Comprehensive Mass Analysis of Commercial Processes for L-Dopa Manufacture

Tao Li* and Xuan Li⁺

National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency, 26 W. Martin L. King Drive, Cincinnati, OH 45268-0001, USA.

* Corresponding author, <u>li.tao@epa.gov</u>

⁺Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Research Associate

Supporting Information

- Page 2-3 The Sankyo Process
- Page 4-25 The Hoffman La-Roche Process
- Page 26 41 The Monsanto Process
- Page 42 54 The Ajinomoto Process
- Page 55-59 Waste Stream Inventories for L-Dopa Manufacture Processes

The Sankyo Process

Reaction	Input	Output	Mw	Equivalent	Mass
1	5		152	1	152
	MeBr		95	1	95
	NaOH		40	1	40
		20	166	1	
2	21		100	1	100
		22	248	1	
3	H ₂		2	1	2
		23	250	1	
4	H ₂ O		18	2	36
		24	225	1	
5	Ac ₂ O		102	1	102
		25	267	1	
6	H ₂ O		18	0.5	9
		(S)- 24	225	0.5	
7	HBr		81	1	162
		L-Dopa	197	0.5	99
Total input					698
Atom economy			0.141		

The Hoffman La-Roche Process

Reaction	Input	Output	Mw	Equivalent	Mass				
1	5		152	1	152				
	6		179	1	179				
	Ac ₂ O		102	2	204				
		8	337	1					
2	H ₂		2	1	2				
	NaOH		40	1	40				
	H₂O		18	1	18				
		9	315	1					
3	10		285	0.5	143				
	NaOH		40	0.5	20				
		(S)- 9 • 10	600	0.5					
4	HBr		81	0.5	41				
	H₂O		18	0.5	9				
		L-Dopa	197	0.5	99				
Total input					808				
Atom economy	0.123								

Lab protocol for the Hofmann La-Roche Process¹

Outline:

1. D,L-N-Benzoyl-3-(4)-(o-acetyl-vanillylidene)-2-oxazoline-5-one (8) is prepared by Erlenmeyer reaction with vanillin and hippuric acid.

2. The product is then reduced by hydrogenation under basic condition to give D,L-N-benzoyl-3-(4-hydroxy-3-methoxyphenyl)-alanine (**9**).

3. The D, L-N-benzoyl-3-(4-hydroxy-3-methoxyphenyl)-alanine is resolved by classical resolution by forming salt with dehydroabietylamine ((S)-**9** and **10**).

4. In the last step, the salt is decomposed and (S)-**9** is deprotected in aqueous HBr to give L-Dopa as the final product.

5. The D-enatiomer of N-benzoyl-3-(4-hydroxy-3-methoxyphenyl)-alanine can be recycled by racemization.

6. MeBr is decomposed by reacting with ethanolamine in a scrubber.

- Mix 76 g of vanillin, 89.5 g of hippuric acid 6 and 75 g of sodium acetate with 150 ml of acetic anhydride and 25 ml of DMF. The mixture is heated to 100 °C for 30 min. When reaction completes, cool the mixture to ambient temperature, then add 700 ml of water over 15 min to crystallize the product. Chill the solution to 0 °C and continue the crystallization for 4 h. The product is isolated by filtration.
- 2. The solid is washed by 408 ml (3X of product) of water twice. After drying, 136 g of product **8** is isolated (80% yield).

	Input											
Chemical	Vol (ml)	Density (g/ml)	Weight (g)	Mw (g/mol)	mol	Role	X/ref 1 (g/g)	ΡΜΙ				
Vanillin 5			76	152	0.50	Reference 1	1.00	4.0				
Hippuric acid 6			89.5	179	0.50	reactant	1.18	4.8				
Acetic anhydride	150	1.08	162	102	1.59	reactant	2.13	8.6				
Sodium acetate			75	82	0.91	catalyst	0.99	4.0				
DMF	25	0.944	23.6			Solvent	0.31	1.3				
Total input			426.1				5.61	22.6				
Theoretical Output												
Expected product												
Compound 8			168.50	337	0.50	Product	2.22					
Acetic acid			90.00	60	1.50	by product	1.18					
Water			9.00	18	0.50	by product	0.12					
Solvent, excess												
Acetic anhydride		1.08	60.00	102	0.59	excess reactant	0.79					
Sodium acetate			75.00	82	0.91	catalyst	0.99					
DMF		0.944	23.6			solvent	0.31					
Total output			426.10				5.61					
			Work up	& isolation								
Water	700	1	700			Anti-solvent	9.21	37.1				
water	816	1	816			Rinse	10.7	43.2				
Total Mass			1516				19.9	80.3				
			Actual y	ield: 80%								
Compound 8			136	337	0.40	Product	1.79	7.20				
RF ₁		0.5638		CRF ₁	4.024							

Step 1

Step 2

- Mix 280 g of 8 with 6000 g water. Add 250 g of NaOH and then 70 g of Raney Nickel. Apply hydrogen to 100 atmosphere gauge pressure, and warm the mixture to 60 °C. Continue the reaction for 1 h to complete the hydrogenation.
- After Nickel catalyst is removed by filtration, the pH of the aqueous solution is adjusted to 2 with 6 N HCl to crystallize the product. The acidified solution is allowed to stand at 0 °C for 16 h to complete the crystallization. The product is isolated by filtration and rinsed with 567 ml (3X final product) water.
- To recrystallize the product, dissolve the crude product in 400 ml of methanol, and then add 800 ml of water as the anti-solvent. Keep the mixture at 0 °C for 16 h to finish the crystallization. Isolate the product by filtration and rinse with 567 ml water. After drying, 189 g of product 9 is obtained, corresponding to 72% yield.

				Input							
Chemical	Vol (ml)	Density (g/ml)	Weight (g)	Mw (g/mol)	mol	Role	X/ref 2 (g/g)	ΡΜΙ			
Compound 8			280	337	0.83	ref 2	1.00	(7.1)			
water	6000	1.0	6000	18	333.33	Solvent	21.43	152.9			
NaOH			250	40	6.25	reactant	0.89	6.4			
Hydrogen*			1.66	2	0.83	reactant	0.01	0.04			
Raney Ni			70			catalyst	0.25	1.8			
Total input			6602				23.58	161.1			
Theoretical Output											
Expected											
product											
rac- 9			261.72	315	0.83	Product	0.93				
Sodium acetate			68.13	82	0.83	by product	0.24				
Solvent, excess											
reactant											
Water			5985.04			Solvent	21.38				
NaOH			216.77			Excess reactant	0.77				
Raney Ni			70.00			catalyst	0.25				
Total mass			6602				23.58				
			Worl	cup & isola	tion						
6N HCl	1041	1.11	1156				4.13	29.5			
(HCI)			(228)	36.5	6.25	acidify	(0.81)	(5.8)			
(Water)			(928)				(3.31)	(23.6)			
Water			567			Rinse	2.03	14.5			
MeOH	400	0.79	316			Solvent	1.13	8.1			
water	800	1	800			Anti-solvent	2.86	20.4			
water	567	1	567			Rinse	2.03	14.5			
Total mass			2250				12.18	87.0			
			Act	ual yield: 7	2%						
rac- 9			189	315	0.60		0.675	4.82			
RF ₂		1.486		CRF ₂		7.137					

* Assuming only 1 equivalent of hydrogen is used.

Step 3

1. Prepare the half neutralized solution of **9** by mixing 31.5 g of **9** with 50 ml of 1 N NaOH and 80 ml of MeOH. Warm the solution to 50 °C to dissolve the solid. Add half

equivalent of resolution agent **10** as a methanol solution (14.2 g in 30 ml MeOH), followed by 10 ml MeOH rinse.

- If needed, seed the solution to initiate crystallization. Continue crystallization at 50 °C for 1 h, then decrease the temperature to 25 °C over 3 h. Maintain the temperature at 25 °C for 16 to finish the crystallization.
- Isolate the product by filtration. Rinse the crystalline solid with a cold (10 °C) mixture of MeOH and water (25 ml each). After drying, the amount of product (S)-9 ·10 is 27 g, representing 45% yield (out of 50% theoretical yield).

Chemical	Mw	Wt	Mol
(<i>R</i>)- 9 (82% ee)	315	17.3	0.055
Compound 10	285	1.4	0.005
NaOH	40	2.0	0.05
MeOH (d 0.79)	32	114	
Water		75	

4. Mother liquor of the resolution:

			In	put							
Chemical	Vol (ml)	Density	Weight	Mw	mmol	Role	X/ref. 3	PMI			
rac- 9			31.5	315	100	Reference 3	1.00	(4.80)			
NaOH (1N)	50	1.04	52			Reactant	1.65	7.9			
(NaOH)			(2)	40	50	Reactant	(0.06)	(0.3)			
(water)			(50)		Solvent		(1.59)	(7.6)			
Compound 10			14.2	285	50	Reactant 0		2.2			
MeOH	120	0.79	94.8			Solvent	3.01	14.5			
Total			192.5				6.11	24.6			
Theoretical Output											
Expected											
product											
(S)- 9·10			29.89	600	50	Product	0.95				
(<i>R</i>)- 10 ·Na			16.85	337	50	by product	0.53				
H ₂ O		1	0.90	18	50	by product	0.03				
Solvent, excess											
reactant											
Water			50			Solvent	1.59				
Methanol			94.8			Solvent	3.01				
Total mass			192.4				6.11				
			Work up	& isolatio	on						
Water	25	1	25			Rinse	0.79	3.8			
Methanol	25	0.79	19.75			Rinse	0.63	3.0			
Total mass			44.75				1.42	6.8			
	-		Actual y	/ield: 45%	/ D						
Salt (S)-9 • 10			27	600	0.045	product	0.86	4.13			
RF ₃		1.167		CRF ₃		4.8	03				

Step 4

- 1. Mix 30 g of the salt of (*S*)-**9** and **10** from Step 3 with 5 ml of water, 5 ml of toluene, and 38.4 ml (61.5 g) of 62% HBr. The solution is refluxed between 105-112 °C for 3 h.
- 2. After cooling, extract the solution with toluene (50 ml X2) to remove benzoic acid.
- 3. Reduced the solution volume by 80% by evaporation to remove water and HBr, and dilute the residual solution with 60 ml of water. The solution is treated with 1.5 g of activated charcoal for color removal.
- 4. The product is crystallized by pH adjustment with ammonia solution (10%). The final pH for crystallization is 5.5. Allow the solution to stand at 25 °C for 16 h. Filter to recover the crystalline solid. Dry under vacuum to give 7.3 g of the L-Dopa product (74% yield).

