Supporting Information for:

Visible-light-induced photocatalytic formyloxylation reactions of 3-bromooxindoles with water and DMF: scope and mechanism

You-Quan Zou,^a Wei Guo,^a Feng-Lei Liu,^a Liang-Qiu Lu,^a Jia-Rong Chen^{*a} and Wen-Jing Xiao^{*a,b}

^{*a*} Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

E-mail: wxiao@mail.ccnu.edu.cn

Contents

1. General Information	S3
2. General Procedure and Spectral Data	
 2.1 Spectral Data of Substrates 1a-1u 2.2 General Procedure for Visible Light Induced Formyloxylation Reaction 2.3 Spectral Data of Products 2a-2t 2.4 Structure of the Photocatalysts 	S3-11 S12 S12-21 S21
3. Mechanism Studies	
 3.1 Fluorescence Quenching Experiment 3.2 On-off Swithching of the Light 3.3 Labeling Experiments and MS Analyses 3.4 Possible Byproduct Study 3.5 In Situ IR Experiment 	S21-25 S26-35 S35-39 S40-41 S41-43
3.6 The Influence of Light Intensity	S43
4. X-Ray Structures of Compound 2a	S44-46
5. Copies of NMR, MS Data	S47-111

1. General Information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. All the solvents were treated according to general methods. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator. Flash column chromatography (FC) was performed using 200-300 mesh silica gel. ¹H NMR spectra were recorded on Varian Mercury 600 (600 MHz) spectrophotometers. Chemical shifts (δ) are reported in ppm from the solvent resonance as the internal standard (CDCl₃: 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR spectra were recorded on Varian Mercury 400 (100 MHz) spectrophotometers (CDCl₃: 77.0 ppm) with complete proton decoupling. IR spectra were recorded on a BRUKER TENSOR 27 FT-IR spectrometer and are reported in terms of frequency of absorption (cm⁻¹). GC-MS was performed on a Thermo DSQ II 2000. High Resolution Mass spectra were obtained from the Shanghai Mass Spectrometry Center (Shanghai Institute of Organic Chemistry). Melt points were measured on Büchi Melting Point B-545. Fluorescence spectra were collected on Cary Eclipse Fluorescence spectrophotometer. For the ReactIR kinetic experiments, the reaction spectra were recorded using an IC 15 from Mettler-Toledo AutoChem.

2. General Procedure and Spectral Data

2.1 Spectral Data of Substrates 1a-1v

3,5-Dibromo-1,3-dimethylindolin-2-one (yellow solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.56 (d, *J* = 1.8 Hz, 1H), 7.46 (m, 1H), 6.73 (d, *J* = 8.3 Hz, 1H), 3.23 (s, 3H), 2.02 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.09, 140.70, 133.38, 132.82, 127.32, 115.80, 110.22, 51.22, 26.79, 26.17.

MS: m/z = 319.05 (M⁺).

M.P.: 100.2-101.1 °C.

IR (in KBr): $\tilde{v} = 1718.75$, 1606.92, 1486.33, 1232.55, 1107.57, 1046.68, 813.71, 646.04 cm⁻¹.

3-Bromo-1,3-dimethylindolin-2-one (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.45 (d, J = 7.2 Hz, 1H), 7.34 (t, J = 7.3 Hz, 1H), 7.13 (t, J = 7.3 Hz, 1H), 6.85 (d, J = 7.7 Hz, 1H), 3.25 (s, 3H), 2.04 (s, 3H).

 ^{13}C NMR (100 MHz, CDCl_3) δ 174.53, 141.58, 131.40, 129.99, 123.94, 123.23, 108.66, 52.36, 26.58, 26.22.

MS: m/z = 240.97 (M⁺).

M.P.: 101.9-103.9 °C.

IR (in KBr): $\tilde{v} = 1716.37$, 1610.74, 1467.80, 1233.71, 1103.40, 1036.29, 755.93, 669.73 cm⁻¹.

3-Bromo-5-chloro-1,3-dimethylindolin-2-one (yellow solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.42 (s, 1H), 7.31 (d, *J* = 8.4 Hz, 1H), 6.77 (d, *J* = 8.3 Hz, 1H), 3.24 (s, 3H), 2.02 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.20, 140.20, 133.03, 129.93, 128.66, 124.57, 109.74, 51.32, 26.81, 26.16.

MS: m/z = 275.07 (M⁺).

M.P.: 143.9-146.1 °C.

IR (in KBr): $\tilde{v} = 1725.12$, 1610.21, 1488.37, 1232.82, 1110.50, 1044.75, 821.84, 680.85 cm⁻¹.

3,6-Dibromo-1,3-dimethylindolin-2-one (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.31 (d, J = 7.8 Hz, 1H), 7.26 (d, J = 8.3 Hz, 1H), 7.01 (s, 1H),

3.23 (s, 3H), 2.02 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 174.39, 142.89, 130.37, 126.10, 125.26, 123.68, 112.24, 51.37, 26.78, 26.08.

MS: m/z = 318.83 (M⁺).

M.P.: 118.9-119.2 °C.

IR (in KBr): $\tilde{v} = 1728.14$, 1605.24, 1489.69, 1366.71, 1105.62, 1056.70, 837.75, 674.48 cm⁻¹.

3-Bromo-6-chloro-1,3-dimethylindolin-2-one (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.36 (d, *J* = 8.0 Hz, 1H), 7.10 (m, 1H), 6.85 (d, *J* = 1.0 Hz, 1H), 3.24 (s, 3H), 2.02 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.52, 142.83, 135.82, 129.84, 124.97, 123.15, 109.46, 51.39, 26.77, 26.15.

MS: m/z = 275.06 (M⁺).

M.P.: 130.4-131.4 °C.

IR (in KBr): $\tilde{v} = 1718.46$, 1608.36, 1492.90, 1370.12, 1108.05, 1060.68, 834.53, 689.78 cm⁻¹.

3-Bromo-7-fluoro-1,3-dimethylindolin-2-one (yellow solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.24 (m, 1H), 7.08 – 7.03 (m, 2H), 3.46 (d, *J* = 2.6 Hz, 3H), 2.03 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 174.30, 148.82, 146.39, 134.20, 128.54, 123.90, 123.84, 119.96, 117.94, 117.75, 51.65, 29.19, 26.38.

MS: m/z = 258.93 (M⁺).

M.P.: 106.2-107.3 °C.

IR (in KBr): $\tilde{v} = 1727.07$, 1630.10, 1478.13, 1374.96, 1280.69, 1055.27, 793.93, 729.91 cm⁻¹.

3-Bromo-1,3,5-trimethylindolin-2-one (yellow solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.26 (s, 1H), 7.13 (d, *J* = 7.8 Hz, 1H), 6.73 (d, *J* = 7.9 Hz, 1H), 3.23 (s, 3H), 2.36 (s, 3H), 2.02 (s, 3H).

 $^{13}\mathbf{C}$ NMR (100 MHz, CDCl_3) δ 174.58, 139.26, 132.97, 131.44, 130.34, 124.70, 108.45, 52.73, 26.65, 26.32, 20.97.

MS: m/z = 254.99 (M⁺).

M.P.: 104.8-105.0 °C.

IR (in KBr): $\tilde{v} = 1725.03$, 1619.94, 1496.66, 1348.64, 1238.26, 1044.02, 812.83, 661.28 cm⁻¹.

