Towards designing environmentally safe ionic liquids: Influence of cation structure

Supplementary material 1.

Anita Sosnowska¹, Maciej Barycki¹, Monika Zaborowska¹, Anna Rybinska¹, and Tomasz Puzyn^{1*}

¹Laboratory of Environmental Chemometrics, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk Poland

*Corresponding author: Prof. Tomasz Puzyn, Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland. Tel.: +48 58 523 52 48; E-mail address: t.puzyn@qsar.eu.org

Table 1. Table representing correlation between descriptors and each of two Principle Components after PCA on both anions' and cations' indices. Values fulfilling Malinowski's rule are in bold.

	Value for	Value for
Descriptor	PC1	PC2
L1u_a	0.855	0.097
L2u_a	0.819	0.149
L3u_a	0.823	0.125
P1u_a	0.872	0.081
P2u_a	-0.692	-0.045
G1u_a	-0.672	-0.148
G2u_a	-0.834	-0.143
G3u_a	-0.647	-0.139
E1u_a	0.849	0.146
E2u_a	0.817	0.137
E3u_a	0.665	0.132
L1m_a	0.822	0.114
L2m_a	0.785	0.174
L3m_a	0.725	0.102
P1m_a	0.870	0.065
P2m_a	-0.713	-0.006
G1m_a	-0.660	-0.165
G2m_a	-0.822	-0.144
G3m_a	-0.629	-0.137
E1m_a	0.781	0.116
E2m_a	0.631	0.137
E3m_a	0.417	0.093
L1e_a	0.859	0.099
L2e_a	0.817	0.153
L3e_a	0.813	0.122
P1e_a	0.870	0.075
P2e_a	-0.680	-0.031
G1e_a	-0.661	-0.166
G2e_a	-0.818	-0.143
G3e_a	-0.636	-0.139
E1e_a	0.836	0.137
E2e_a	0.782	0.145
E3e_a	0.618	0.125
L1p_a	0.826	0.105
L2p_a	0.808	0.152
L3p_a	0.835	0.127
P1p_a	0.880	0.088
P2p_a	-0.721	-0.054
G1p_a	-0.662	-0.165
G2p_a	-0.820	-0.140
G3p_a	-0.630	-0.135
E1p_a	0.860	0.146
E2p_a	0.915	0.138

E2u_k	0.194	-0.653
E3u_k	0.092	0.077
L1m_k	-0.270	0.866
L2m_k	-0.180	0.580
L3m_k	-0.200	0.562
P1m_k	-0.188	0.495
P2m_k	0.144	-0.445
G1m_k	0.147	-0.294
G2m_k	-0.050	-0.201
G3m_k	0.044	-0.239
E1m_k	-0.195	0.349
E2m_k	-0.090	0.182
E3m_k	-0.149	0.431
L1e_k	-0.270	0.885
L2e_k	-0.180	0.549
L3e_k	-0.172	0.544
P1e_k	-0.214	0.569
P2e_k	0.162	-0.522
G1e_k	0.112	-0.309
G2e_k	-0.053	-0.217
G3e_k	0.057	-0.286
E1e_k	-0.021	-0.073
E2e k	0.176	-0.607
E3e k	0.068	0.127
L1p_k	-0.270	0.880
L2p_k	-0.173	0.545
L3p_k	-0.156	0.521
P1p_k	-0.213	0.549
P2p_k	0.162	-0.507
G1p_k	0.135	-0.329
G2p_k	-0.040	-0.195
G3p_k	0.032	-0.279
E1p_k	-0.150	0.262
E2p_k	0.143	-0.467
E3p_k	0.077	0.153
L1i_k	-0.270	0.886
L2i_k	-0.181	0.545
L3i_k	-0.170	0.541
P1i_k	-0.215	0.574
P2i_k	0.162	-0.528
G1i_k	0.108	-0.307
G2i_k	-0.052	-0.214
G3i_k	0.058	-0.261
E1i_k	0.036	-0.189
E2i_k	0.184	-0.641
E3i_k	0.085	0.077
Tu_k	-0.277	0.902
Tm_k	-0.277	0.887

Te_k	-0.277	0.902
Tp_k	-0.276	0.898
Ti_k	-0.277	0.903
Au_k	-0.198	0.865
Am_k	-0.188	0.851
Ae_k	-0.198	0.865
Ap_k	-0.191	0.858
Ai_k	-0.199	0.866
Gu_k	0.036	-0.379
Gm_k	0.057	-0.383
Ku_k	-0.216	0.573
Km_k	-0.191	0.500
Ke_k	-0.215	0.571
Kp_k	-0.214	0.551
Ki_k	-0.216	0.576
Du_k	0.211	-0.442
Dm_k	-0.226	0.461
De_k	0.157	-0.324
Dp_k	0.044	-0.019
Dik	0.203	-0.445
Vu_k	-0.187	0.847
Vm_k	-0.191	0.849
Ve_k	-0.188	0.847
Vp_k	-0.185	0.845
Vi_k	-0.188	0.847

Table 2. Table representing correlation between descriptors and each of two Principle Components after PCA on cations' indices only. Values fulfilling Malinowski's rule are in bold.