				Input					
Chemical	С	Vol	Density	Weight	Mw	mmol	Pole	X/ref. 4	DMI
Chemical	(w/w %)	(ml)	(g/ml)	(g)	(g/mol)		Noie	(g/g)	
(S)- 9 ·10				30.00	600	50.00	Ref. 4	1.00	(4.1)
Toluene		5	0.87	4.35			Solvent	0.145	0.60
HBr solution	62%	38.40	1.60	61.44			Reactant	2.05	8.4
(net HBr)				38.09	81	470.28	Reactant	(1.27)	(5.2)
(water)				23.35	18		Reactant	(0.78)	(3.2)
Water				5.00			Solvent	0.17	0.7
Total input				100.8				3.36	9.7
			The	oretical Out	put				
L-Dopa				9.85	197	50	product	0.33	
Benzoic acid				6.10	122	50	by product	0.20	
dehydroabietylamine 10				14.25	285	50	by product	0.48	
MeBr				4.75	94.9	50	by product	0.16	
Solvent, excess reactant									
Toluene		5	0.87	4.35			Solvent	0.145	
Water				27.45			Solvent	0.91	
HBr				34.04	81	420.28	Excess reactant	1.13	
Total output				100.8				3.36	
	-		Wor	k up & isola	tion				
Toluene		100	0.87	87			Solvent	2.9	11.9
NH ₃ solution*	10%			57.16			Neutralize	1.91	7.9
(net NH ₃)				(5.72)	17	336.23		(0.19)	(0.8)
(water)				(51.44)				(1.71)	(7.0)
NH ₃ solution**	10%			14.29			Neutralize	0.48	2.0
(Net NH ₃)				(1.43)	17	84.06		(0.05)	(0.2)
(water)				(12.86)				(0.43)	(1.8)
Water				60.00			Solvent	2.00	8.2
Active Carbon				1.5				0.05	0.2
Total isolation mass				220				7.34	30.1
			Ac	tual yield 74	%				
L-Dopa				7.3	197	0.037	Product	0.2433	1.00
RF ₄		4.116		CRF ₄		4.116			

 $*NH_3$ to neutralize the HBr in distillate $**NH_3$ used in crystallization

Step 2-1 Racemization of D-enantiomer² (mother liquor of Step 3)

- 1. Add 50 ml of 2 N NaOH to the mother liquor of resolution in Step 3, and extract the aqueous mixture with 20 ml X2 petroleum ether.
- 2. Remove methanol from the aqueous phase by evaporation. The volume is reduced to 100 ml
- 3. Adjust the pH to <2 with 6 N HCl
- 4. Extract (R)-9 with EtOAc (50 ml X 3 times)
- 5. Evaporate to remove EtOAc.
- 6. Mix the residue with 40 ml of 1 N NaOH, and 60 ml of acetic anhydride. Agitate the mixture at 50 °C for 4 h to complete the racemization.
- 7. Reduce the volume to 30 ml by evaporation.
- 8. Add 50 ml of water, and extract the mixture with EtOAc (50 ml X 2)
- 9. After solvent removal, 13 g of racemic **9** is isolated, representing 75% yield.

Input for (R)-9 cleaning (based on waste stream from Step 3)												
Chamical	Vol	Density	Weight	Mw			X/ref.3					
Chemical	(ml)	(g/ml)	(g)	(g/mol)	mol	Role	(g/g)					
(R)- 9			17.3	315	0.055	Waste from step3	(0.55)					
Compound 10			1.4	285	0.005	Waste from step3	(0.04)					
NaOH			2.0	40	0.050	Waste from step3	(0.06)					
MeOH	120	0.79	114.6			Waste from step3	(3.64)					
Water	75		75.0			Waste from step3	(2.38)					
2N NaOH	50.0	1.08	54.0			pH adjustment	1.71					
(NaOH)			(4.0)	40.000	0.100		(0.13)					
(Water)			(50.0)				(1.59)					
Pet. Ether (d 0.64)	40.0	0.64	25.6			Solvent	0.81					
6 N HCl	25.0	1.11	27.7			pH adjustment	0.88					
(HCI)			(5.5)	36.500	0.150		(0.17)					
(Water)			(22.3)				(0.71)					
EtOAc	150.0	0.90	134.6			Solvent	4.76					
Total input			452.1				14.35					
		Tł	neoretical out	put								
Solvent, other chemicals												
Compound 10			1.4									
MeOH			114.6									
Water			150.0	18								
Pet. Ether (d 0.64)			25.6									
NaCl			8.8	58.5	0.150							
EtOAc			134.6									
Cleaned (R)-9			17.3									
Total output			452.1									
		Inpu	ut for racemiz	ation								
1N NaOH	40.0	1.04	41.6				1.32					
(NaOH)			(1.6)	40	0.04	Catalyst	(0.05)					
(Water)			(40.0)	18	2.22	reactant	(1.27)					
Ac ₂ O	60.0	1.082	64.93	102	0.64	Catalyst	2.06					
Total input			123.9				3.93					
		Tł	neoretical out	put								
rac- 9			17.325	315	0.55	product						
Solvents, other chemicals												
Water			29.27	18	1.63							
Sodium acetate			3.28	82	0.04							
Acetic acid			73.99	60	1.23							
Total output			123.9									
		W	orkup & isola	tion	-	·						
Water			50				1.59					
EtOAc	100	0.897	90				2.84					
Total			140				4.43					
			Step yield 75	%		·						
rac- 9			13	315	0.41		0.41					

Step 4-1 Decomposition of MeBr in a scrubber³

Description³

- 1. The MeBr byproduct from Step 4 is introduced in to the scrubber containing aqueous solution of 17.5wt % Ethanolamine.
- 2. After Reaction 4 completes, the scrubbing reaction continues for additional 2 h while the residual MeBr in Reaction 4 is purged by nitrogen.
- 3. The removal efficiency is 99.9%.

			Input for M	eBr scrubbing				
	Vol (ml)	Density (g/ml)	Weight (g)	Mw (g/mol)	mol	Role	X/ref 4	ΡΜΙ
MeBr from Step 4			4.75	95	0.050	Step 4 by product	(0.16)	(0.66)
Ethanolamine		1.01	82.49	61.1	1.35	Reactant	2.75	11.3
Water			387.6			Solvent	12.92	53.2
Total input			474.8				15.83	64.5
			Theoretical out	put				
MeNH(CH ₂) ₂ OH HBr			7.02	156.02	0.045		0.23	
Me ₂ N(CH ₂) ₂ OH HBr			0.85	170.05	0.005		0.03	
NH ₂ (CH ₂) ₂ OH			79.43	61.1	1.300		2.65	
Water			387.6				12.92	
Total output			474.9				15.83	
RF ₄₋₁		4.116		CRF ₄₋₁		4	.116	

Step	RF	CRF	Reactant	Catalyst	Solvent	Isolation	Total
1	0.56	4.02	17.3	4.0	1.3	80.3	102.9
2	1.49	7.13	6.4	1.8	152.9	87.0	248.1
3	1.17	4.8	10.1	0	14.5	6.8	31.4
4	4.12	4.12	8.4	0	1.3	30.1	39.8
4-1	4.12	4.12	11.3	0	53.2	0	64.5
Total			53.5	5.8	223.2	204.2	487

Summary of mass efficiency for the process without racemization

PMI evaluation for alternative process: racemization of (R)-9 to give rac-9

Step 2-1 (*R*)-**9** isolation and racemization.

• The racemization reaction (Step 2-1) is a parallel route to prepare *rac*-**9**. The total yield of *rac*-**9** is the sum of Step 2 and racemization (Step 2-1).