3-Bromo-5-methoxy-1,3-dimethylindolin-2-one (yellow solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.04 (d, *J* = 2.5 Hz, 1H), 6.86 (m, 1H), 6.75 (d, *J* = 8.5 Hz, 1H), 3.82 (s, 3H), 3.22 (s, 3H), 2.02 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.31, 156.39, 134.97, 132.53, 114.62, 110.94, 109.19, 55.78, 52.68, 26.67, 26.32.

MS: m/z = 269.15 (M⁺).

M.P.: 107.8-108.0 °C.

IR (in KBr): $\tilde{v} = 1715.68$, 1600.03, 1497.67, 1292.68, 1106.84, 1034.51, 860.92, 819.02 cm⁻¹.

3-Bromo-3-ethyl-1-methylindolin-2-one (yellow solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.40 (d, J = 7.5 Hz, 1H), 7.34 (t, J = 7.8 Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 6.84 (d, J = 7.8 Hz, 1H), 3.25 (s, 3H), 2.44 – 2.37 (m, 2H), 0.79 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 174.03, 142.42, 129.92, 129.53, 124.38, 123.21, 108.61, 57.12, 32.71, 26.58, 9.80. **MS**: m/z = 255.07 (M⁺). **M.P.**: 87.6-88.5 °C. **IR** (in KBr): \tilde{v} = 1724.00, 1615.05, 1492.71, 1346.63, 1111.78, 1080.02, 864.64, 749.02 cm⁻¹.

3-Bromo-3-isopropyl-1-methylindolin-2-one (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.42 (d, J = 7.5 Hz, 1H), 7.33 (t, J = 7.8 Hz, 1H), 7.09 (t, J = 7.6 Hz, 1H), 6.84 (d, J = 7.8 Hz, 1H), 3.24 (s, 3H), 2.61 (m, 1H), 1.29 (d, J = 6.9 Hz, 3H), 0.86 (d, J = 6.7 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 174.20, 142.52, 129.75, 128.76, 125.28, 122.95, 108.49, 62.00, 36.73, 26.48, 18.05, 17.37.

MS: m/z = 267.13 (M⁺).

M.P.: 74.5-75.9 °C.

IR (in KBr): $\tilde{v} = 1724.62$, 1611.93, 1472.89, 1367.94, 1082.93, 982.12, 763.99, 683.73 cm⁻¹.

3-Bromo-3-butyl-1-methylindolin-2-one (yellow oil)

¹**H NMR** (600 MHz, CDCl₃) δ 7.39 (d, J = 7.4 Hz, 1H), 7.33 (t, J = 7.7 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 6.84 (d, J = 7.8 Hz, 1H), 3.24 (s, 3H), 2.44 – 2.32 (m, 2H), 1.27 (m, 2H), 1.13 – 0.98 (m, 2H), 0.82 (t, J = 7.4 Hz, 3H).

 ^{13}C NMR (100 MHz, CDCl₃) δ 173.84, 142.07, 129.73, 129.53, 124.08, 123.00, 108.48, 56.24, 38.95, 27.18, 26.35, 22.10, 13.46.

MS: m/z = 283.18 (M⁺).

IR (in KBr): $\tilde{v} = 1734.99$, 1612.47, 1472.74, 1374.20, 1082.27, 937.60, 750.27, 669.06 cm⁻¹.

3-Bromo-1-methyl-3-octylindolin-2-one (yellow oil)

¹**H NMR** (600 MHz, CDCl₃) δ 7.39 (d, J = 7.4 Hz, 1H), 7.33 (t, J = 7.7 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 6.83 (d, J = 7.7 Hz, 1H), 3.24 (s, 3H), 2.36 (m, 2H), 1.24 (s, 4H), 1.18 (s, 6H), 1.14 – 1.00 (m, 2H), 0.85 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 173.98, 142.19, 129.78, 129.70, 124.18, 123.08, 108.53, 56.30, 39.26, 31.50, 29.04, 28.90, 28.86, 26.44, 25.20, 22.36, 13.89.

MS: m/z = 339.30 (M⁺).

IR (in KBr): $\tilde{v} = 1734.84$, 1612.76, 1472.82, 1374.53, 1085.19, 1020.62, 879.90, 749.20 cm⁻¹.

3-Bromo-3-cyclopentyl-1-methylindolin-2-one (yellow solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.46 (d, J = 7.5 Hz, 1H), 7.32 (t, J = 7.7 Hz, 1H), 7.09 (t, J = 7.5 Hz, 1H), 6.83 (d, J = 7.8 Hz, 1H), 3.23 (s, 3H), 2.79 (m, 1H), 1.96 – 1.89 (m, 1H), 1.77 – 1.70 (m, 1H), 1.70 – 1.62 (m, 2H), 1.60 – 1.53 (m, 3H), 1.37 – 1.28 (m, 1H).

 $^{13}\textbf{C}$ NMR (100 MHz, CDCl₃) δ 174.05, 142.29, 129.72, 125.08, 123.00, 108.44, 59.47, 48.12, 28.91, 28.14, 26.51, 25.62, 25.43.

MS: m/z = 295.23 (M⁺).

M.P.: 49.8-50.6 °C.

IR (in KBr): $\tilde{v} = 1723.85$, 1609.29, 1469.15, 1368.01, 1135.30, 1090.16, 752.62, 684.77 cm⁻¹.

3-Bromo-3-cyclohexyl-1-methylindolin-2-one (yellow solid)

¹H NMR (600 MHz, CDCl₃) δ 7.41 (d, J = 7.5 Hz, 1H), 7.32 (t, J = 7.7 Hz, 1H), 7.09 (t, J = 7.6 Hz, 1H), 6.82 (d, J = 7.8 Hz, 1H), 3.23 (s, 3H), 2.22 (t, J = 11.7 Hz, 2H), 1.83 (d, J = 11.6 Hz, 1H), 1.63 (d, J = 12.1 Hz, 3H), 1.34 – 1.23 (m, 3H), 1.05 (m, 1H), 0.88 – 0.80 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.28, 142.46, 129.64, 129.28, 125.37, 122.94, 108.46, 62.14, 46.11, 27.94, 27.76, 26.50, 26.23, 25.82, 25.78. MS: m/z = 307.25 (M⁺).

M.P.: 64.5-65.0 °C.

IR (in KBr): $\tilde{v} = 1723.08$, 1609.72, 1470.23, 1347.88, 1104.91, 973.61, 755.22, 688.21 cm⁻¹.

3-Allyl-3-bromo-1-methylindolin-2-one (yellow solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.42 (d, *J* = 7.4 Hz, 1H), 7.33 (t, *J* = 7.7 Hz, 1H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.83 (d, *J* = 7.8 Hz, 1H), 5.56 – 5.48 (m, 1H), 5.09 (m, 2H), 3.23 (s, 3H), 3.08 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 173.63, 142.22, 130.79, 129.99, 129.35, 124.68, 123.11, 120.59, 108.59, 54.92, 43.23, 26.57.

MS: m/z = 267.13 (M⁺).

M.P.: 76.7-77.0 °C.

IR (in KBr): $\tilde{v} = 1719.93$, 1610.77, 1469.02, 1346.70, 1099.13, 946.60, 752.33, 663.75 cm⁻¹.