	Value for	Value for
Descriptor	PC1	PC2
L1u_k	0.926	0.103
L2u_k	0.578	-0.696
L3u_k	0.563	-0.647
P1u_k	0.606	0.774
P2u_k	-0.545	-0.774
G1u_k	-0.326	-0.275
G2u_k	-0.183	0.170
G3u_k	-0.270	-0.024
E1u_k	-0.146	0.661
E2u_k	-0.680	-0.130
E3u_k	0.040	-0.090
L1m_k	0.906	0.122
L2m_k	0.612	-0.674
L3m_k	0.598	-0.646
P1m_k	0.524	0.831
P2m_k	-0.461	-0.802
G1m_k	-0.323	-0.256

G2m_k	-0.175	0.188
G3m_k	-0.243	0.041
E1m_k	0.386	0.397
E2m_k	0.203	-0.486
E3m_k	0.456	-0.542
L1e_k	0.925	0.103
L2e_k	0.584	-0.693
L3e_k	0.572	-0.645
P1e_k	0.603	0.778
P2e_k	-0.541	-0.776
G1e_k	-0.327	-0.263
G2e_k	-0.190	0.157
G3e_k	-0.290	-0.009
E1e_k	-0.064	0.695
E2e_k	-0.631	-0.153
E3e_k	0.095	-0.105
L1p_k	0.920	0.109
L2p_k	0.578	-0.703
L3p_k	0.546	-0.676
P1p_k	0.584	0.791
P2p_k	-0.527	-0.789
G1p_k	-0.353	-0.279
G2p k	-0.172	0.152
G3p_k	-0.276	-0.025
E1p_k	0.292	0.667
E2p_k	-0.484	-0.503
E3p_k	0.121	-0.427
L1i_k	0.926	0.103
L2i_k	0.581	-0.694
L3i_k	0.569	-0.641
P1i_k	0.608	0.772
P2i_k	-0.546	-0.773
G1i_k	-0.324	-0.264
G2i_k	-0.187	0.168
G3i_k	-0.267	-0.005
E1i_k	-0.190	0.637
E2i_k	-0.666	-0.065
E3i_k	0.042	-0.031
Tu_k	0.944	-0.009
Tm_k	0.929	0.023
Te_k	0.944	-0.008
Tp_k	0.940	0.001
Ti_k	0.945	-0.009
Au_k	0.889	-0.375
Am_k	0.872	-0.396
Ae_k	0.888	-0.375
Ap_k	0.880	-0.387
Ai_k	0.890	-0.372

Gu_k	-0.371	-0.047
Gm_k	-0.382	0.018
Ku_k	0.609	0.757
Km_k	0.530	0.822
Ke_k	0.606	0.761
Kp_k	0.587	0.775
Ki_k	0.611	0.755
Du_k	-0.489	0.143
Dm_k	0.505	-0.058
De_k	-0.360	0.125
Dp_k	-0.033	-0.179
Di_k	-0.490	0.212
Vu_k	0.868	-0.408
Vm_k	0.871	-0.405
Ve_k	0.868	-0.409
Vp_k	0.866	-0.410
Vi k	0.869	-0.407

Table 3. Table representing correlation between descriptors and each of two Principle Components after PCA on anions' indices only. Values fulfilling Malinowski's rule are in bold.

	Value for	Value for
Descriptor	PC1	PC2
L1u_a	0.861	-0.351
L2u_a	0.839	0.124
L3u_a	0.835	0.283
P1u_a	0.871	-0.337
P2u_a	-0.676	0.393
G1u_a	-0.704	-0.007
G2u_a	-0.863	0.140
G3u_a	-0.677	-0.054
E1u_a	0.858	0.368
E2u_a	0.828	0.485
E3u_a	0.686	0.628
L1m_a	0.826	-0.348
L2m_a	0.814	0.168
L3m_a	0.734	0.315
P1m_a	0.864	-0.301
P2m_a	-0.690	0.400
G1m_a	-0.696	-0.031
G2m_a	-0.852	0.128
G3m_a	-0.657	-0.067
E1m_a	0.792	0.360
E2m_a	0.662	0.628
E3m_a	0.439	0.679
L1e_a	0.863	-0.350
L2e_a	0.838	0.142