Yield from racemization with Compound **8** as the base = $Y_1Y_2Y_3 = 72\% \times 55\% \times 75\% = 29.7\%$ Total yield from both routes = 29.7% + 72% = 101.7%

• The *RF* for *rac*-**9**, with the additional racemization, is determined with the combined yield (effective yield):

$$RF_{2+rac} = \frac{1}{101.7\%} \frac{MW_{Compound 8}}{MW_{Compound 9}} = 1.052$$

Correspondingly,

 $CRF_{2+rac} = RF_{2+rac} * CFR_3 = 1.052 * 4.803 = 5.053$

• The input for racemization uses *rac*-**9** from Step 2 (Ref 3) as the reference in the step protocol. For PMI evaluation, the reference should be adjusted to Compound **8** (Ref 2), the same reference as that in Step 2. The transformation factor is $1/RF_2$ (0.6729) since: Mass of Ref 3 $\cdot RF_2$ = Mass of Ref 2

		Input for (F	R)-4 cleaning	g (based on	waste stre	am from Reactio	on 3)		
Chemical	Vol (ml)	Density (g/ml)	Weight (g)	Mw	mol	Role	X/ref.3 (g/g)	X/ref.2	ΡΜΙ
(<i>R</i>)- 9			17.3	315	0.055	Waste from Step 3	0.55	0.370	(1.87)
Compound 10			1.4	285	0.005	Waste from Step 3	0.04		(0.136)
NaOH			2.0	40	0.050	Waste from Step 3	0.06		(0.204)
MeOH	120	0.79	114.6			Waste from Step 3	3.64		(12.4)
Water	75		75.0			Waste from Step 3	2.38		(8.09)
2N NaOH	50.0	1.08	54.0			pH adjustment	1.71	1.15	5.8
(NaOH)			4.0	40.000	0.100		0.13		
(Water)			50.0				1.59	1.07	(5.41)
Pet. Ether (d 0.64)	40.0	0.64	25.6			Solvent	0.81	0.545	(2.8)
6 N HCI	25.0	1.11	27.7			pH adjustment	0.88	0.592	3.0
(HCI)			5.5	36.500	0.150		0.17		
(Water)			22.3				0.71	0.478	(2.42)
EtOAc	150.0	0.90	134.6			Solvent	4.76	3.20	16.2
Total input			452.1						27.8
			Ir	put for race	emization				
1N NaOH	40.0	1.04	41.6				1.32	0.888	4.5
(NaOH)			1.6	40	0.04	Catalyst	0.05		
(Water)			40.0	18	2.22	reactant	1.27	0.855	(4.32)
Ac ₂ O	60.0	1.082	64.93	102	0.64	Catalyst	2.06	1.39	7.00
Total input			123.9						11.5
				Workup & i	solation				
Water			50				1.59	1.07	5.4
EtOAc	100	0.897	90				2.84	1.91	9.7
Total			140						15.0
				Step yield	75%				
rac- 9			13	315	0.41		0.41	0.276	1.39
RF ₂		1.486	RF ₂	+rac		1.052	CRF ₂	+rac	5.053

Mass inventory for racemization (Step 2-1) with Compound 8 (ref. 2) as the reference

	Input											
Chemical	Vol (ml)	Density (g/ml)	Weight (g)	Mw	mol	Role	X/ref 2 (g/g)	ΡΜΙ				
Compound 8			280	337	0.83	ref 2	1.00	(5.05)				
water	6000	1.0	6000	18	333	Solvent	21.43	108.3				
NaOH			250	40	6.25	reactant	0.89	4.5				
Hydrogen			1.66	2	0.83	reactant	0.01	0.04				
Raney Ni			70			catalyst	0.25	1.3				
Total input			6601.7				23.58	114.1				
Work up & isolation												
6N HCI	1041	1.11	1156.3				4.13	20.9				
(HCI)			228.1	36.5	6.25	acidify	0.81					
(Water)			928.1				3.31	(16.7)				
Water			567			Rinse	2.03	10.3				
MeOH	400	0.79	316			Solvent	1.13	5.7				
Water	800	1	800			Anti-solvent	2.86	14.5				
Water	567	1	567			Rinse	2.03	10.3				
Total mass			2250				12.18	61.5				
	Actual yield: 72%											
rac- 9			189	315	0.60		0.675	3.411				
RF ₂	1	.486	RF _{2+rac}	1.	052	CRF _{2+rac}	5	5.053				

Mass Inventory for Step 2 when racemization is included in the process

The total PMI of *rac*-**9** from two routes = 1.39 + 3.411 = 4.801, which equals to the PMI of *rac*-**9** in Step 3.

For Step 1: the new $CRF_1 = RF_1 * CRF_{2+rac} = 0.5638 * 5.053 = 2.849$. The required PMI of Compound **8** from Step 1 is reduced from 7.20 to 5.05.

Input											
Chemical	Vol (ml)	Density (g/ml)	Weight (g)	Mw (g/mol)	mol	Role	X/ref 1 (g/g)	ΡΜΙ			
Vanillin 5			76	152	0.50	Reference 1	1.00	2.9			
Hippuric acid 6			89.5	179	0.50	reactant	1.18	3.4			
Acetic anhydride	150	1.08	162	102	1.59	reactant	2.13	6.1			
Sodium acetate			75	82	0.91	catalyst	0.99	2.8			
DMF	25	0.944	23.6			Solvent	0.31	0.9			
Total input			426.1				5.61	16.0			
	-		Theoreti	cal Output							
Expected product											
Compound 8			168.5	337	0.50	Product	2.22				
Acetic acid			90.0	60	1.50	by product	1.18				
Water			9.0	18	0.50	by product	0.12				
Solvent, excess											
Acetic anhydride		1.08	60.0	102	0.59	excess reactant	0.79				
Sodium acetate			75.0	82	0.91	catalyst	0.99				
DMF		0.944	23.6			solvent	0.31				
Total output			426.1				5.61				
			Work up	& isolation							
Water	700	1	700			Anti-solvent	9.21	26.2			
water	816	1	816			Rinse	10.7	30.5			
Total Mass			1516	19.9 56.7							
			Actual y	vield: 80%		•					
Compound 3			136	337	0.40	Product	1.79	5.09			
RF ₁		0.5638		CRF ₁		2.84	9				

Mass Inventory for Step 1 when racemization is included in the process

Summary of material efficiency with racemization in the process

Contribution to global PMI by reaction steps

Step	RF	CRF	Reactant	Catalyst	Solvent	Isolation	Total
1	0.56	2.85	12.3	2.8	0.9	56.7	72.7
2	1.49	5.05	4.6	1.3	108.3	61.5	175.7
Rac.	1.05	5.05	0	11.5	0.00	42.8	54.3
3	1.17	4.8	10.1	0	14.5	6.8	31.4
4	4.12	4.12	8.4	0	1.3	30.1	39.8
4-1	4.12	4.12	11.3	0.00	53.2	0.00	64.5
Total			46.7	15.6	178.2	197.9	438

References

- 1. Jaffe, G. M., Rehl, W. R., Hoffman-La Roche, US 3714242, 1973
- 2. Kaiser, A. Scheer, M., Hausermann, W., Marti, L., Hoffman-La Roche, US3969397, 1976
- 3. K. Hettenback, D. J. am Ende, K. Leeman, E. Dias, N. Kasthurikrishnan, S. J. Brenek and P. Ahlijanian, *Org. Pro.Res. Dev.* 2002, **6**, 407-415

			Roche Process FI	Reaction Yield	0.8					
Input	Kg			Stream	Waste (Kg)	Time (h)	Stream 1-1	Weight (kg)	kMol	
Vanillin 5	402.26	>					Acetic acid	476.4	7.94	From reaction
Hippuric acid 6	473.7		Erlenmeyer reaction			20	NaOAc	398.2	4.86	
NaOAc	398.2						DMF	124.90		
Ac ₂ O	857.4						(Ac ₂ O)	(318.5)	3.12	excess
DMF	124.9						HOAc	374.4	6.24	from Ac ₂ O
			¥ (Water	3696.4		
				1-1			Stream total	5070		
Water	3705		Crystallization, isolation	\rightarrow	5036.55	4				
							Stream 1-2			
			V V				Water	4319		
			Rinse, dry	1-2			Organic	178.2		Un-isolated 8
Water	4319			\rightarrow	4439.30		Stream total	4497		
Reaction input	2256		· · · · · · · · · · · · · · · · · · ·							
Isolation input	8024		Compound 8	1-3	Est. Total waste	Total waste				
Total input	10280		713		9567	9567				

Flow diagram of Roche Process to manufacture 100 kg L-Dopa

			Roche Process Flow D	1	Reaction Yield	0.72				
Input	Kg			Stream	Waste (Kg)	Time (h)	Stream 2-1	Weight (kg)	kMol	
Compound 8	713	>	the design of the state of the	2-1			Raney Ni	178.4		
NaOH	637		Hydrogenation, 100 atm, 60 °C	\rightarrow	178.37	1				
Water	15280						Stream 2-2			
Raney Ni	178.4						NaOAc	173.7	2.12	
H ₂	4.3						(NaOH)	552.3	13.8	
			V V				(HCI)	580.9	15.9	
				2-2			NaCl	807.	13.8	
6N HCI	2945		Crystallization 0 °C, isolation	\longrightarrow	20311.81	16	HCI	76.7	2.1	
Water	1447						Water	19301		
							Stream total	20359		
			↓ ↓				Stream 2-3			
MeOH	806	│ 		2-3			MeOH	806		
Water	3487		Recrystallization 0 °C isolation	$ \longrightarrow$	4467.70	16	Water	3487		
							Organic	187		Un-isolated 9
							Stream total	4480		
Reaction input	16813		¥							
Isolation input	8685		rac-9	2-4	Est. Total waste	Waste total				
Total input	25498		480		25018	25018				

			Roche Process Flo	w Diagram S		Reaction Yield	0.45		
Input	Kg			Stream	Waste (Kg)	Time (h)	Stream 3-1	Weight (kg)	kMol
rac - 9	480.2	\longrightarrow	Diastereomer				(R)- 9	264.10	0.84
1 N NaOH	792.29		Crystallization, 25-50 °C			20	Compound 10	20.58	0.072
Methanol	1441						NaOH	30.4	0.76
Compound 10	216.1						МеОН	1742.08	
			*				Water	1143.16	
MeOH	301.6		Isolation by filtration and	3-1			(R)-9 in Stream	3-1 can be r	ecycled by racemization
Water	381.26		drying	\rightarrow	3200.30				
Reaction input	2929		∀						
Isolation input	682.81		Salt of (<i>S</i>)- 9·10	3-2	Est. total waste	Waste total			
Total input	3612		412		3200	3200			