3-Bromo-1-methyl-3-phenylindolin-2-one (yellow solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.66 (m, 2H), 7.50 (d, J = 7.5 Hz, 1H), 7.38 (t, J = 7.8 Hz, 1H), 7.36 – 7.30 (m, 3H), 7.17 (t, J = 7.6 Hz, 1H), 6.89 (d, J = 7.9 Hz, 1H), 3.25 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 173.44, 142.12, 136.29, 130.24, 128.82, 128.42, 126.47, 123.44, 108.98, 56.85, 26.88.

MS: m/z = 301.20 (M⁺).

M.P.: 124.2-126.1 °C.

IR (in KBr): $\tilde{v} = 1722.56$, 1611.89, 1471.26, 1365.62, 1162.44, 927.58, 749.28, 698.14 cm⁻¹.

3-Bromo-3-methylindolin-2-one (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 9.17 (s, 1H), 7.43 (d, J = 7.5 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.10 (t, J = 7.6 Hz, 1H), 6.97 (d, J = 7.8 Hz, 1H), 2.07 (s, 3H).

 ^{13}C NMR (100 MHz, CDCl_3) δ 177.78, 139.09, 131.97, 130.11, 124.22, 123.35, 111.01, 53.03, 26.16.

MS: m/z = 225.09 (M⁺).

M.P.: 127.3-129.2 °C.

IR (in KBr): $\tilde{v} = 3164.33$, 1734.23, 1474.61, 1331.57, 1207.42, 1047.08, 750.64, 670.16 cm⁻¹.

1-Benzyl-3-bromo-3-methylindolin-2-one (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.45 (d, J = 7.4 Hz, 1H), 7.31 (m, 5H), 7.20 (t, J = 7.7 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 6.70 (d, J = 7.8 Hz, 1H), 5.03 (d, J = 15.8 Hz, 1H), 4.85 (d, J = 15.8 Hz, 1H), 2.10 (s, 4H).

¹³**C** NMR (100 MHz, CDCl₃) δ 174.83, 140.73, 135.08, 131.49, 129.93, 128.81, 127.72, 127.02, 124.07, 123.32, 109.73, 52.45, 43.86, 26.22.

MS: m/z = 316.96 (M⁺).

M.P.: 80.5-80.8 °C.

IR (in KBr): $\tilde{v} = 1725.76$, 1613.68, 1469.06, 1356.95, 1185.15, 993.33, 749.21, 698.37 cm⁻¹.

3-Bromo-3-methyl-1-(4-methylbenzyl)indolin-2-one (pink solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.44 (d, J = 7.4 Hz, 1H), 7.19 (d, J = 6.5 Hz, 3H), 7.13 (d, J = 7.4 Hz, 2H), 7.07 (t, J = 7.5 Hz, 1H), 6.71 (d, J = 7.8 Hz, 1H), 4.98 (d, J = 15.6 Hz, 1H), 4.81 (d, J = 15.6 Hz, 1H), 2.31 (s, 3H), 2.09 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 174.86, 140.92, 137.49, 132.15, 131.65, 129.94, 129.53, 127.13, 124.08, 123.28, 109.80, 52.50, 43.77, 26.30, 21.06.

MS: m/z = 331.03 (M⁺).

M.P.: 57.9-58.2 °C.

IR (in KBr): $\tilde{v} = 1728.36$, 1612.23, 1487.81, 1355.61, 1180.25, 1050.03, 882.50, 754.55 cm⁻¹.

1-Allyl-3-bromo-3-methylindolin-2-one (red solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.46 (d, *J* = 7.4 Hz, 1H), 7.30 (t, *J* = 7.7 Hz, 1H), 7.11 (t, *J* = 7.5 Hz, 1H), 6.83 (d, *J* = 7.8 Hz, 1H), 5.90 - 5.81 (m, 1H), 5.25 (d, *J* = 14.2 Hz, 2H), 4.42 - 4.30 (m, 2H), 2.06 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 174.39, 140.82, 131.46, 130.57, 129.91, 124.07, 123.24, 117.63, 109.56, 52.33, 42.40, 26.22.

MS: m/z = 266.94 (M⁺).

M.P.: 35.0-35.8 °C.

IR (in KBr): $\tilde{v} = 1715.25$, 1609.88, 1468.30, 1357.40, 1186.46, 1107.84, 925.82, 752.61 cm⁻¹.

1-Acetyl-3-bromo-3-methylindolin-2-one (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 8.22 (d, *J* = 8.2 Hz, 1H), 7.50 (d, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.9 Hz, 1H), 7.27 (m, 1H), 2.72 (s, 3H), 2.12 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 174.86, 170.55, 137.99, 130.56, 130.47, 125.85, 123.77, 116.94, 52.40, 26.41, 26.34.

MS: $m/z = 269.12 (M^{+}).$

M.P.: 109.0-110.0 °C.

IR (in KBr): $\tilde{v} = 1755.18$, 1720.59, 1464.48, 1373.76, 1183.84, 1013.72, 770.19, 757.10 cm⁻¹.

2.2 General Procedure for Visible Light Induced Formyloxylation Reaction

To a 10 mL Schlenk tube equipped with a magnetic stir bar and rubber septum was charged with 3,5-dibromo-1,3-dimethylindolin-2-one **1a** (0.20 mmol, 1.0 equiv.), tris-(2-phenylpyridinato-C2,*N*)iridium(III) (*fac*-Ir(ppy)₃) (0.004 mmol, 0.02 equiv.), water (2.0 mmol, 10.0 equiv.), and DMF (2.0 mL). The mixture was degassed via the freeze-pump-thaw method and placed at a distance of ~5 cm from two 18 W household light bulbs. After the reaction was complete (2.5 h, monitored by TLC analysis), H₂O (5.0 mL) was added into the reaction mixture. Then, the mixture was extracted with Et₂O and the combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by FC (silica gel, PE:EtOAc = 10:1-5:1) to give the desired product 5-bromo-1,3-dimethyl-2-oxoindolin-3-yl formate **2a** (44.8 mg, 79 % yield) as a white solid.

2.3 Spectral Data of Products 2a-2t

5-Bromo-1,3-dimethyl-2-oxoindolin-3-yl formate (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.88 (s, 1H), 7.47 (d, *J* = 8.2 Hz, 1H), 7.38 (s, 1H), 6.76 (d, *J* = 7.9 Hz, 1H), 3.24 (s, 3H), 1.65 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.59, 158.37, 158.32, 142.09, 132.55, 130.10, 125.53, 115.26, 110.00, 76.68, 26.44, 22.72 (The carbon of formate unit resonates as a doublet). HRMS (ESI) m/z calculated for $C_{11}H_{10}BrNNaO_3 [M+Na]^+$ 305.9736, found 305.9734. M.P.: 174.0-175.2 °C.

IR (in KBr): $\tilde{v} = 1726.27$, 1609.20, 1491.85, 1346.03, 1157.17, 1030.77, 828.07, 683.84 cm⁻¹.

3-Methyl-2-oxoindolin-3-yl formate (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.88 (s, 1H), 7.35 (t, J = 7.7 Hz, 1H), 7.27 (d, J = 7.8 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 6.88 (d, J = 7.8 Hz, 1H), 3.26 (s, 3H), 1.66 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 174.32, 158.46, 143.24, 129.93, 128.38, 122.89, 122.39, 108.54, 77.52, 26.46, 22.97.