P1e_a 0.867 -0.342 P2e_a -0.660 0.405 G1e_a -0.697 -0.029 G2e_a -0.848 0.123 G3e_a -0.665 -0.070 E1e_a 0.845 0.405 E2e_a 0.798 0.548 E3e_a 0.640 0.655 L1p_a 0.834 -0.374 L2p_a 0.827 0.052 L3p_a 0.846 0.192 P1p_a 0.880 -0.309 P2p_a -0.709 0.370 G1p_a -0.698 -0.029 G2p_a -0.709 0.370 G1p_a -0.698 -0.029 G2p_a 0.4060 -0.056 E1p_a 0.866 0.077 E2p_a 0.925 0.180 E3p_a 0.820 0.407 L1i_a 0.864 -0.349 L2i_a 0.827 0.308 P1i_a 0.869 -0.241	L3e_a	0.825	0.295
P2e_a -0.660 0.405 G1e_a -0.697 -0.029 G2e_a -0.848 0.123 G3e_a -0.665 -0.070 E1e_a 0.845 0.405 E2e_a 0.798 0.548 E3e_a 0.640 0.655 L1p_a 0.834 -0.374 L2p_a 0.827 0.052 L3p_a 0.846 0.192 P1p_a 0.880 -0.309 P2p_a -0.709 0.370 G1p_a -0.698 -0.029 G2p_a -0.698 -0.029 G2p_a 0.820 0.407 L1a 0.866 0.077 E2p_a 0.925 0.180 E3p_a 0.820 0.407 L1i_a 0.864 -0.349 L2i_a 0.827 0.308 P1i_a 0.827 0.308 P1i_a 0.864 -0.349 L2i_a 0.675 0.396 <tr< td=""><td>P1e_a</td><td>0.867</td><td>-0.342</td></tr<>	P1e_a	0.867	-0.342
G1e_a -0.697 -0.029 G2e_a -0.848 0.123 G3e_a -0.665 -0.070 E1e_a 0.845 0.405 E2e_a 0.798 0.548 E3e_a 0.640 0.655 L1p_a 0.834 -0.374 L2p_a 0.827 0.052 L3p_a 0.846 0.192 P1p_a 0.880 -0.309 P2p_a -0.709 0.370 G1p_a -0.698 -0.029 G2p_a -0.608 -0.029 G3p_a -0.660 -0.056 E1p_a 0.866 0.077 G2p_a 0.925 0.180 E3p_a 0.660 -0.024 G2i_a 0.827 0.308 P1i_a 0.864 -0.349 L2i_a 0.827 0.308 P1i_a 0.864 0.024 G2i_a -0.675 0.396 G1i_a -0.696 -0.024	P2e_a	-0.660	0.405
G2e_a -0.848 0.123 G3e_a -0.665 -0.070 E1e_a 0.845 0.405 E2e_a 0.798 0.548 E3e_a 0.640 0.655 L1p_a 0.834 -0.374 L2p_a 0.827 0.052 L3p_a 0.846 0.192 P1p_a 0.880 -0.309 P2p_a -0.709 0.370 G1p_a -0.698 -0.029 G2p_a -0.608 -0.029 G3p_a -0.660 -0.056 E1p_a 0.866 0.077 G3p_a -0.660 -0.056 E1p_a 0.866 0.077 G3p_a 0.660 -0.024 G3p_a 0.820 0.407 L1i_a 0.864 -0.349 L2i_a 0.837 0.139 L3i_a 0.675 0.396 G1i_a -0.696 -0.024 G2i_a 0.791 0.535	G1e_a	-0.697	-0.029
G3e a -0.665 -0.070 E1e_a 0.845 0.405 E2e_a 0.798 0.548 E3e_a 0.640 0.655 L1p_a 0.834 -0.374 L2p_a 0.827 0.052 L3p_a 0.846 0.192 P1p_a 0.880 -0.309 P2p_a -0.709 0.370 G1p_a -0.698 -0.029 G2p_a -0.846 0.119 G3p_a -0.660 -0.056 E1p_a 0.866 0.077 E2p_a 0.925 0.180 E3p_a 0.820 0.407 L1i_a 0.864 -0.349 L2i_a 0.827 0.308 P1i_a 0.869 -0.342 P2i_a -0.675 0.396 G1_a -0.686 0.399 E3_a 0.635 0.669 Tu_a 0.929 -0.221 Tm_a 0.929 -0.221	G2e a	-0.848	0.123
E1e_a0.8450.405E2e_a0.7980.548E3e_a0.6400.655L1p_a0.834-0.374L2p_a0.8270.052L3p_a0.8460.192P1p_a0.880-0.309P2p_a-0.7090.370G1p_a-0.698-0.029G2p_a-0.660-0.056E1p_a0.8660.077E2p_a0.9250.180E3p_a0.8200.407L1i_a0.864-0.349L2i_a0.8270.308P1i_a0.869-0.342P2i_a-0.6750.396G1i_a-0.696-0.024G2i_a-0.6750.396G1i_a-0.6810.139G3i_a-0.6810.039E2i_a0.7910.535E3i_a0.6350.669Tu_a0.929-0.221Tm_a0.909-0.226Te_a0.931-0.213Au_a0.847-0.274Ap_a0.813-0.300Ai_a0.847-0.274Ap_a0.813-0.300Ki_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304	G3e a	-0.665	-0.070