			Roche Process	Flow Diagram	Step 4	1	Reaction Yield	0.74		
Input	Kg			Stream	Waste (Kg)	Time (h)	Stream 4-2	Wt (kg)	kMol	
Salt of (<i>S</i>)- 9⋅10	411.6	\longrightarrow	Depretection	4-1			Toluene	1244.62		
Toluene	59.27		Reflux at 110 °C	\rightarrow	65.10	3	Benzoic acid (122)	83.69	0.69	
62% HBr	843.7									
Water	68.61									
			↓				Stream 4-3			
			Demous herecia esid	4-2			NH ₄ Br (97.9)	452.71	4.62	
Toluene	1185	>	extraction with toluer	by	1328.30		Water	1009.01		
							Stream 4-4			
			↓				Activated carbon	20.58		
NH ₃ (10%)	786.1	→	Evaporation (80% reduction) to remove H	HBr, 4-3	4404 70					
			then neutralize distilla	ate>	1461.72	1	Stream 4-5			
			with NH ₃				NH ₄ Br (97.9)	113.77	1.16	
							Water	1076.34		
			↓ ↓				Compound 10	195.50	0.69	
				4-4			Organic	34.6		Unisolated 1
Water	823.2		Discoloration, filtratio		20.58					
Activated carbon	20.58									

Continue from the last page

				1							
								Stream 4-1			
			Crystalliza	tion Product	<u>4-5</u>			MeBr (94.9)	65.10	0.69	Gas
10% NH ₃	197.6	\rightarrow	isolation	isolation and drying		1420.25					
				¥							
Reaction input	2568.5										
Isolation input	1827.4			roduct (Ka)	4-6						
				iouuci (Kg)		Est. total waste	Waste total				
Step total	4396		1	100		4296	4296				

		Roche Process Flow Diagram MeBr decomposition, Step 4-1							
Input	Ka			Stroom	Wasto (Ka)	Time (b)			
	ity			Ulieann	maste (rtg)	i iiie (ii)			
MeBr (Stream 4-1)	65.10	\rightarrow	Decompose MeBr with a	4-7			Stream 4-7		kMol
Ethanolamine	1133		scrubber	\longrightarrow	6509.3		MeNH(CH ₂) ₂ OH HBr	96.80	0.62
Water	5312.0						Me ₂ N(CH ₂) ₂ OH HBr	11.07	0.07
							Water	5312	
							(HBr)		0.69
Total Input	6509.8						NH ₂ (CH ₂) ₂ OH	1089.40	17.86
							Total Waste	6509.3	

The Monsanto Process

Reaction	Input	Output	Mw	Equivalent	Mass
1	5		152	1	152
	11		75	1	75
	Ac ₂ O		102	3	306
		12	275	1	
2	H₂O		18	1	18
		13	293	1	
3	H ₂		2	1	2
		15	295	1	
4	HBr		81	1	81
	H₂O		18	2	36
		L-Dopa		1	197
Total input					670
Atom economy			0.294		

Atom economy

Lab Protocol of the Monsanto Process¹

Outline:

- Azlactone (*Z*)-2-methoxy-4-((2-methyl-5-oxooxazol-4(5H)-ylidene)methyl)phenyl acetate (12) is prepared by Erlenmeyer reaction from vanillin and glycine.
- 2. The azlactone **12** is then hydrolyzed to give the corresponding acetyl enamide **13**.
- 3. The enamide is reduced to the corresponding amide **15** by asymmetric hydrogenation with a $[Rh(R,R)-DiPAMP]COD]^+BF_4^-$ catalyst.
- 4. L-Dopa product is produced by de-protection of **15** with HBr.

Step 1

Description: 1,3

1. Mix 300 g of acetic anhydride, 10 g of NaOH, and 152 g vanillin (5), heat to 100 °C over 2 h.

- 2. Add 75 g glycine (**11**) and 102 g of acetic anhydride over 1 h. Hold the temperature for additional 2 h at 90-95 °C.
- 3. To start crystallization Cool to 50 °C over 2 h. and Decrease to 25 °C over 1 h and hold the temperature for 1 h to finish. Isolate the product **12** by filtration.
- 4. Wash the product with 200 g acetic acid under ambient temperature. The procedure gives 190 g of the azalactone product **12** (yield 69%)²

	Input												
Chemical	Vol (ml)	Density (g/ml)	Weight (g)	Mw	Mol	Role	X/ref. 1	ΡΜΙ					
Vanillin 5			152	152	1.00	Ref 1	1.00	1.63					
Acetic anhydride		1.08	402	102	3.94	Reactant	2.64	4.32					
NaOH			10	40	0.25	Catalyst	0.07	0.114					
Glycine 11			75	75	1.00	Reactant	0.49	0.801					
Total input			639				4.20	6.87					
			The	oretical Outp	out								
Expected Product													
Compound 12			275	275	1	Product	1.81						
(Acetic acid)				60	4	by product							
(water)				18	1	by product							
(NaOH)				40	0.25	Catalyst							
(Acetic anhydride)				102	0.94	Excess reactant							
Acetic acid		1.05	337.9	60	5.63		2.22						
NaOAc			20.5	82	0.25		0.13						
Water		1	5.6	18	0.31		0.04						
Total			639				4.20						
			Wor	k up & isolat	ion								
Acetic acid		1.05	200				1.32	2.158					
	Actual Yield 69%												
Compound 12			190	275	0.69		1.25	2.04					
RF ₁		0.801	1	CRF ₁		1.635							

Description:

- 1. Hydrolysis: add 100 g **12** to 100 g water and 300 g of acetone (density = 0.79). Heat to reflux at 65 °C for 1 h and hold for 3 h.
- 2. Start to crystallize 13 by distilling off acetone (bp = 56 °C) over 4 h. Cool to room temperature over 2 h.
- 3. The liquid is removed by filtration to give 101.3 g of **13**, corresponding to 95% yield.

	Input												
Chemical	Vol (ml)	Density (g/ml)	Weight (g)	Mw	mol	Role	X/ref. 2	ΡΜΙ					
Compound 12			100	275	0.36	Ref 2	1.00	(2.04)					
Acetone		0.79	300	58	5.17	solvent	3.00	6.12					
Water			100	18	5.56	reactant	1.00	2.04					
Total input			500				5.00	8.2					
	Theoretical Output												
Expected product													
Compound 13			106.55	293	0.36	Product	1.07						
Solvents, excess reactants													
Acetone			300			Solvent	3.00						
Water			93.45	18	5.19	Excess reactant	0.93						
Total output			500				5.00						
	Actual yield 95%												
Compound 13			101.3	293	0.35		1.01	2.064					
RF ₂		0.988		CRF ₂			2.041						

Description: ³

- 1. Mix 100 g of **13** with 664 g iPrOH and 82.5 g Water, 37 g of 50% NaOH. The product is a slurry.
- 2. Purge the solution with nitrogen twice, followed by applying hydrogen at gauge pressure of 3.5 atm.
- 3. Raise the temperature to 50 °C over 1 h.
- 4. Add the solution of catalyst **14** (in 2 g of iPrOH), and continue the reaction for 1 h to complete. Cool the solution to 25 °C over 1 h.
- 5. Add 46 g of concentrated HCl (37%, d = 1.2, 436 g/L, 12 M) over 2 h to crystallize the product.
- Distill (Azeotropic of iPrOH and water: bp = 80.3 °C, 12 wt % water,) to remove 600 ml of the solvent (d = 0.905) over 5 h, reducing the volume to about 400 ml.⁴
- 7. Cool the mixture to 25 °C over 3 h, followed by filtration to isolate the product **15**. The quantity is 90.6 g, corresponding to 90% yield. The *ee* is > 99%.

Input										
Chemical	Concentration (w/w %)	Vol (ml)	Density	Weight (g)	Mw	mol	Role	X/ref. 3	ΡΜΙ	
Compound 13				100	293	0.34	Ref. 3	1.00	(2.07)	
iPrOH			0.8	666			Solvent	6.66	13.76	
Compound 14				0.00129	756	1.71E- 06	Catalyst	1.E-05	2.7.E-05	
H ₂				0.682	2	0.34	Reactant	0.01	0.014	
Water				82.5			Solvent	0.83	1.715	
NaOH solution	50%		1.52	37			Catalyst	0.37	0.764	
(Water)				18.5				0.19		
(NaOH)				18.5	40	0.46		0.19		
Total input				886				8.86	16.2	
			Т	heoretical ou	tput					
Expected products										
Compound 15				100.68	295	0.34	Product	1.01		
Compound 14				0.00129			Catalyst	1.E-05		
NaOH				18.5			Catalyst	0.19		
Solvents excess reactants										
iPrOH				666			Solvent	6.66		
Water				101			Solvent	1.01		
Total output				886				8.86		
			W	/ork up & isol	ation					
HCl solution	37%		1.2	46				0.46	0.9504	
(HCI)				17.02	36.5	0.47		(0.17)		
(Water)				28.98				(0.29)		
Total				46				0.46	0.95	
				Actual yield 9	0%					
Compound 15				90.61	295	0.31	Product	0.91	1.88	
RF ₃	1.104			CRF ₃	2.066					

Step 4

Description: ⁵

- 1. Add 250 g HBr solution to 89 g of **15** (48%, d=1.49).
- 2. Heat to 105-110 °C over 2 h and reflux at the temperature for 3 h. Cool the solution to 25 °C over 3 h,
- 3. Neutralize the solution to pH 3 with NaOH (solution in 90 ml water) over 3 h.
- 4. Isolate crystalline L-Dopa product by filtration.
- 5. Re-slurry in water (90 ml) by heating to 90 °C over 1 h and hold at the temperature for 1 h, then cool the temperature to 25 °C over 2 h.
- 6. Recover the product by filtration.
- 7. Dry the product under vacuum to obtain 47.5 g final product **1** (0.24 mol, 80% yield).