HRMS (ESI) m/z calculated for C₁₁H₁₁NNaO₃ [M+Na]⁺ 228.0631, found 228.0627. **M.P.**: 98.8-100.9 °C.

IR (in KBr): $\tilde{v} = 1735.28$, 1617.14, 1473.04, 1353.23, 1164.73, 1030.75, 840.61, 769.73 cm⁻¹.

5-Chloro-1,3-dimethyl-2-oxoindolin-3-yl formate (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.87 (s, 1H), 7.31 (d, *J* = 8.3 Hz, 1H), 7.24 (s, 1H), 6.80 (d, *J* = 8.3 Hz, 1H), 3.24 (s, 3H), 1.65 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.86, 158.46, 158.40, 141.71, 129.87, 129.78, 128.26, 122.96, 109.58, 77.32, 26.59, 22.84 (The carbon of formate unit resonates as a doublet). HRMS (ESI) m/z calculated for $C_{11}H_{10}CINNaO_3 [M+Na]^+$ 262.0241, found 262.0236. M.P.: 156.7-158.4 °C.

IR (in KBr): $\tilde{v} = 1726.31$, 1612.44, 1493.64, 1344.95, 1160.88, 1028.92, 825.82, 693.48 cm⁻¹.

6-Bromo-1,3-dimethyl-2-oxoindolin-3-yl formate (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.86 (s, 1H), 7.21 (d, *J* = 7.8 Hz, 1H), 7.13 (d, *J* = 7.8 Hz, 1H), 7.03 (s, 1H), 3.24 (s, 3H), 1.64 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.03, 158.45, 158.40, 144.44, 127.16, 125.64, 123.62,

112.12, 76.68, 26.54, 22.71 (The carbon of formate unit resonates as a doublet). **HRMS** (ESI) m/z calculated for $C_{11}H_{10}BrNNaO_3 [M+Na]^+ 305.9736$, found 305.9731. **M.P.**: 142.4-144.2 °C.

IR (in KBr): $\tilde{v} = 1720.44$, 1608.71, 1494.25, 1370.09, 1166.70, 1030.72, 817.83, 704.52 cm⁻¹.

6-Chloro-1,3-dimethyl-2-oxoindolin-3-yl formate (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.86 (s, 1H), 7.19 (d, *J* = 7.8 Hz, 1H), 7.05 (d, *J* = 7.9 Hz, 1H), 6.88 (s, 1H), 3.25 (s, 3H), 1.64 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 174.14, 158.45, 144.37, 135.71, 126.61, 123.31, 122.66, 109.34, 76.68, 26.53, 22.76.

HRMS (ESI) m/z calculated for C₁₁H₁₀ClNNaO₃ [M+Na]⁺ 262.0241, found 262.0236. **M.P.**: 138.2-139.8 °C.

IR (in KBr): $\tilde{v} = 1722.90$, 1612.22, 1467.65, 1371.18, 1169.66, 1055.61, 926.86, 819.63 cm⁻¹.

7-Fluoro-1,3-dimethyl-2-oxoindolin-3-yl formate (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.88 (s, 1H), 7.06 (m, 2H), 7.00 (m, 1H), 3.47 (s, 3H), 1.65 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 174.01, 158.45, 158.40, 148.96, 146.53, 131.16, 129.77, 123.58, 123.52, 118.10, 118.03, 117.84, 77.32, 28.99, 23.05 (The carbon of formate unit resonates as a doublet).

HRMS (ESI) m/z calculated for $C_{11}H_{10}FNNaO_3 [M+Na]^+ 246.0537$, found 246.0530. **M.P.**: 155.9-156.9 °C.

IR (in KBr): $\tilde{v} = 1739.38$, 1716.54, 1481.32, 1246.92, 1169.64, 1055.59, 852.98, 732.05 cm⁻¹.

1,3,5-Trimethyl-2-oxoindolin-3-yl formate (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.88 (s, 1H), 7.14 (d, *J* = 7.9 Hz, 1H), 7.08 (s, 1H), 6.76 (d, *J* = 7.8 Hz, 1H), 3.24 (s, 3H), 2.33 (s, 3H), 1.64 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 174.23, 158.45, 140.73, 132.45, 130.09, 128.26, 123.14, 108.25, 77.60, 26.42, 22.97, 20.95.

HRMS (ESI) m/z calculated for C₁₂H₁₃NNaO₃ [M+Na]⁺ 242.0788, found 242.0779. **M.P.**: 141.9-142.8 °C.

IR (in KBr): $\tilde{v} = 1732.30$, 1625.28, 1500.45, 1246.35, 1164.75, 1051.37, 822.62, 704.18 cm⁻¹.

5-Methoxy-1,3-dimethyl-2-oxoindolin-3-yl formate (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.88 (s, 1H), 6.88 (d, *J* = 2.0 Hz, 1H), 6.87 – 6.84 (m, 1H), 6.77 (d, *J* = 8.4 Hz, 1H), 3.79 (s, 3H), 3.23 (s, 3H), 1.65 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 173.99, 158.43, 158.38, 156.14, 136.47, 129.49, 113.84, 109.87, 108.95, 77.70, 55.70, 26.49, 23.02 (The carbon of formate unit resonates as a doublet).

HRMS (ESI) m/z calculated for C₁₂H₁₃NNaO₄ [M+Na]⁺ 258.0737, found 258.0732. **M.P.**: 156.9-159.9 °C.

IR (in KBr): $\tilde{v} = 1724.06$, 1604.03, 1470.29, 1286.73, 1158.74, 1039.56, 880.55, 815.31 cm⁻¹.

3-Ethyl-1-methyl-2-oxoindolin-3-yl formate (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.89 (s, 1H), 7.34 (t, J = 7.4 Hz, 1H), 7.23 (d, J = 7.3 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.86 (d, J = 7.8 Hz, 1H), 3.25 (s, 3H), 2.11 (m, 1H), 2.02 (m, 1H),

0.83 (t, J = 7.5 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 173.88, 158.47, 158.42, 143.74, 129.79, 126.67, 122.70, 122.63, 108.30, 80.51, 29.56, 26.27, 6.48 (The carbon of formate unit resonates as a doublet).

HRMS (ESI) m/z calculated for C₁₂H₁₃NNaO₃ [M+Na]⁺ 242.0788, found 242.0784. **M.P.**: 82.7-83.8 °C.

IR (in KBr): $\tilde{v} = 1724.65$, 1612.47, 1471.96, 1350.38, 1156.41, 1069.62, 854.54, 751.42 cm⁻¹.

3-Isopropyl-1-methyl-2-oxoindolin-3-yl formate (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.90 (s, 1H), 7.34 (m, 1H), 7.22 (d, J = 7.3 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.85 (d, J = 7.8 Hz, 1H), 3.24 (s, 3H), 2.41 (m, 1H), 1.09 (d, J = 6.8 Hz, 3H), 0.76 (d, J = 6.8 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 173.96, 158.55, 158.50, 144.26, 129.76, 125.30, 123.41, 122.35, 108.14, 82.72, 34.48, 26.17, 15.77, 15.28 (The carbon of formate unit resonates as a doublet).

HRMS (ESI) m/z calculated for C₁₃H₁₅NNaO₃ [M+Na]⁺ 256.0944, found 256.0940. **M.P.**: 76.1-76.9 °C.