E2e a0.7980.548E3e a0.6400.655L1p a0.834-0.374L2p a0.8270.052L3p a0.8460.192P1p a0.880-0.309P2p a-0.7090.370G1p a-0.698-0.029G2p a-0.8460.119G3p a-0.660-0.056E1p a0.8660.077E2p a0.9250.180E3p a0.8200.407L1i a0.864-0.349L2i a0.8370.139L3i a0.8270.308P1i a0.869-0.024G2i a-0.6750.396G1i a-0.696-0.024G2i a0.7910.535E3i a0.6350.669Tu a0.929-0.221Tm a0.909-0.226Te a0.932-0.214Tp a0.908-0.279Ti a0.931-0.213Au a0.847-0.274Ap a0.813-0.300Ai a0.829-0.233Ae a0.847-0.274Ap a0.813-0.300Ki a0.881-0.296Ke a0.871-0.330Km a0.867-0.296Ke a0.870-0.334Kp a0.881-0.304Ki a0.869-0.335	E1e_a	0.845	0.405
E3e_a0.6400.655L1p_a0.834-0.374L2p_a0.8270.052L3p_a0.8460.192P1p_a0.880-0.309P2p_a-0.7090.370G1p_a-0.698-0.029G2p_a-0.8460.119G3p_a-0.660-0.056E1p_a0.8660.077E2p_a0.9250.180E3p_a0.8200.407L1i_a0.864-0.349L2i_a0.8370.139L3i_a0.8270.308P1i_a0.869-0.342P2i_a-0.6750.396G1i_a-0.6810.139G3i_a-0.6810.139G3i_a0.6350.669Tu_a0.929-0.221Tm_a0.909-0.226Te_a0.931-0.213Au_a0.840-0.283Am_a0.829-0.233Ae_a0.847-0.274Ap_a0.813-0.300Ai_a0.847-0.274Ap_a0.847-0.274Ap_a0.847-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.871-0.330Km_a0.881-0.344Kp_a0.881-0.344Kp_a0.881-0.344	E2e_a	0.798	0.548
L1p_a0.834-0.374L2p_a0.8270.052L3p_a0.8460.192P1p_a0.880-0.309P2p_a-0.7090.370G1p_a-0.698-0.029G2p_a-0.8460.119G3p_a-0.660-0.056E1p_a0.8660.077E2p_a0.9250.180E3p_a0.8200.407L1i_a0.864-0.349L2i_a0.8370.139L3i_a0.8270.308P1i_a0.869-0.342P2i_a-0.6750.396G1i_a-0.681-0.024G2i_a-0.6810.139G3i_a-0.6810.023E1i_a0.8460.399E2i_a0.7910.535E3i_a0.6350.669Tu_a0.929-0.221Tm_a0.908-0.279Ti_a0.931-0.213Au_a0.847-0.274Ap_a0.847-0.274Ap_a0.847-0.274Ap_a0.847-0.274Ap_a0.847-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	E3e_a	0.640	0.655
L2p_a 0.827 0.052 L3p_a 0.846 0.192 P1p_a 0.880 -0.309 P2p_a -0.709 0.370 G1p_a -0.698 -0.029 G2p_a -0.846 0.119 G3p_a -0.660 -0.056 E1p_a 0.866 0.077 E2p_a 0.925 0.180 E3p_a 0.820 0.407 L1i_a 0.864 -0.349 L2i_a 0.827 0.308 P1i_a 0.869 -0.342 P2i_a -0.675 0.396 G1_a -0.696 -0.024 G2i_a -0.675 0.399 E3_a 0.635 0.669 Tu_a 0.929 -0.221 Tm_a 0.909 -0.226 Te_a 0.903 -0.279 Ti_a 0.903 -0.271 Tm_a 0.903 -0.213 Au_a 0.840 -0.283	L1p_a	0.834	-0.374
L3p_a 0.846 0.192 P1p_a 0.880 -0.309 P2p_a -0.709 0.370 G1p_a -0.698 -0.029 G2p_a -0.846 0.119 G3p_a -0.660 -0.056 E1p_a 0.866 0.077 E2p_a 0.925 0.180 E3p_a 0.820 0.407 L1i_a 0.864 -0.349 L2i_a 0.827 0.308 P1i_a 0.869 -0.342 P2i_a -0.675 0.396 G1i_a -0.696 -0.024 G2i_a -0.675 0.396 G1i_a -0.696 -0.024 G2i_a -0.681 0.139 G3i_a -0.681 0.063 E1i_a 0.846 0.399 E2i_a 0.791 0.535 E3i_a 0.635 0.669 Tu_a 0.909 -0.226 Te_a 0.932 -0.214	L2p_a	0.827	0.052
P1p_a 0.880 -0.309 P2p_a -0.709 0.370 G1p_a -0.698 -0.029 G2p_a -0.846 0.119 G3p_a -0.660 -0.056 E1p_a 0.866 0.077 E2p_a 0.925 0.180 E3p_a 0.820 0.407 L1i_a 0.864 -0.349 L2i_a 0.827 0.308 P1i_a 0.869 -0.342 P2i_a -0.675 0.396 G1i_a -0.696 -0.024 G2i_a -0.675 0.396 G1i_a -0.696 -0.024 G2i_a -0.681 0.139 G3i_a -0.681 0.063 E1i_a 0.846 0.399 E2i_a 0.791 0.535 E3i_a 0.635 0.669 Tu_a 0.908 -0.271 Tm_a 0.9032 -0.214 Tp_a 0.9033 -0.273	L3p_a	0.846	0.192