	Input										
Chemical	Concentratio n	Vol (ml)	Density	Weight	Mw	mol	Role	X/Ref 4	ΡΜΙ		
Compound 15				89	295	0.30	Ref 4	1.00	(1.87)		
HBr solution	48%		1.49	250				2.81	5.26		
(HBr)				120	81	1.48	Reactant	(1.35)	(2.52)		
(Water)				130	18	7.22	Reactant	(1.461)	(2.73)		
Total input				339.00				3.81	5.26		
Theoretical output											
Expected products											
L-Dopa 1				59.43	197	0.30	Product	0.67			
Acetic acid				36.20	60	0.60	by product	0.41			
MeBr				28.66	95	0.30	by product	0.32			
Solvents, excess reactants											
HBr				95.56	81	1.18	Excess reactant	1.07			
Water				119.14	18	6.62	Excess reactant	1.34			
Total output				339.00				3.81			
			Wo	rk up & iso	lation						
NaOH				48	40	1.2	neutralize	0.54	1.01		
Water				180				2.02	3.78		
total				228				2.56	4.79		
Actual yield 80%											
L-Dopa 1				47.55	197	0.24	Product	0.534	1.00		
RF ₄	1	.872		CRF ₄	1.872						

Step 4-1 Removal of MeBr by a scrubber

Description⁶

- 1. The MeBr byproduct from Step 4 is introduced in to the scrubber containing aqueous solution of 17.5wt % Ethanolamine.
- 2. After Reaction 4 completes, the scrubbing reaction continues for additional 2 h while the residual MeBr in Reaction 4 is purged by nitrogen.
- 3. The removal efficiency is 99.9%.

Input										
Chemical	Vol (ml)	Density (g/ml)	Weight (g)	Mw	mol	Role	X/ref. 4	ΡΜΙ		
MeBr from Step 4			28.66	95.00	0.30	Step 4 by product	0.32	(0.599)		
Ethanolamine			497.71	61.10	8.15	Reactant	5.59	10.46		
Water			2340.46	18.00		Solvent	26.30	49.23		
Total input			2866.83				32.21	59.69		
Theoretical output										
MeNH(CH ₂) ₂ OH HBr			42.36	156.00	0.27	product	0.48			
Me ₂ N(CH ₂) ₂ OH HBr			5.13	170.00	0.03	product	0.06			
NH ₂ (CH ₂) ₂ OH			478.49	61.00	7.84	excess reactant	5.38			
Water			2340.46			Solvent	26.30			
Total output			2866.43				32.21			
$RF_{4-1} = RF_4$	$RF_{4-1} = RF_4 \qquad 1.872 \qquad CRF_{4-1} = RF_4 \times 1 \qquad 1.872$									

PMI summary

Step	RF	CRF	Reactant	Catalyst	Solvent	Isolation	Total
1	0.801	1.64	6.75	0.11	0.00	2.16	9.0
2	0.988	2.04	2.04	0.00	6.12	0.00	8.2
3	1.104	2.06	0.02	0.76	15.48	0.95	17.2
4	1.872	1.87	5.26	0.00	0.00	4.79	10.1
4-1	1.872	1.87	10.46	0.00	49.23	0.00	59.7
Total			24.53	0.88	70.83	7.90	104

Reference:

- 1. W. S. Knowles, M. L. Sabacky and B. D. Vineyard, Monsanto Co. GB1351911, 1974
- 2. K. N. F. Shaw, A. McMillan and M. D. Amstrong, *J. Am. Chem. Soc.* 1958 **23**, 27-32 (for yield correction from 45% to 69%)
- 3. W. S. Knowles, M. L. Sabacky, and B. D. Vineyard, Monsanto Co. US 4008281 1977,
- L. H. Horseley, Azeotropic data III, ed, R. F. Gould, American Chemical Society, Washington D. C.; 1973; pp 18
- 5. Assuming deprotection yield 85%, and lose 5% after two washes. T. W. Green, and P. G. M. Wuts, in *Protective Groups in Organic Synthesis*, 2nd ed. Wiley, New York, **1991**, pp 146-148.
- The amounts of chemicals are based on a pilot test results (Table 3, entry 4) of K. Hettenback,
 D. J. am Ende, K. Leeman, E. Dias, N. Kasthurikrishnan, S. J. Brenek and P. Ahlijanian, *Org. Process Res. Dev.* 2002, 6, 407-415

Flow diagram of the Monsanto Process to manufacture 100 kg L-Dopa

		N	Ionsanto Proce	ss Flow	Diagram S	tep 1		Isolation yield	0.69
	Kg				Waste (Kg)	Reaction time (h)			
Compound 5	163			1-1			Stream 1-1	Weight (kg)	kMol
Acetic anhydride	432	\rightarrow	Erlenmeyer reaction 95 °C, filtration	\rightarrow	391	2	(NaOH)		0.27
Glycine	81						(AcOH)		4.30
NaOH	11						(H ₂ O)		1.08
							(Ac2O)		1.00
				1-2			NaOAc	22	0.27
Acetic acid	215	\rightarrow	Rinse, Dry		307		Water	6	0.34
							AcOH	363	6.04
			¥				Stream 1-2		
Reaction input	686						AcOH	215	
Isolation input	215		Compound 12	1-3			Un-isolated 12	92	0.33
					Estimated total waste	Total Waste			
Step total	901		204		697	697			

		N	lonsant	to Proce	ss Flow	ep 2		Isolation yield	0.95	
	Kg					Waste (Kg)	Reaction time (h)			
Compound 12	204		Hydroly	reie 65 °C	2-1			Stream 2-1	Weight (kg)	kMol
Acetone	612	\rightarrow	remove	acetone by	\rightarrow	612	4	Acetone	612	
Water	204		disti	illation						
								Stream 2-2		
				•				Water	191	10.60
			Eilt.	ration	2-2			Un-isolated 13	10	0.04
			T IIU	ration		201				
				1						
				¥						
Reaction input	1020		Comp	ound 13	2-3					
						Estimated total waste	Waste total			
Step input	1020		2	207		814	813			

		М	onsanto	Proces	s Flow D	ер 3		lsolation yield	0.9	
	kg					Waste (kg)	Reaction time (h)			
Compound 13	207							Stream 3-1	Wt (kg)	kmol
iPrOH	1376	\rightarrow	Hydrog 50	genation) °C			1	iPrOH	987	
Water	171							Water	135	
50% NaOH	76									
hydrogen	1.41							Stream 3-2		
Catalyst 14	0.0027							NaCl	55.89	0.96
								Catalyst 14	0.0027	
			1	1				Water	152.13	
								iPrOH	389	
37% HCI	95.0	\rightarrow	Neutra Crysta	alization Illization				Un-isolated 15	21	0.07
			,	↓						
					3-1					
			Disti 85	Distillation 85 °C		1122	5			

Continue from the last page

		¥	3-2				
					010		
		Filtration			618		
		•					
Reaction input	1832						
Isolation input	95.0	Compound 15	3-3	Estimated total waste	Waste total		
Step total	1927	187.2	kg	1739	1739		

			Monsar	nto Proc	р 4	Yield	0.8		
	kg				Waste (Kg)	Reaction time	Stream 4-1	Wt (kg)	kmol
Compound 15	187			4-1			MeBr	60.28	0.63
48% HBr	526	\rightarrow	Deprotection Reflux 110 °C	\rightarrow	60.28	3			
							Stream 4-2	Wt	mol
			\downarrow				NaBr	256	2.48
NaOH	101	\rightarrow					AcOH	76	1.27
Water	189		Neutralization Crystallization				Water	486	26.97
			\downarrow				Stream 4-3	Wt	mol
				4-2			Water	189	
			Filtration	\rightarrow	818		Un-isolated 1	25	0.13
			↓ ↓						
Water	189	\rightarrow	Reslurry at 90 °C			1			
			↓						
				4-3					
			Filtration	\rightarrow	214				
Reaction input	713		\downarrow						
Isolation input	480								
			L-Dopa Product						
				4-4	Est. Total Waste	Waste total			
Step Total	1193		100	kg	1093	1092			

		S	Step 4-1 MeBr F	Removal	4)	Removal	0.999		
	kg				Waste (Kg)	Reaction time (h)			
MeBr	60						Stream 4-5	Weight(kg)	kMol
Ethanolamine	1046	\rightarrow	Scrubbing	\rightarrow	4-5	3	MeNH(CH ₂) ₂ OH HBr	89	0.57
Water	4923						Me ₂ N(CH ₂) ₂ OH HBr	11	0.06
					Total		Ethanolamine		
					Waste			1008	16.52
Total input	6030				6030		Water	4923	

The Ajinomoto Process

Reaction	Input	Output	Mw	Equivalent	Mass					
1	16		110	1	110					
	17		110	1	110					
	NH₄Cl		54	1	54					
Total input				1	274					
		L-Dopa	197		197					
Atom Economy	0.719									

Lab protocol for the Ajinomoto process

Outline:

- 1. Tyrosine Phenyl Lyase (TPL) is produced by high density fermentation of a strain of *E. coli* that over expresses TPL. The cells are isolated by Disk Stack Centrifuge after medium exchange with diafiltration.
- 2. The cleaned cells are used directly in the synthesis of L-Dopa from catechol, pyruvate, and ammonia.
- 3. Product L-Dopa is isolated from the mixture with centrifuge decanter.
- 4. Product is purified by re-crystallization under basic condition after discoloration with activated carbon.