IR (in KBr): $\tilde{v} = 1715.74$, 1613.25, 1470.47, 1375.43, 1170.65, 1123.70, 983.01, 767.56 cm⁻¹.

3-Butyl-1-methyl-2-oxoindolin-3-yl formate (colorless oil)

¹**H NMR** (600 MHz, CDCl₃) δ 7.88 (s, 1H), 7.34 (t, J = 7.7 Hz, 1H), 7.24 (d, J = 7.3 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.87 (d, J = 7.8 Hz, 1H), 3.25 (s, 3H), 2.05 (m, 1H), 1.97 (m, 1H), 1.29 – 1.21 (m, 3H), 1.16 – 1.10 (m, 1H), 0.84 (t, J = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 174.06, 158.47, 158.42, 143.68, 129.77, 127.01, 122.72, 122.64, 108.32, 80.15, 36.12, 26.30, 23.95, 22.47, 13.66 (The carbon of formate unit resonates as a doublet).

HRMS (ESI) m/z calculated for $C_{14}H_{17}NNaO_3 [M+Na]^+ 270.1101$, found 270.1093.

IR (in KBr): $\tilde{v} = 1729.94$, 1615.54, 1471.55, 1374.71, 1167.83, 1121.93, 976.33, 753.81 cm⁻¹.

1-Methyl-3-octyl-2-oxoindolin-3-yl formate (colorless oil)

¹**H NMR** (600 MHz, CDCl₃) δ 7.88 (s, 1H), 7.34 (t, J = 7.7 Hz, 1H), 7.23 (d, J = 7.3 Hz, 1H), 7.07 (t, J = 7.4 Hz, 1H), 6.86 (d, J = 7.8 Hz, 1H), 3.25 (s, 3H), 2.04 (t, J = 12.2 Hz, 1H), 1.95 (m, 1H), 1.25 – 1.12 (m, 12H), 0.85 (t, J = 7.0 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 174.02, 158.44, 158.39, 143.66, 129.74, 127.01, 122.69, 122.60, 108.29, 80.13, 36.33, 31.60, 29.32, 29.07, 28.98, 26.27, 22.44, 21.84, 13.94 (The carbon of formate unit resonates as a doublet).

HRMS (ESI) m/z calculated for $C_{18}H_{25}NNaO_3 [M+Na]^+ 326.1727$, found 326.1721.

IR (in KBr): $\tilde{v} = 1746.61$, 1616.16, 1470.99, 1374.93, 1157.49, 1122.59, 973.38, 752.59 cm⁻¹.

3-Cyclopentyl-1-methyl-2-oxoindolin-3-yl formate (colorless oil)

¹H NMR (600 MHz, CDCl₃) δ 7.89 (s, 1H), 7.33 (t, *J* = 7.8 Hz, 1H), 7.25 (d, *J* = 7.4 Hz, 1H), 7.03 (t, *J* = 7.5 Hz, 1H), 6.85 (d, *J* = 7.8 Hz, 1H), 3.23 (s, 3H), 2.56 – 2.50 (m, 1H), 1.79 (m, 1H), 1.66 – 1.62 (m, 2H), 1.56 – 1.52 (m, 2H), 1.49 – 1.46 (m, 2H), 1.24 – 1.18 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.09, 158.58, 144.02, 129.69, 126.48, 123.23, 122.41, 108.15, 81.65, 45.71, 26.26, 26.20, 25.62, 25.13, 24.91. HRMS (ESI) m/z calculated for C₁₅H₁₇NNaO₃ [M+Na]⁺ 282.1101, found 282.1099. IR (in KBr): \tilde{v} = 1722.41, 1611.37, 1465.42, 1371.50, 1147.11, 1077.51, 856.65, 757.95 cm⁻¹.

3-Cyclohexyl-1-methyl-2-oxoindolin-3-yl formate (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.90 (s, 1H), 7.33 (t, J = 7.8 Hz, 1H), 7.21 (d, J = 7.4 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.84 (d, J = 7.8 Hz, 1H), 3.23 (s, 3H), 2.10 (t, J = 11.8 Hz, 1H), 1.95 (d, J = 10.7 Hz, 1H), 1.77 (s, 1H), 1.67 – 1.57 (m, 3H), 1.27 – 1.19 (m, 3H), 1.05 (t, J = 11.0 Hz, 1H), 0.77 (m, 1H).

¹³**C** NMR (100 MHz, CDCl₃) δ 174.10, 158.62, 158.57, 144.20, 129.66, 125.94, 123.45, 122.33, 108.10, 82.62, 44.31, 26.17, 25.98, 25.81, 25.63, 25.57, 25.11 (The carbon of formate unit resonates as a doublet).

M.P.: 111.5-112.6 °C.

HRMS (ESI) m/z calculated for $C_{16}H_{19}NNaO_3 [M+Na]^{+} 296.1257$, found 296.1251.

IR (in KBr): $\tilde{v} = 1733.11$, 1610.31, 1492.12, 1372.61, 1139.53, 1075.73, 858.79, 758.25 cm⁻¹.

3-Allyl-1-methyl-2-oxoindolin-3-yl formate (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.90 (s, 1H), 7.34 (m, 1H), 7.25 (d, *J* = 7.3 Hz, 1H), 7.06 (t, *J* = 7.5 Hz, 1H), 6.86 (d, *J* = 7.8 Hz, 1H), 5.60 (m, 1H), 5.09 (m, 2H), 3.24 (s, 3H), 2.87 (m, 1H), 2.62 (m, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 173.40, 158.35, 158.30, 143.54, 129.92, 128.97, 126.33, 123.10, 122.57, 120.75, 108.34, 79.33, 40.56, 26.30 (The carbon of formate unit resonates as a doublet).

M.P.: 69.3-70.0 °C.

HRMS (ESI) m/z calculated for C₁₃H₁₃NNaO₃ [M+Na]⁺ 254.0788, found 254.0787.

IR (in KBr): $\tilde{v} = 1730.24$, 1613.03, 1470.40, 1373.16, 1165.80, 1082.20, 836.71, 762.83 cm⁻¹.

1-Methyl-2-oxo-3-phenylindolin-3-yl formate (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 8.08 (s, 1H), 7.42 (m, 1H), 7.38 – 7.36 (m, 2H), 7.36 – 7.32 (m, 3H), 7.26 (s, 1H), 7.12 (t, J = 7.2 Hz, 1H), 6.94 (d, J = 7.9 Hz, 1H), 3.25 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 173.22, 158.63, 158.58, 144.55, 135.89, 130.45, 129.04, 128.60, 127.53, 126.31, 124.51, 123.15, 108.68, 81.29, 26.74 (The carbon of formate unit resonates as a doublet).

M.P.: 165.7-167.2 °C.

HRMS (ESI) m/z calculated for $C_{16}H_{13}NNaO_3 [M+Na]^+ 290.0788$, found 290.0783.

IR (in KBr): $\tilde{v} = 1719.12$, 1615.15, 1471.46, 1367.95, 1155.69, 1014.93, 860.80, 762.92 cm⁻¹.

3-Methyl-2-oxoindolin-3-yl formate (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 8.18 (s, 1H), 7.92 (s, 1H), 7.26 (t, J = 8.0 Hz, 2H), 7.06 (t, J = 7.2 Hz, 1H), 6.91 (d, J = 7.6 Hz, 1H), 1.69 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.66, 158.66, 140.34, 129.89, 128.67, 122.87, 122.58, 110.68, 77.90, 23.06.