P2p_a -0.709 0.370 G1p_a -0.698 -0.029 G2p_a -0.846 0.119 G3p_a -0.660 -0.056 E1p_a 0.866 0.077 E2p_a 0.925 0.180 E3p_a 0.820 0.407 L1i_a 0.864 -0.349 L2i_a 0.837 0.139 L3i_a 0.827 0.308 P1i_a 0.869 -0.342 P2i_a -0.675 0.396 G1i_a -0.696 -0.024 G2i_a -0.675 0.396 G1i_a -0.681 0.139 G3i_a -0.681 0.063 E1i_a 0.846 0.399 E2i_a 0.791 0.535 E3i_a 0.635 0.669 Tu_a 0.909 -0.221 Tm_a 0.9032 -0.214 Tp_a 0.9031 -0.233 Ae_a 0.847 -0.279	P1p_a	0.880	-0.309
G1p_a-0.698-0.029G2p_a-0.8460.119G3p_a-0.660-0.056E1p_a0.8660.077E2p_a0.9250.180E3p_a0.8200.407L1i_a0.864-0.349L2i_a0.8370.139L3i_a0.8270.308P1i_a0.869-0.342P2i_a-0.6750.396G1i_a-0.696-0.024G2i_a-0.6810.139G3i_a-0.6810.063E1i_a0.8460.399E2i_a0.7910.535E3i_a0.6350.669Tu_a0.929-0.221Tm_a0.909-0.226Te_a0.932-0.214Tp_a0.908-0.279Ti_a0.931-0.213Au_a0.840-0.283Am_a0.829-0.233Ae_a0.847-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	P2p_a	-0.709	0.370
G2p_a-0.8460.119G3p_a-0.660-0.056E1p_a0.8660.077E2p_a0.9250.180E3p_a0.8200.407L1i_a0.864-0.349L2i_a0.8370.139L3i_a0.8270.308P1i_a0.869-0.342P2i_a-0.6750.396G1i_a-0.696-0.024G2i_a-0.6810.139G3i_a-0.681-0.063E1i_a0.8460.399E2i_a0.7910.535E3i_a0.6350.669Tu_a0.909-0.226Te_a0.932-0.214Tp_a0.908-0.279Ti_a0.931-0.213Au_a0.840-0.283Am_a0.829-0.233Ae_a0.847-0.274Ap_a0.813-0.300Ai_a0.871-0.330Km_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	G1p_a	-0.698	-0.029
G3p_a-0.660-0.056E1p_a0.8660.077E2p_a0.9250.180E3p_a0.8200.407L1i_a0.864-0.349L2i_a0.8370.139L3i_a0.8270.308P1i_a0.869-0.342P2i_a-0.6750.396G1i_a-0.696-0.024G2i_a-0.6810.139G3i_a-0.681-0.063E1i_a0.8460.399E2i_a0.7910.535E3i_a0.6350.669Tu_a0.909-0.226Te_a0.932-0.214Tp_a0.908-0.279Ti_a0.903-0.213Au_a0.840-0.283Am_a0.829-0.233Ae_a0.813-0.300Ai_a0.847-0.274Ap_a0.3750.669Ku_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	G2p a	-0.846	0.119
E1p_a0.8660.077E2p_a0.9250.180E3p_a0.8200.407L1i_a0.864-0.349L2i_a0.8370.139L3i_a0.8270.308P1i_a0.869-0.342P2i_a-0.6750.396G1i_a-0.696-0.024G2i_a-0.6810.139G3i_a-0.681-0.063E1i_a0.8460.399E2i_a0.7910.535E3i_a0.6350.669Tu_a0.929-0.221Tm_a0.909-0.226Te_a0.932-0.214Tp_a0.908-0.279Ti_a0.931-0.213Au_a0.840-0.283Am_a0.829-0.233Ae_a0.847-0.274Ap_a0.313-0.300Ai_a0.847-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	G3p a	-0.660	-0.056
E2p_a0.9250.180E3p_a0.8200.407L1i_a0.864-0.349L2i_a0.8370.139L3i_a0.8270.308P1i_a0.869-0.342P2i_a-0.6750.396G1i_a-0.696-0.024G2i_a-0.6810.139G3i_a-0.681-0.063E1i_a0.8460.399E2i_a0.7910.535E3i_a0.6350.669Tu_a0.929-0.221Tm_a0.909-0.226Te_a0.932-0.214Tp_a0.908-0.279Ti_a0.931-0.213Au_a0.840-0.283Am_a0.829-0.233Ae_a0.847-0.274Ap_a0.813-0.300Ai_a0.847-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	E1p a	0.866	0.077
E3p_a0.8200.407L1i_a0.864-0.349L2i_a0.8370.139L3i_a0.8270.308P1i_a0.869-0.342P2i_a-0.6750.396G1i_a-0.696-0.024G2i_a-0.8610.139G3i_a-0.681-0.063E1i_a0.8460.399E2i_a0.7910.535E3i_a0.6350.669Tu_a0.929-0.221Tm_a0.909-0.226Te_a0.932-0.214Tp_a0.908-0.279Ti_a0.931-0.213Au_a0.840-0.283Am_a0.829-0.233Ae_a0.847-0.274Ap_a0.813-0.300Ai_a0.847-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.881-0.304Ki_a0.869-0.335	E2p a	0.925	0.180