Synthesis of L-Dopa¹⁻³

Procedure

- 1. Dissolve Sodium pyruvate (12.43 kg) in water (739 kg), charge NH₄Cl (41.45 kg), Na₂EDTA 2H₂O (2.49 kg), adjust the pH to 8.0. Cool the reaction mixture to 15 °C.
- Start the reaction by adding the biocatalyst (75 kg wet cells), sodium bisulfite (1.66 kg), and catechol (8.29 kg) to the reaction mixture. Maintain the temperature at 15 °C, and pH at 8.0. Continue the agitation for 2 h.
- 3. Prepare the feed solution by dissolving sodium pyruvate (61.73 kg) and catechol (61.73 kg) in water (271 kg). Cool to 15 °C and adjust the pH to 8.0.
- 4. Add anhydrous L-dopa seed to the reaction mixture (7.65 kg), agitate for 1 h.
- 5. Add the feed solution (308 L) to the reaction mixture over 12 h. Continue agitation for 3 h to finish.
- Product isolation: Separate the crystalline L-Dopa from cells and solution with decanter centrifuge after pH adjustment. Product: 171 kg wet cake, with 70% active (120 kg, yield at this point = 90%)
- 7. Product discoloration: Mix the wet cake with 418 kg water, adjust pH to 11.5 with 5 N sodium hydroxide (approx. 135 L) to dissolve L-Dopa. Add 6.4 kg of activated carbon to the solution, heat to 50 °C and agitate for 2 h. Filter to remove the insoluble.
- Reactive crystallization: Cool the solution to 25 °C, Seed with 1 mol % (with catechol as reference) L-Dopa. Add 6N HCl (total about 113 L) at 25 °C over 6 h to crystallize L-Dopa product. The final pH is at 5.7.
- Isolate the crystalline solid by filtration. Dry under vacuum to remove residual water. The product is 109 Kg (or 100 kg excluding seeds), representing 80% yield.⁴

Streams in reaction: ³

Reactant stream	Volume Ratio	Chemical	Wt Concentration (g/L)	Mw	Molar concentration (mol/L)
Initial stream	1	Catechol	10	110	0.091
		Sodium pyruvate	15	110	0.136
		NH ₄ Cl	50	53.5	0.935
		NaHSO ₃	2	104	0.019
		Na ₂ EDTA 2H ₂ O	3	372	0.008
		TPL	75		
Seed (added to initial stream)		L-Dopa	9.3	197	
Feed solution	0.372	Sodium pyruvate	200	110	1.818
		Catechol	200	110	1.818

Input									
Chemical	Vol (L)	Density g/ml	Weight (kg)	Mw	mol	Role	X/ref. 1	PMI	
(Catechol, initial)			(8.29)	110	75.4	Reactant	(0.12)	(0.084)	
(Na pyruvate initial)			(12.43)	110	113.0	Reactant	(0.18)	(0.126)	
(Water)			(739)	18	41055.6	Solvent	(10.55)	(7.39)	
NH ₄ Cl			41.45	53.5	774.8	Reactant	0.59	0.413	
Na ₂ EDTA 2H ₂ O			2.49	372	6.7	chelation	0.04	0.027	
TPL			75			Catalyst	(1.07)	(0.75)	
NaHSO ₃			1.66	104	16.0	Antioxidant	0.02	0.015	
(Sodium pyruvate, feed)			(61.73)	110	561.2	Reactant	(0.88)	(0.616)	
(Catechol, feed)			(61.73)	110	561.2	Reactant	(0.88)	(0.616)	
(Water)			(271)	18	15055.6	Solvent	(3.87)	(2.71)	
L-Dopa seed			7.65	197	38.8	Seed	0.11	0.077	
Water, total			1010	18	56111.1	Solvent	14.42	10.1	
Catechol, total			70.02	110	636.5	Ref 1	1.00	0.7	
Sodium pyruvate total			74.16	110	674.2	reactant	1.06	0.742	
Input total			1282				18.32	12.07	
			The	oretical out	put				
Expected product									
L-Dopa			133.0	197	675.4	Product	1.90		
Sodium chloride			37.2	58.5	636.5	by product	0.53		
Water			11.7	18	649.9	Solvent/by product	0.16		
Solvent, excess									
Water			1010.0	18	56111.1		14.42		
Na₂EDTA			2.2	336	6.7	Chelation	0.03		
TPL (wet cell)			75.0			Catalyst	1.07		
NaHSO ₃			1.7	104	16.0	Antioxidant	0.02		
NH4Cl			7.4	53.5	138.2	Excess by product	0.11		
Sodium pyruvate			4.1	110	37.6	Excess by product	0.06		
Total			1282				18.32		
			Wor	k up & isola	tion				
Water			418				5.96	4.18	
5 N NaOH solution	135	1.18	159				2.28	1.60	
(NaOH)			27.0	40	675.4		0.39	(0.273)	
(Water)			132				1.89	(1.32)	
Activated Carbon			6.4				0.09	0.063	
6 N HCl	112.5	1.09	122.69				1.75	1.23	
(HCI)			24.65	36.5	675.4		0.35	(0.245)	
(Water)			98.04				1.40	(0.98)	
L-Dopa seed			1.25	197	6.4	mol/ ref 1 = 0.01	0.02	0.014	
Total			707.27				10.10	7.09	
			Actu	al yield 79.	75%				
L-Dopa			109	197	552.8		1.56		
Net (excluding seeding)			100	197	507.6		1.43		
RF ₁		0.700		CRF ₁		0.700			

Tyrosine phenol lyase preparation by high density fermentation⁵

- Pick a single colony of the production strain from LB/antibiotic plate; inoculate to 50 ml (54 g) of semi-synthetic medium (SM-B) medium. Incubate at 37 °C for 16 h to reach OD₆₀₀ ≥ 1.5 (about 0.45 g dry cell weight or DCW /L or 1.5 X 10⁹ cell/ml)
- 2. To prepare secondary seed, transplant the primary culture to 25 L (27 kg) SM-B, incubate at 37 °C for 16 h to reach $OD_{600} > 10$ (3 g DCW/L).
- 3. Transfer the secondary seed to 415 L (448 kg) of the main culture (SM-B medium, glucose 20 g/L), incubate at 37 °C for 8 h to reach $OD_{600} > 30$ (10 g DCW/L), or when growth slows down as indicated by the increase of pO_2
- 4. Start adding feed medium (FM) based on an exponential feeding strategy with growth rate μ = 0.15,⁴ OD₆₀₀ is expected to reaches > 67 (20 g DCW/L) in 4 h, add IPTG (1 mol or 240 g, final concentration 2 mM) to induce the expression of TPL.
- Continue adding FM for the rest of 8 Hours, over which the OD₆₀₀ is expected to reach ~150, corresponding to cell weight of 50 g DCW/L. In total, 60 L (84.6 kg) of feed medium is added to the fermenter, giving the final volume to 500 L.^{6,7}
- 6. Productivity: 50 g DCW (167 wet cell)/L, with 15% of the soluble protein is the desired enzyme. The total amount of wet cell is 83.5 kg.
- 7. Exchange the culture medium with 1500 L 5mM phosphate, pH 7 Buffer by diafiltration. $^{\rm 8}$
- 8. Isolate cells by disc-stack centrifuge. The recovery of cells is > 90%.
- 9. Total catalyst: 83.5 x 0.9 = 75 kg wet cell (22.5 kg DCW), with 1.8 kg of desired TPL.

Input								
Chemical	Vol (L)	Density	Weight (kg)	Mw	mol	Role	X/ref. 2	PMI
(SM-B medium)	440	1.08	475.2			Starting medium	6.34	(4.76)
(Feed medium)	60	1.41	84.6			Feed medium	1.13	(0.848)
IPTG			0.24	238	1.0	Inducer	0.003	0.00225
29% NH ₄ OH	13.3	0.897	12		164	N source, base	0.16	0.12
Total media	513		572				7.46	5.60
	-		Outp	ut	-			
TPL/wet cell			83.5			Biocatalyst	1.11	
(DCW)			25				0.33	
(water in wet cell)			58.5				0.78	
Fermentation waste			476				6.35	
			Work up &	isolation				
1500 L 10 mM phosphate pH 7								
(Water)			1500				20.00	15
1.25 g/L K ₂ HPO ₄	136.1		1.875		14		0.025	0.019
0.05 g/L KH ₂ PO ₄	174.2		0.075		0.4		0.001	0.00075
Total			1502				20.03	15.02
			Actual	yield				
Wet cell			75			Ref 2	1.00	0.75
RF ₁₁		1.00		CRF ₁₁		0.75		

Summary of PMI

Contributor	ΡΜΙ
Reactants	1.9
Water, Other auxiliaries (EDTA, bisulfite)	10.2
Biocatalyst preparation	20.6
Product isolation	7.1
Total	39.7

References

- 1. The list of the patents from Ajinomoto for L-Dopa manufacture by tyrosine phenyl lyase route:
 - (a) H. Ei, K. Yamashita, S. Okumura and H. Yamada, Ajinomoto Co., Inc., JP48016194B, 1973; (b)
 G. Eiji and I. Masaru, Ajinomoto Co., Inc., Japan, JP56051991A, 1981; (c) H. Enei, H.
 Nakazawa, H. Matsui, O. Kanagawa, H. Yamada and K. Ogata, Ajinomoto Co., Inc. Japan,
 DE2152548A, 1972; (d) M. Ishida, K. Fujiwara, M. Okazaki and M. Ozaki, Ajinomoto Co., Inc.
 Japan, JP48028446A, 1973; (e) M. Ishida, K. Fujiwara, M. Okazaki and M. Tanaka, Ajinomoto
 Co., Inc. Japan, JP48026745A, 1973; (f) T. Kotani, K. Lizumi and M. Takeuchi, Ajinomoto Co.,