M.P.: 146.1-148.1 °C.

HRMS (ESI) m/z calculated for $C_{10}H_9NNaO_3$ [M+Na]⁺ 214.0475, found 214.0467.

IR (in KBr): $\tilde{v} = 1721.40$, 1620.20, 1473.11, 1335.21, 1171.32, 1015.31, 824.21, 749.07 cm⁻¹.

1-Benzyl-3-methyl-2-oxoindolin-3-yl formate (white solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.93 (s, 1H), 7.37 (d, J = 7.6 Hz, 2H), 7.33 (t, J = 7.4 Hz, 2H), 7.27 (d, J = 7.5 Hz, 2H), 7.19 (t, J = 7.8 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.69 (d, J = 7.9 Hz, 1H), 5.01 (d, J = 15.9 Hz, 1H), 4.92 (d, J = 15.9 Hz, 1H), 1.72 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 174.32, 158.42, 142.10, 135.36, 129.72, 128.70, 128.32, 127.56, 127.15, 122.91, 122.29, 109.66, 77.51, 43.97, 23.44.

M.P.: 150.1-152.0 °C.

HRMS (ESI) m/z calculated for $C_{17}H_{15}NNaO_3 [M+Na]^+ 304.0944$, found 304.0939.

IR (in KBr): $\tilde{v} = 1728.51$, 1612.94, 1471.27, 1372.45, 1144.48, 1095.33, 896.77, 753.41 cm⁻¹.

3-Methyl-1-(4-methylbenzyl)-2-oxoindolin-3-yl formate (pink solid)

¹**H NMR** (600 MHz, CDCl₃) δ 7.93 (s, 1H), 7.26 (s, 3H), 7.19 (t, J = 7.8 Hz, 1H), 7.14 (d, J = 7.7 Hz, 2H), 7.02 (t, J = 7.5 Hz, 1H), 6.71 (d, J = 7.9 Hz, 1H), 4.96 (d, J = 15.7 Hz, 1H), 4.88 (d, J = 15.7 Hz, 1H), 2.32 (s, 3H), 1.71 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 174.25, 158.38, 142.13, 137.19, 132.29, 129.67, 129.34, 128.30, 127.17, 122.81, 122.23, 109.66, 77.50, 43.72, 23.40, 21.03.

M.P.: 137.2-138.4 °C.

HRMS (ESI) m/z calculated for $C_{18}H_{17}NNaO_3 [M+Na]^+$ 318.1101, found 318.1096.

IR (in KBr): $\tilde{v} = 1717.41$, 1612.77, 1490.13, 1368.67, 1146.53, 1093.15, 902.00, 752.26 cm⁻¹.

1-Allyl-3-methyl-2-oxoindolin-3-yl formate (pink oil)

¹**H NMR** (600 MHz, $CDCl_3$) δ 7.89 (s, 1H), 7.32 – 7.26 (m, 2H), 7.06 (t, *J* = 7.4 Hz, 1H), 6.86 (d, *J* = 7.8 Hz, 1H), 5.90 – 5.82 (m, 1H), 5.34 (d, *J* = 17.3 Hz, 1H), 5.25 (d, *J* = 10.3 Hz, 1H), 4.43 (d, *J* = 16.2 Hz, 1H), 4.33 (m, 1H), 1.68 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.00, 158.41, 158.36, 142.20, 130.89, 129.71, 128.28, 122.82, 122.30, 117.62, 109.48, 77.41, 42.41, 23.20 (The carbon of formate unit

resonates as a doublet).

HRMS (ESI) m/z calculated for $C_{13}H_{13}NNaO_3 [M+Na]^+ 254.0788$, found 254.0781. **IR** (in KBr): $\tilde{v} = 1715.11$, 1613.44, 1471.28, 1370.20, 1148.49, 1017.48, 937.31, 753.07 cm⁻¹.

2.4 Structure of the Photocatalysts

3. Mechanism Studies

3.1 Fluorescence Quenching Experiment

Fluorescence spectra were collected on Cary Eclipse Fluorescence Spectrophotometer (Varian, USA). All *fac*-Ir(ppy)₃ solutions were excited at 385 nm and the emission intensity at 520 nm was observed. In a typical experiment, a 50 μ M solution of *fac*-Ir(ppy)₃ in DMF was added to the appropriate amount of quencher in a quartz cuvette. After degassing with a stream of argon for 15 minutes, the emission spectrum of the sample was collected.

Figure (a). Emission spectra of 50 μ M Ir(ppy)₃ at λ_{ex} = 385 nm showing the quenching effect of increasing concentrations of 3-bromo-1,3-dimethylindolin-2-one (**1b**).

Figure (b). Relationship between the fluorescence intensity and the concentration of 3-bromo-1,3-dimethylindolin-2-one (**1b**).

Figure (c). The cubic relationship of increasing concentrations of 3-bromo-1,3-dimethylindolin-2-one (**1b**).

Figure (d). The linear relationship over the concentration range from 0.5 to 10 mM.

3.2 On-off Swithching of the Light

Figure 1. 20 min GC sample.

Figure 2. 30 min GC sample.

Figure 3. 50 min GC sample.

Figure 4. 60 min GC sample.

Figure 5. 80 min GC sample.

Figure 6. 90 min GC sample.

Figure 7. 110 min GC sample.

Figure 8. 120 min GC sample.

Figure 9. 160 min GC sample.

Figure 10. Time profile of visible light induced assembly of 1b, DMF and water.

- **3.3 Labeling Experiments and MS Analyses**
- 3.3.1 D-Labeling Experiments and MS Analyses

3.3.2 C-13-Labeling Experiments and MS Analyses

3.3.3 O-18-Labeling Experiments and MS Analyses

3.4 Possible Byproduct Study

3.5 In Situ IR Experiment

3.5.1 IR spectra of 1b and 2b

700 720 740 760 780 800 820 840 860 880 900 920 940 960 980 1000 Wavenumber (cm-1)

3.5.2 General ReactIR Experimental Details

For the ReactIR kinetic experiments, the reaction spectra were recorded using an IC 15 from Mettler-Toledo AutoChem. Data manipulation was carried out using the iC IR software, version 4.2.

The reaction was carried out as follows: a three necked reaction vessel was fitted with a magnetic stirring bar. The IR probe was inserted through an adapter into the middle neck; the other two necks were capped by septa for injections and a nitrogen line. Following evacuation under vacuum and flushing with nitrogen for three times, the three necked vessel was charged with 3,5-dibromo-1,3-dimethylindolin-2-one **1a** (0.40 mmol, 1.0 equiv.), tris-(2-phenylpyridinato-C2,*N*)iridium(III) (*fac*-Ir(ppy)₃) (0.008 mmol, 0.02 equiv.), water (4.0 mmol, 10.0 equiv.), and DMF (1.0 mL). After switching on the light source, the data collection was started.

Figure (a). Overall three-dimensional Fourier transform IR (3D-FTIR) profile of the threecomponent reaction.

Figure (b). Kinetic profile for the three-component reaction.