L1i_a0.864-0.349L2i_a0.8370.139L3i_a0.8270.308P1i_a0.869-0.342P2i_a-0.6750.396G1i_a-0.696-0.024G2i_a-0.8610.139G3i_a-0.681-0.063E1i_a0.8460.399E2i_a0.7910.535E3i_a0.6350.669Tu_a0.929-0.221Tm_a0.909-0.226Te_a0.932-0.214Tp_a0.931-0.213Au_a0.840-0.283Am_a0.829-0.233Ae_a0.847-0.274Ap_a0.813-0.300Ai_a0.842-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	E3p a	0.820	0.407
L2i_a 0.837 0.139 L3i_a 0.827 0.308 P1i_a 0.869 -0.342 P2i_a -0.675 0.396 G1i_a -0.696 -0.024 G2i_a -0.861 0.139 G3i_a -0.681 -0.063 E1i_a 0.846 0.399 E2i_a 0.791 0.535 E3i_a 0.635 0.669 Tu_a 0.929 -0.221 Tm_a 0.909 -0.226 Te_a 0.932 -0.214 Tp_a 0.908 -0.279 Ti_a 0.908 -0.279 Ti_a 0.931 -0.213 Au_a 0.840 -0.283 Am_a 0.842 -0.274 Ap_a 0.813 -0.300 Ai_a 0.842 -0.277 Gu_a 0.411 0.676 Gm_a 0.375 0.669 Ku_a 0.867 -0.296 Ke_a 0.870 -0.334 Kp_a 0.881 -	L1i a	0.864	-0.349
L3i_a0.8270.308P1i_a0.869-0.342P2i_a-0.6750.396G1i_a-0.696-0.024G2i_a-0.8610.139G3i_a-0.681-0.063E1i_a0.8460.399E2i_a0.7910.535E3i_a0.6350.669Tu_a0.929-0.221Tm_a0.909-0.226Te_a0.932-0.214Tp_a0.908-0.279Ti_a0.931-0.213Au_a0.840-0.283Am_a0.829-0.233Ae_a0.847-0.274Ap_a0.813-0.300Ai_a0.847-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	L2i a	0.837	0.139
P1i_a 0.869 -0.342 P2i_a -0.675 0.396 G1i_a -0.696 -0.024 G2i_a -0.861 0.139 G3i_a -0.681 -0.063 E1i_a 0.846 0.399 E2i_a 0.791 0.535 E3i_a 0.635 0.669 Tu_a 0.929 -0.221 Tm_a 0.909 -0.226 Te_a 0.932 -0.214 Tp_a 0.908 -0.279 Ti_a 0.931 -0.213 Au_a 0.840 -0.283 Am_a 0.829 -0.233 Ae_a 0.847 -0.274 Ap_a 0.813 -0.300 Ai_a 0.847 -0.277 Gu_a 0.411 0.676 Gm_a 0.375 0.669 Ku_a 0.871 -0.330 Km_a 0.867 -0.296 Ke_a 0.870 -0.334 Kp_a 0.881 -0.304 Ki_a 0.869 -	L3i a	0.827	0.308
P2i_a -0.675 0.396 G1i_a -0.696 -0.024 G2i_a -0.861 0.139 G3i_a -0.681 -0.063 E1i_a 0.846 0.399 E2i_a 0.791 0.535 E3i_a 0.635 0.669 Tu_a 0.929 -0.221 Tm_a 0.909 -0.226 Te_a 0.932 -0.214 Tp_a 0.908 -0.279 Ti_a 0.931 -0.213 Au_a 0.840 -0.283 Am_a 0.842 -0.274 Ap_a 0.813 -0.300 Ai_a 0.847 -0.274 Ap_a 0.847 -0.274 Ap_a 0.813 -0.300 Ai_a 0.847 -0.277 Gu_a 0.411 0.676 Gm_a 0.375 0.669 Ku_a 0.871 -0.330 Km_a 0.867 -0.296 Ke_a 0.870 -0.334 Kp_a 0.869 -0	P1i a	0.869	-0.342
G1i_a-0.696-0.024G2i_a-0.8610.139G3i_a-0.681-0.063E1i_a0.8460.399E2i_a0.7910.535E3i_a0.6350.669Tu_a0.929-0.221Tm_a0.909-0.226Te_a0.932-0.214Tp_a0.908-0.279Ti_a0.931-0.213Au_a0.840-0.283Am_a0.829-0.233Ae_a0.847-0.274Ap_a0.813-0.300Ai_a0.3750.669Ku_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	P2i a	-0.675	0.396
G2i_a-0.8610.139G3i_a-0.681-0.063E1i_a0.8460.399E2i_a0.7910.535E3i_a0.6350.669Tu_a0.929-0.221Tm_a0.909-0.226Te_a0.932-0.214Tp_a0.908-0.279Ti_a0.931-0.213Au_a0.840-0.283Am_a0.829-0.233Ae_a0.847-0.274Ap_a0.813-0.300Ai_a0.842-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	G1i a	-0.696	-0.024