Inc. Japan, EP636695A1, 1995; (g) H. Kumagai, H. Suzuki, T. Katayama, M. Nawata, and H.
Nakazawa, Ajinomoto Co., Inc. EP1582529A1, 2005; (h) H. Kumagaya, H. Suzuki and T.
Katayama, Ajinomoto Co., Inc. JP11313672A, 1999; (i) H. Kumagaya, H. Suzuki and T.
Katayama, Ajinomoto Co., Inc. JP2001238678A, 2001; (j) T. Miyasawa, I. Sasaji, T. Yaya, K.
Toi, T. Uzuki and N. Sato, Ajinomoto Co., Inc., JP49041188B, 1974; (k) K. Ogata, H. Yamada,
H. Ei, and S. Okumura, Ajinomoto Co., Inc., JP47044636B4, 1972; (l) K. Ogata, H. Yamada, H.
Ei, and S. Okumura, Ajinomoto Co., Inc., JP51009394B, 1976; (m) K. Ogata, H. Yamada, H.
Enei and S. Okumura, Ajinomoto Co., Inc., DE1960524A, 1970; (n) K. Ogata, H. Yamada, H.
Enei and S. Okumura, Ajinomoto Co., Inc., JP50140677A, 1975; (p) K. Ogata, H. Yamada, H.
Enei, and S. Okumura, Ajinomoto Co., Inc., JP49013986B, 1974; (q) T. Tsuchida, Y. Nishimoto,
T. Kotani, and K. Iizumi, Ajinomoto Co., Inc., JP01010995A, 1989; (s) K. Yokozeki, H. Takeuchi, and Y. Hirose, Ajinomoto Co., Inc., JP61257193A, 1986

- Reviews of Ajinomoto process: H. Enei and Y. Hideaki, *Prog. Ind. Microbiol.* 1986, **24**, 280-5.; T. Katayama and H. Kumagai, in *Encyclopedia of Industrial Biotechnology*, Vol. 3, ed. M. C, Flickinger, John Wiley & Sons, Inc. Hoboken, New Jersey, USA, 2010. pp 1937-1940
- 3. Ratio and volume of initial solution and feeding solution:

Final concentration of L-Dopa = 110 g/L, corresponding to 0.56 mol L⁻¹.

Total amount of L-Dopa product in solution: Catechol concentration of initial solution = 0.091 mol L⁻¹ Catechol concentration in feeding solution = 1.82 mol L⁻¹

 $\frac{0.091 \times a + 1.82 \times b}{a+b} = 0.56, Therefore, b = 0.372 a$

Where *a* is the volume of initial solution, and *b* is the volume of feeding solution.

4. Yield of L-Dopa product, and estimate the amount of reference reactant based on the expected amount of product.

R, moles of reference reactant (Catechol) P, moles of final product (L-Dopa) Q, moles of product excluding seed Y_1 biocatalytic reaction yield Y_2 Separation yield S_1 molar ratio of seed vs R in biocatalytic reaction S_2 molar ratio of seed vs R in recrystallization Theoretical moles of product = $R + S_1R + S_2R$

Actual yield of product

 $P = Y_2 Y_1 (R + S_1 R) + Y_2 S_2 R = (Y_2 Y_1 + Y_2 Y_1 S_1 + Y_2 S_2) R$ $Overall Yield = \frac{Y_2 Y_1 (R + S_1 R) + Y_2 S_2 R}{R + S_1 R + S_2 R} = \frac{Y_2 Y_1 (1 + S_1) + Y_2 S_2}{1 + S_1 + S_2}$ $Q = P - S_1 R - S_2 R = Y_2 Y_1 (R + S_1 R) + Y_2 S_2 R - S_1 R - S_2 R$ Simplify $Q = (Y_2 Y_1 + Y_2 Y_1 S_1 + Y_2 S_2 - S_1 - S_2) R$

Therefore:

$$R = \frac{Q}{\left(Y_2 Y_1 + Y_2 Y_1 S_1 + Y_2 S_2 - S_1 - S_2\right)}$$

- The protocol is based on fed-batch fermentation with semi-synthetic medium. X. Pei, Q. Wang, X. Qiu, L. Ying, J. Tao and T. Xie, T. *Appl. Biochem.* 2010, **162**, 1423-1434, *ibid*, 2011, **165**:416-425
- 6. Determine the volumes of initial and feed media
 - Determine glucose requirement based on concentration of dry cell weight (DCW/L)

Final concentration X = 50 g DCW/L, Growth Yield with Glucose $\frac{X}{S} = 0.55$ Final concentration of glucose in the medium S = 50/0.55 = 91 g/L

• Determine the ratio of main culture medium vs feed medium:

Glucose concentration: initial medium = 20 g/L, feed medium = 600 g/L

In final fermentation mixture a = % Volume of main culture medium, b = % of Volume of feed medium,

 $600 \ b + 20 \ a = 91$, and a = 1 - b. 91 = (1 - b)20 + 600b, Solve the equation: b = 0.122, a = 0.878. Or a:b = 1: 0.139 • Determine the volumes of the media (Wet cell weight = DCW/0.3)

$$\frac{Amount \ of \ catalyst \ (DCW)}{X} = \frac{Amount \ of \ wet \ cell}{X} \frac{10}{3}$$

Volume of initial media = $0.878 \times Total \ volume$, Volume of feed media = $0.122 \times Total \ volume$

7. Summary of media

SM-B medium							
Material	CAS	Mw	Content (g/L)				
Glucose	50-99-7	180.16	20				
Yeast extract			32.3				
K ₂ HPO ₄	7778-77-0	136.1	15.3				
KH ₂ PO ₄	7758-11-4	174.2	9.7				
MgSO ₄ 7H ₂ O	10034-99-8	246.47	2.63				
$EDTANa_2 2H_2O$	139-33-3	372.2	0.018				
Ampicillin	69-53-4	349.41	0.349				
CoCl ₂ 6H ₂ O	7791-13-1	237.93	0.003172				
MnCl ₂ 2H ₂ O	13446-34-9	161.87	0.015128				
CuCl ₂ 2H ₂ O	10125-13-0	170.48	0.001464				
H ₃ BO ₃	10043-35-3	61.83	0.002928				
Na ₂ MoO ₄ 2H ₂ O	10102-40-6	241.95	0.002684				
$ZnOAc_2 2H_2O$	557-34-6	219.5	0.012688				
Fe(III) Citrate	160105	244.95	0.098088				
Water	7732-18-5	18	1000				

Feed medium								
Material	CAS	Mw	Content(g/L)					
Glucose	50-99-7	180.16	600					
MgSO ₄ 7H ₂ O	10034-99-8	246.47	15.2					
Ampicillin	69-53-4	349.41	0.34941					
COCl ₂ 6H ₂ O	7791-13-1	237.93	0.09971					
MnCl ₂ 2H ₂ O	13446-34-9	161.87	0.47554					
CuCl ₂ 2H ₂ O	10125-13-0	170.48	0.04602					
H ₃ BO ₃	10043-35-3	61.83	0.09204					

Na ₂ MoO ₄ 2H ₂ O	10102-40-6	241.95	0.08437
ZnOAc ₂ 2H ₂ O	557-34-6	219.5	0.39884
Fe(III)citrate	160105	244.95	3.08334
Water			793

Final media (91 g glucose/L final)									
Material	CAS	Mw	Weight (g/L)	kg /500 L					
Glucose	50-99-7	180.16	90.8	45.38					
Yeast extract			28.4	14.18					
K ₂ HPO ₄	7778-77-0	136.1	13.4	6.72					
KH ₂ PO ₄	7758-11-4	174.2	8.5	4.26					
MgSO ₄ 7H ₂ O	10034-99-8	246.47	4.2	2.08					
EDTANa ₂ 2H ₂ O	139-33-3	372.2	0.016	0.0079					
Ampicillin	69-53-4	349.41	0.349	0.17					
CoCl ₂ 6H ₂ O	7791-13-1	237.93	0.015	0.0075					
MnCl ₂ 2H ₂ O	13446-34-9	161.87	0.071	0.036					
CuCl ₂ 2H ₂ O	10125-13-0	170.48	0.0069	0.0034					
H ₃ BO ₃	10043-35-3	61.83	0.014	0.0069					
Na ₂ MoO ₄ 2H ₂ O	10102-40-6	241.95	0.013	0.0063					
ZnOAc ₂ 2H ₂ O	557-34-6	219.5	0.060	0.0299					
Fe(III) Citrate	160105	244.95	0.462	0.23					
Water	7732-18-5	18	975	487					
IPTG	367-93-1	238.3	0.48	0.24					
29% NH4OH solution (14.8 M)	1336-21-6	35	24	12					
Total				573					

8. (a) F. Lipinski, J. Boelsmand and R. F. Madsen, *Desalination*, 2002, **144**, 179-184, (b) L. Schwartz and K. Seeley, *Introduction to Tangential Flow Filtration for Laboratory and Process Development Applications*, Pall Life Sciences, Ann Arbor, 2002, pp1-13

		Ajino	moto Process Step 1 TPL	Reaction yield	0.9	lsolation yield	0.9			
Input	Kg				Waste (Kg)	Reaction time	Seeding S1	0.061	Seeding S2	0.01
Sodium Pyruvate	12.5									
Water	739	>	Initial reaction at 15 °C, pH 8			2	Stream 1-1	Weight	mol	
NH₄CI	41.4						NaCl	37.24	637	
Sodium EDTA	2.5						Na₂EDTA	2.49		
TPL (Steam 1-7)	75.00						TPL (cell)	75.00		
NaHSO₃	1.68						NaHSO ₃	1.68		
Catechol	8.30						NH₄CI	7.40	138	
							Sodium	4 20	38	
			•					12 54	64	
L-Dopa seed	7.65		Initial reaction at 15 °C, pH 8				(water by product)	11.47	637	
							(solvent water)	1010		
							(Water in wet solid)	51.32		
			↓				total water	970		
sodium pyruvate	61.76						(L-Dopa active)	119.75	608	
catechol	61.76	>	Initial reaction at 15 °C, pH 8			15				
water	271									
			₩							
					>					
			Centrifuge		1111					