3.6 The Influence of Light Intensity

All reactions were carried out with one household light bulb (5 W, 18 W or 24 W), 3-bromo-1,3-dimethylindolin-2-one **1b** (0.40 mmol, 1.0 equiv.), tris-(2-phenylpyridinato-C2,*N*)iridium(III) (*fac*-Ir(ppy)₃) (0.008 mmol, 0.02 equiv.), water (4.0 mmol, 10.0 equiv.), and DMF (2.0 mL). The yields were determined by GC using n-tetradecane as an internal standard.

4. X-Ray Structures of Compound 2a

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: t

Bond precision:	C-C = 0.0038 A	Wavelength	=0.71073		
Cell:	a=12.936(3) alpha=90	b=12.022(2) beta=90	c=14.578(3) gamma=90		
Temperature:	298 K		5		
	Calculated	Reported			
Volume	2267.1(8)	2267.1(8)			
Space group	Pbca	Pbca			
Hall group	-P 2ac 2ab	?			
Moiety formula	C11 H10 Br N O3	?			
Sum formula	C11 H10 Br N O3	C11 H10 B	r N 03		
Mr	284.10	284.11			
Dx,g cm-3	1.665	0.000			
Z	8	8			
Mu (mm-1)	3.617	3.617			
F000	1136.0	1136.0			
F000'	1134.26				
h,k,lmax	15,14,17	15,14,17			
Nref	2218	2209			
Tmin,Tmax	0.654,0.696	0.671,0.7	14		
Tmin'	0.641				
Correction method= NONE					
Data completeness= 0.996		Theta(max) = 25.990			
R(reflections) = 0.0346(1812)		wR2(reflections) = 0.1224(2209)			
S = 1.053	Npar= 1	47			

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C

ABSTY03_ALERT_1_C The _exptl_absorpt_correction_type has been given as none. However values have been given for Tmin and Tmax. Remove these if an absorption correction has not been applied. From the CIF: _exptl_absorpt_correction_T_min 0.671 From the CIF: _exptl_absorpt_correction_T_max 0.714

Alert level G

 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF
 ? Do !

 PLAT093_ALERT_1_G No su's on H-positions, refinement reported as .
 mixed

 PLAT793_ALERT_4_G The Model has Chirality at C8
 (Verify)
 S

0	ALERT	level A	🖌 = Most likely a serious problem - resolve or explain
0	ALERT	level H	B = A potentially serious problem, consider carefully
1	ALERT	level (: = Check. Ensure it is not caused by an omission or oversight
3	ALERT	level (F = General information/check it is not something unexpected
2	ALERT	type 1	CIF construction/syntax error, inconsistent or missing data
0	ALERT	type 2	Indicator that the structure model may be wrong or deficient
0	ALERT	type 3	Indicator that the structure quality may be low
1	ALERT	type 4	Improvement, methodology, query or suggestion
1	ALERT	type 5	Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 01/06/2013; check.def file version of 24/05/2013

Datablock t - ellipsoid plot

5. Copies of NMR, MS and Elemental Analysis Data

S53

S57

S58

S79

Data Filename	ZYQ1303.d
Sample Name	ZYQ1303
User Name	
Acquired Time	2013-4-16
Instrument	
Agilent Technologies 6224 TOF LC/MS	

16 2:05:36 PM

User Spectra

Peak List

m/z	z	Abund	Formula	Ion
132.138		14934.1		
204.1956		25373.5		
237.9859	1	251587.3		
238.989	1	16686.4		
239.9839	1	243525.2		1. 11
240.987	1	15843.2		
305.9734		53641.3	C11 H10 Br N Na O3	(M+Na)+
307.9714		52513.8		
610.1834		19609.3		

Formula Calculator Results

IonFormula	Measured Mass	Tgt Mass	Diff (ppm)	Score
C11 H10 Br N Na O3	305.9734	305.9736	0.96	95.19

--- End Of Report ---

Page 1 of 1

Printed at: 13:50 on: 2013/6/13

Data Filename	ZYQ1338.d
Sample Name	ZYQ1338
User Name	
Acquired Time	2013-4-9 2:54:31 PM
Instrument	
Agilent Technologies 6224 TOF LC/MS	

User Spectra

Peak List

m/z	z	Abund	Formula	Ion
160.0753	1	2536041.1		
161.0785	1	244427.3		
228.0627		438809.4	C11 H11 N Na O3	(M+Na)+
433.1364		319486		

Formula Calculator Results

IonFormula	Measured Mass	Tgt Mass	Diff (ppm)	Score
C11 H11 N Na O3	228.0627	228.0631	2.11	92.56
C14 H9 N2 Na	228.0627	228.0658	15.18	56.67

---- End Of Report ----

Page 1 of 1

Printed at: 13:55 on: 2013/6/13

Data Filename	ZYQ1381.d
Sample Name	ZYQ1381
User Name	
Acquired Time	2013-4-16 2:03:46 PM
Instrument	
Agilent Technologies 6224 TOF LC/MS	

Measured Mass

262.0236

User Spectra

Tgt Mass | Diff (ppm) |

2.09

262.0241

Score 91.47

C11 H10 Cl N Na O3

IonFormula

Formula Calculator Results

Page 1 of 1

Printed at: 13:57 on: 2013/6/13

Data Filename	ZYQ1341.d
Sample Name	ZYQ1341
User Name	
Acquired Time	2013-4-9 3:01:32 PM
Instrument	
Agilent Technologies 6224 TOF LC/MS	

User Spectra

Formula Calculator Results

1

46774.9

46008.9

IonFormula	Measured Mass	Tgt Mass	Diff (ppm)	Score
C11 H10 Br N Na O3	305.9731	305.9736	1.74	93.02

--- End Of Report ---

611.1841

684.2019

Agilent Technologies

Page 1 of 1

Printed at: 13:58 on: 2013/6/13

Data Filename	ZYQ1340.d
Sample Name	ZYQ1340
User Name	
Acquired Time	2013-4-9 2:
Instrument	
Agilent Technologies 6224 TOF LC/MS	

13-4-9 2:52:10 PM

User Spectra

	Cont Li	
-		
	m/	z

m/z	z	Abund	Formula	Ion
194.0363	1	464382		
196.0334	1	122401.4		
262.0236		154923.9	C11 H10 CI N Na O3	(M+Na)+
536.1646	1	113831.3		
610.1832	1	202584		1.
611.184	1	104332.8		
612.1821	1	72500		
684.2019	1	104796.9		
685.2027	1	61203.3		
758.2206	1	53764.7		

Formula Calculator Results

IonFormula	Measured Mass	Tgt Mass	Diff (ppm)	Score
C11 H10 CI N Na O3	262.0236	262.0241	2.16	89.5
C14 H8 Cl N2 Na	262.0236	262.0268	13.37	59.58

--- End Of Report ---

Page 1 of 1

Printed at: 13:59 on: 2013/6/13

ZYQ1342.d Data Filename Sample Name User Name ZYQ1342 **Acquired Time** Instrument Agilent Technologies 6224 TOF LC/MS