G3i_a-0.681-0.063E1i_a0.8460.399E2i_a0.7910.535E3i_a0.6350.669Tu_a0.929-0.221Tm_a0.909-0.226Te_a0.932-0.214Tp_a0.908-0.279Ti_a0.931-0.213Au_a0.840-0.283Am_a0.829-0.233Ae_a0.847-0.274Ap_a0.813-0.300Ai_a0.842-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	G2i_a	-0.861	0.139
E1i_a0.8460.399E2i_a0.7910.535E3i_a0.6350.669Tu_a0.929-0.221Tm_a0.909-0.226Te_a0.932-0.214Tp_a0.908-0.279Ti_a0.931-0.213Au_a0.840-0.283Am_a0.829-0.233Ae_a0.813-0.274Ap_a0.813-0.300Ai_a0.842-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	G3i_a	-0.681	-0.063
E2i_a0.7910.535E3i_a0.6350.669Tu_a0.929-0.221Tm_a0.909-0.226Te_a0.932-0.214Tp_a0.908-0.279Ti_a0.931-0.213Au_a0.840-0.283Am_a0.829-0.233Ae_a0.847-0.274Ap_a0.813-0.300Ai_a0.842-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	E1i_a	0.846	0.399
E3i_a0.6350.669Tu_a0.929-0.221Tm_a0.909-0.226Te_a0.932-0.214Tp_a0.908-0.279Ti_a0.931-0.213Au_a0.840-0.283Am_a0.829-0.233Ae_a0.847-0.274Ap_a0.813-0.300Ai_a0.842-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	E2i_a	0.791	0.535
Tu_a0.929-0.221Tm_a0.909-0.226Te_a0.932-0.214Tp_a0.908-0.279Ti_a0.931-0.213Au_a0.840-0.283Am_a0.829-0.233Ae_a0.847-0.274Ap_a0.813-0.300Ai_a0.842-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	E3i_a	0.635	0.669
Tm_a0.909-0.226Te_a0.932-0.214Tp_a0.908-0.279Ti_a0.931-0.213Au_a0.840-0.283Am_a0.829-0.233Ae_a0.847-0.274Ap_a0.813-0.300Ai_a0.842-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	Tu_a	0.929	-0.221
Te_a0.932-0.214Tp_a0.908-0.279Ti_a0.931-0.213Au_a0.840-0.283Am_a0.829-0.233Ae_a0.847-0.274Ap_a0.813-0.300Ai_a0.842-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	Tm_a	0.909	-0.226
Tp_a0.908-0.279Ti_a0.931-0.213Au_a0.840-0.283Am_a0.829-0.233Ae_a0.847-0.274Ap_a0.813-0.300Ai_a0.842-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	Te_a	0.932	-0.214
Ti_a0.931-0.213Au_a0.840-0.283Am_a0.829-0.233Ae_a0.847-0.274Ap_a0.813-0.300Ai_a0.842-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	Тр_а	0.908	-0.279
Au_a0.840-0.283Am_a0.829-0.233Ae_a0.847-0.274Ap_a0.813-0.300Ai_a0.842-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	Ti_a	0.931	-0.213
Am_a0.829-0.233Ae_a0.847-0.274Ap_a0.813-0.300Ai_a0.842-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	Au_a	0.840	-0.283
Ae_a0.847-0.274Ap_a0.813-0.300Ai_a0.842-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	Am_a	0.829	-0.233
Ap_a0.813-0.300Ai_a0.842-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	Ae a	0.847	-0.274
Ai_a0.842-0.277Gu_a0.4110.676Gm_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	Ap_a	0.813	-0.300
Gu_a0.4110.676Gm_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	Ai_a	0.842	-0.277
Gm_a0.3750.669Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	Gu_a	0.411	0.676
Ku_a0.871-0.330Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	Gm_a	0.375	0.669
Km_a0.867-0.296Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	Ku_a	0.871	-0.330
Ke_a0.870-0.334Kp_a0.881-0.304Ki_a0.869-0.335	Km_a	0.867	-0.296
Kp_a 0.881 -0.304Ki_a 0.869 -0.335	Ke_a	0.870	-0.334
Ki_a 0.869 -0.335	Kp_a	0.881	-0.304
	Ki_a	0.869	-0.335

