO₂-TiO₂ NTs electrode.

SI-Fig.6 The elemential mapping for the debirs of Au $(\lambda_{534~nm})/$

CeO₂-TiO₂ NTs

SI-Fig.7 XRD pattern of Au/CeO₂-TiO₂ NTs electrode.