Continue from the last page

								Stream 1-2			
			1	(Activated carbon	6.37		
Water	418				1-2						
5N NaOH	159		Discolorization 50 °C			6.37	2				
Activated carbon	6.37					-		Stream 1-3			
								NaCl	39.5	675	
				((solvent water)	418		
					1-3			(water from HCI)	98		
L-Dopa seed	1.26	Re	Reactive Crystallization 25 °C			763	6	(water from NaOH)	132		
6 N HCI	122.68					-		(reaction water)	12	675	
								(wet solid water)	51		
				(Total water	712		
Reaction input	1282.58							L-Dopa	12.10		
Isolation input	707		L-Dopa	Product 4							
				109	1-4						
						Estimated	Total				1
			Net yield o	of L-Dopa (kg)	mol	waste	waste				
Total input	1990			100	507.6	1881.0	1880.2				
		Tot	tal catec	hol (mol)	637						
		Tot	tal catec	hol (kg)	70						

		Ajir	nomoto Process Step	1-1 Biocata	tion		yield	0.9	
Input	Kg				Waste (Kg)	Reaction time			
SM-B	0.054	\rightarrow	First stage seed, 37 °C				Stream 1-5 +1-6	Weight (kg)	
							Waste media	550	input - DCW
			Ļ				buffer	1449	
							Total	1999	
SM-B	27	\longrightarrow	Second stage seed, 37 °C						
			\downarrow						
SM-B	448.5								
Feed medium	84.6		High density fermentation, 37	°C					
IPTG	0.024								
29% NH₄OH	12		↓						
	4500			4.5					
Water	1000		Dia_filtration	<u>1-⊃</u>		1.0			
	0.075	\longrightarrow	Dia-initiation		Combined with	1-6			
	0.075								
			¥						
				16					
			dioo contrifuero						
Fermentation input	572		aisc centrituge		Combined with 1-5				
Purification input	1501								
			TPL in wet cell	1-7	Estimated w	vaste			
Total input	2074		75		19	99			

Waste stream inventory for L-Dopa manufacture processes

The waste streams are created in Process Flow Diagram. The mass of the components are expressed in E factor. Each stream is also characterized by its components in percentage.

The waste streams are evaluated in terms of quantity, composition, and hazardous concerns.

For waste streams, the management, treatment, and discharge are regulated by Clean Air Act (40CFR Part63, Subpart GGG)² and Clean Water Act (40CFR Part 439 Pharmaceutical Manufacture Point Source Category; 40CFR Part 122, National Pollutant Discharge Elimination System Permit Program; 40CFR Part 403, National Pretreatment Program).³ Since hazardous wastes need to be managed and treated separately, the streams are examined for hazardous waste as defined and characterized by regulations in Resource Conservation and Recovery Act (RCRA).¹ Waste components with regulatory concerns are highlighted in the inventory.

Technical options for waste treatment, for specific streams are guided by the framework in the survey reports by US Environmental Protection Agency (EPA).^{4,5}

Waste stream inventory

Ajinomoto 1-1	E	%	САА	CWA	RCRA
NaCl	0.37	3.6			
Na ₂ EDTA	0.02	0.19			
TPL (cell)	(0.75)				
NaHSO ₃	0.02	0.19			
NH ₄ Cl	0.07	0.67			
Sodium pyruvate	0.04	0.38			
L-Dopa	0.13	1.3			
total water	9.70	93.7			
Total	10.35	100			
Ajinomoto 1-2					
Activated carbon	0.06	100			
Ajinomoto 1-3					
NaCl	0.40	5.2			
water	7.12	93.2			
L-Dopa	0.12	1.6			
Total	7.63	100			
Ajinomoto 1-5+ 1-6					
Waste media	5.50	27.5			
5 mM phosphate	14.49	72.5			
Total	19.98	100.0			

The Ajinomoto process

The Monsanto Process

Monsanto 1-1	E	%	CAA	CWA	RCRA
NaOAc	0.22	5.66			
Water	0.06	1.57			
AcOH	3.63	92.77			
Total	3.91	100.00			
Monsanto 1-2					
AcOH	2.15	70.09			
Unisolated 12	0.92	29.92			
Total	3.07	100.00			
Monsanto 2-1					
Acetone	6.12	100			√F003
Monsanto 2-2					
Water	1.91	94.92			
Un-isolated 13	0.10	5.08			
Total	2.01	100.00			
Monsanto 3-1					
iPrOH	9.87	88.00		\checkmark	
Water	1.35	12.00			
Total	11.22	100.00			
Monsanto 3-2					
NaCl	0.56	9.05			
Catalyst 14	0.00	0.00			
Water	1.52	24.64			
iPrOH	3.89	62.94			
Un-isolated 15	0.21	3.37			
Total	6.18	100.00			
Monsanto 4-1					
MeBr	0.60	100	\checkmark		
Monsanto 4-2					
NaBr	2.56	31.26			
AcOH	0.76	9.33			
Water	4.86	59.41			
Total	8.18	100.00			
Monsanto 4-3					
Water	1.89	88.33			
Un-isolated 1	0.25	11.67			
Total	2.14	100.00			
Monsanto 4-5				$\sqrt{*}$	
MeNH(CH ₂) ₂ OH HBr	0.89	1.48			
Me ₂ N(CH ₂) ₂ OH HBr	0.11	0.18			
Ethanolamine	10.08	16.71			
Water	49.23	81.63			
Total	60.30	100.00			

* Total ammonia as N regulated by CWA

The Roche Process

Roche 1-1	E	%	CAA	CWA	RCRA
Acetic acid	8.51	16.9			
Sodium acetate	3.98	7.9			
DMF	1.25	2.5			
Water	36.96	72.9			
Total	50.7	100.00			
Roche 1-2					
Water	43.2	96.0			
Un-isolated 8	1.78	4.0			
Total	45.0	100			
Roche 2-1					
Raney Ni	1.8	100			
Roche 2-2					
NaOAc	1.74	0.9			
NaCl	8.07	4.0			
HCI	0.77	0.4			
Water	193	94.8			
Total	203.6	100			
Roche 2-3					
MeOH	8.1	18		\checkmark	
Water	34.9	77.8			
Un-isolated 9	1.9	4.2			
Total	44.9	100			
Roche 3-1					
(R)- 9	2.64	8.25			
Compound 10	0.21	0.64			
NaOH	0.30	0.95			
MeOH	17.42	54.43	\checkmark		
Water	11.43	35.72			
Total	32.00	100.00			

Roche - continued

Roche 4-1	E	%	CAA	CWA	RCRA
MeBr	0.65	100	\checkmark		
Roche 4-2					
Toluene	12.45	93.70	\checkmark	√	√ F005
Benzoic acid	0.84	6.30			
Total	13.3	100.00			
Roche 4-3				$\sqrt{*}$	
NH₄Br	4.53	30.97			
Water	10.09	69.03			
Total	14.6	100.00			
Roche 4-4					
Activated carbon	0.2	100			
Roche 4-5				$\sqrt{*}$	
NH₄Br	1.14	8.01			
Water	10.76	75.79			
Compound 10	1.96	13.77			
Un-isolated 1	0.35	2.44			
Total	14.2	100.00			
Roche 4-7				$\sqrt{*}$	
MeNH(CH ₂) ₂ OH HBr	0.97	1.49			
Me2N(CH ₂) ₂ OH HBr	0.11	0.17			
Water	53.12	81.61			
NH ₂ (CH ₂) ₂ OH	10.89	16.74			
Total Waste	65.1	100.00			

* Total ammonia as N regulated by CWA

Waste inventory summary

Process	Ajinomoto	Monsanto	Roche
Total E factor	39	103	485.4
Total number of waste streams	4	10	12
Gas waste stream	0	1	1
Solid waste stream	1	0	2
Solvent-free aqueous stream	3	2	3
Waste solvent or organic-laden stream	0	7	6
Hazardous waste based on RCRA	0	1	1
E factor of hazardous waste	0	6.1 (acetone)	12.5 (Toluene)
Hazardous Gas (MeBr)	0	1	1
E factor for MeBr	0	0.6	0.65

Reference

- 1. Hazardous Waste Regulations, US EPA. Accessed on 03Dec2013 http://www.epa.gov/osw/laws-regs/regs-haz.htm
- Compliance Assistance Tool for Clean Air Act Regulations: Subpart GGG of 40 CFR NESHAPS for Source Category Pharmaceutical Production. US EPA. 2002. <u>http://www.epa.gov/compliance/resources/publications/assistance/sectors/caapharma.p</u> <u>df</u>

Accessed on 03Dec2013

 (a) Permit Guidance Document: Pharmaceutical Manufacturing Point Source Category (40 CFR Part 439), US EPA, 2006.

http://water.epa.gov/scitech/wastetech/guide/pharm/upload/2006_03_27_guide_phar m_guidance_pharmaceuticals-guidance.pdf

Accessed on 03Dec2013

(b) National Pollutant Discharge Elimination System (NPDES) for Pharmaceutical manufacture industry website:

http://water.epa.gov/scitech/wastetech/guide/pharm/index.cfm

Accessed on 03Dec2013

(c) Introduction to National Pretreatment Program, US EPA, 2011

http://www.epa.gov/npdes/pubs/pretreatment_program_intro_2011.pdf Accessed on 03Dec2013

 U.S. Environmental Protection Agency, *Pharmaceutical Waste, Hazardous Waste Generation, Treatment, and Disposal*, 1976, Downloadable from National Service Center for Environmental Publications (NSCEP) website:

http://www.epa.gov/nscep/index.html, Accessed on 31Oct2013

5. E. J. Struzeski, *Waste Treatment and Disposal Methods for the Pharmaceutical Industry*, National Field Investigations Center, US EPA, Denver, Colorado, USA, March