Du_a	0.843	0.501
Dm_a	0.752	0.596
De_a	0.811	0.547
Dp_a	0.931	0.183
Di_a	0.810	0.547
Vu_a	0.843	-0.262
Vm_a	0.845	-0.227
Ve_a	0.849	-0.254
Vp_a	0.826	-0.286
Via	0.843	-0.257

Following plots (fig. 1-8) are representing the projections of 375 ionic liquids in the space defined by two first principal components of all cations' and anions' WHIM descriptors. Each compound, with no toxicological data available, is represented by (\mathbf{x}) symbol. Compounds with defined toxicity are represented by (\mathbf{o}) symbols, coloured according to used scale (see manuscript for details).

Figure 1. PCA analysis with marked ranges of the toxicity for Acetylcholine esterase

Figure 2. PCA analysis with marked ranges of the toxicity for Vibrio fischeri

Figure 3. PCA analysis with marked ranges of the toxicity for Pseudokirchneriella subcapitata

Figure 4. PCA analysis with marked ranges of the toxicity for Scenedesmus vacuolatus

Figure 5. PCA analysis with marked ranges of the toxicity for Rat cell line IPC-81

Figure 6. PCA analysis with marked ranges of the toxicity for Human cell line HeLa

Figure 7. PCA analysis with marked ranges of the toxicity for Human cell line MCF7

Figure 8. PCA analysis with marked ranges of the toxicity for Daphnia Magna

Following plots (fig. 9-16) are representing the projections of 375 ionic liquids in the space defined by two first principal components of cations' WHIM descriptors. Each compound, with no toxicological data available, is represented by (x) symbol. Compounds with defined toxicity are represented by (o) symbols, coloured according to used scale (see manuscript for details).

Figure 9. PCA analysis with marked ranges of the toxicity for Acetylcholine esterase

Figure 10. PCA analysis with marked ranges of the toxicity for Vibrio fischeri

Figure 11. PCA analysis with marked ranges of the toxicity for Pseudokirchneriella subcapitata

Figure 12. PCA analysis with marked ranges of the toxicity for Scenedesmus vacuolatus

Figure 13. PCA analysis with marked ranges of the toxicity for Rat cell line IPC-81

Figure 14. PCA analysis with marked ranges of the toxicity for Human cell line HeLa

Figure 15. PCA analysis with marked ranges of the toxicity for Human cell line MCF7

Figure 16. PCA analysis with marked ranges of the toxicity for Daphnia Magna

Following plots (fig. 17-24) are representing the projections of 375 ionic liquids in the space defined by two first principal components of anions' WHIM descriptors. Each

compound, with no toxicological data available, is represented by (x) symbol. Compounds with defined toxicity are represented by (o) symbols, coloured according to used scale (see manuscript for details).

Figure 17. PCA analysis with marked ranges of the toxicity for Acetylcholine esterase

Figure 18. PCA analysis with marked ranges of the toxicity for Vibrio fischeri

Figure 19. PCA analysis with marked ranges of the toxicity for Pseudokirchneriella subcapitata

Figure 20. PCA analysis with marked ranges of the toxicity for Scenedesmus vacuolatus

Figure 21. PCA analysis with marked ranges of the toxicity for Rat cell line IPC-81

Figure 22. PCA analysis with marked ranges of the toxicity for Human cell line HeLa

Figure 23. PCA analysis with marked ranges of the toxicity for Human cell line MCF7

Figure 24. PCA analysis with marked ranges of the toxicity for Daphnia Magna

Following plots (fig. 25-29) are representing the projections of 375 ionic liquids in the space defined by two first principal components of anions' WHIM descriptors. Each

compound, with no toxicological data available, is represented by (x) symbol. Compounds with defined toxicity for the same cation are represented by (o) symbols, coloured according to used scale (see manuscript for details).

Figure 25. PCA analysis with marked ranges of the toxicity for Rat cell line IPC-81(cation: 1-butyl-3-methylimidazolium)

Figure 26. PCA analysis with marked ranges of the toxicity for Rat cell line IPC-81(cation: 1-ethyl-3-methylimidazolium)

Figure 27. PCA analysis with marked ranges of the toxicity for Vibrio Fischeri (cation: 1-butyl-3-methylimidazolium)

Figure 28. PCA analysis with marked ranges of the toxicity for Escherichia Coli (cation: trihexyltetradecylphosphinium)

Figure 29. PCA analysis with marked ranges of the toxicity for Acetylcholine esterase (cation: 1-ethyl-3-methylimidazolium)