2013-4-9 2:49:52 PM

User Spectra

Frag	mentor Voltage 150	Collis	ion Energy 0	Ionization Mo ESI	ode					
×10 ⁵	+ESI Scan (0	.185-0.266 n	nin, 6 Scans)	Frag=150.0V Z	YQ134	2.d Sub	tract			
8-	656									
7-	0.87									
5	÷				23					
4 -		530		5	.182	4				
3-		10.01		164	610	201	8			
2-		-27		536.		684.	8.22			
1-						T	- 75			
0 -	100 150 20	0 250 200	250 400	450 500 550	cón c		750.00		000 0	ÉO.
	100 150 20	0 250 300	350 400 Cou	450 500 550 ints vs. Mass-to	-Charge	∋0 /00 ∋ (m/z)	/50 80	0 850	900 8	00

Peak List

m/z	z	Abund	Formula	Ion
178.0656	1	768505.2		
246.053		200041.7	C11 H10 F N Na O3	(M+Na)+
536.1642	1	141232.6		
537.165	1	60280.4		
610.1827	1	270629		
611.1835	1	139464.3		
612.1817	1	97317.9		
684.2014	1	134036.4		
685.2021	1	78437		
758.22	1	67183.5		

Formula Calculator Results

IonFormula	Measured Mass	Tgt Mass	Diff (ppm)	Score
C11 H10 F N Na O3	246.053	246.0537	3.05	78.6
C14 H9 N Na O2	246.053	246.0525	-2.08	71.97

--- End Of Report ---

Page 1 of 1

Printed at: 14:00 on: 2013/6/13

Data Filename	ZYQ1339.d
Sample Name	ZYQ1339
User Name	
Acquired Time	2013-4-9 3:03:54 PM
Instrument	
Agilent Technologies 6224 TOF LC/MS	

User Spectra

Formula Calculator Results

IonFormula	Measured Mass	Tgt Mass	Diff (ppm)	Score
C12 H13 N Na O3	242.0779	242.0788	3.9	89.26

--- End Of Report ---

Page 1 of 1

Printed at: 14:00 on: 2013/6/13

Data Filename	ZYQ1382.d
Sample Name	ZYQ1382
User Name	
Acquired Time	2013-4-16 2:07:22 PM
Instrument	
Agilent Technologies 6224 TOF	LC/MS

User Spectra

--- End Of Report ---

Page 1 of 1

Printed at: 14:01 on: 2013/6/13

User Spectra

--- End Of Report ---

Page 1 of 1

Printed at: 14:01 on: 2013/6/13

User Spectra

--- End Of Report ---

Page 1 of 1

Printed at: 14:03 on: 2013/6/13

User Spectra

--- End Of Report ---

Page 1 of 1

Printed at: 14:03 on: 2013/6/13

User Spectra

--- End Of Report ---

Page 1 of 1

Printed at: 14:04 on: 2013/6/13

Data Filename	ZYQ1412.d
Sample Name	ZYQ1412
User Name	
Acquired Time	2013-4-16 2:10:58 PM
Instrument	
Agilent Technologies 6224 TOF LC/MS	

User Spectra

Peak List

m/z	z	Abund	Formula	Ion
148.0754		18998.4		
214.1224	1	679773.9		
214.1966		13178.7		
214.2595		16527.9		
215.1257	1	82233.8		
282.1099		26109.8	C15 H17 N Na O3	(M+Na)+
741.9877		16490.5		
743.9851		13015.9		

Formula Calculator Results

IonFormula	Measured Mass	Tgt Mass	Diff (ppm)	Score
C15 H17 N Na O3	282.1099	282.1101	0.77	93.72

--- End Of Report ---

Page 1 of 1

Printed at: 14:05 on: 2013/6/13

User Spectra

--- End Of Report ---

Page 1 of 1

Printed at: 14:06 on: 2013/6/13

ZYQ1411.d
ZYQ1411
2013-4-16 2:09:08 PM
_C/MS

User Spectra

--- End Of Report ---

Page 1 of 1

Printed at: 14:06 on: 2013/6/13

User Spectra

--- End Of Report ---

Page 1 of 1

Printed at: 14:08 on: 2013/6/13

Data Filename Sample Name User Name Acquired Time Instrument Agilent Technologies 6224 TOF LC/MS

ZYQ1344 2013-4-9 2:47:35 PM

ZYQ1344.d

User Spectra

Peak List

Fear List							
m/z	z	Abund					
146.0594	1	113937.1					
536.1644	1	44391.3					
537.1651	1	18711.9					
610.1828	1	83656.5					
611.1836	1	42715.2					
612.1818	1	29562.5					
684.2014	1	48531.9					
685.2026	1	28575					
686.2005	1	20961.9					
758.2201	1	27512.2					

Formula Calculator Results

IonFormula	Measured Mass	Tgt Mass	Diff (ppm)	Score
C10 H9 N Na O3	214.0467	214.0475	3.74	83.09

--- End Of Report ---

Printed at: 14:08 on: 2013/6/13

Data Filename	ZYQ1345.d
Sample Name	ZYQ1345
User Name	
Acquired Time	2013-4-9 2:56:52 PM
Instrument	
Agilent Technologies 6224 TOF LC/MS	

User Spectra

m/z	z	Abund	Formula	Ion
236.1065	1	925210.6		
237.1098	1	128977.9		
304.0939		116340.5	C17 H15 N Na O3	(M+Na)+
610.1831		54960.7		

Formula Calculator Results

Γ	IonFormula	Measured Mass	Tgt Mass	Diff (ppm)	Score
E	C17 H15 N Na O3	304.0939	304.0944	1.84	89.63
C	C20 H13 N2 Na	304.0939	304.0971	11.38	58.16

--- End Of Report ---

Page 1 of 1

Printed at: 14:09 on: 2013/6/13

User Spectra

--- End Of Report ---

Agilent Technologies

Page 1 of 1

Printed at: 10:01 on: 2013/7/2

Data Filename	ZYQ1346.d
Sample Name	ZYQ1346
User Name	
Acquired Time	2013-4-9 2:45:18 PM
Instrument	
Agilent Technologies 6224 TOF LC/MS	

User Spectra

IonFormula	Measured Mass	Tgt Mass	Diff (ppm)	Score
C13 H13 N Na O3	254.0781	254.0788	2.72	78.34

--- End Of Report ---

Page 1 of 1

Printed at: 14:10 on: 2013/6/13

2t

Àllyl

Data Filename	zyq1432.d
Sample Name	zyq1432
User Name	
Acquired Time	2013-4-17 4:16:44 PM
Instrument	
Agilent Technologies 6224 TOF LC/MS	

User Spectra

m/z	z	Abund	Formula	Ion
160.0751	1	560925.2		
160.1114		16291.4		
161.0783	1	42901.4		
229.0688		25839	C11 H10 D N Na O3	(M+Na)+
279.1584		19233		

Formula Calculator Results

IonFormula	Measured Mass	Tgt Mass	Diff (ppm)	Score	
C11 H10 D N Na O3	229.0688	229.0694	2.84	94.49	

--- End Of Report ---

Page 1 of 1

Printed at: 14:25 on: 2013/6/13
State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences ESI High Resolution MS Date Report

Data Filename Sample Name User Name Acquired Time Instrument Agilent Technologies 6224 TOF LC/MS

2013-4-17 4:22:11 PM

zyq1436.d

zyq1436

User Spectra

--- End Of Report ---

Printed at: 14:26 on: 2013/6/13

State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences ESI High Resolution MS Date Report

Data Filename Sample Name User Name Acquired Time Instrument Agilent Technologies 6224 TOF LC/MS

2013-4-17 4:27:36 PM

zyq1437.d

zyq1437

User Spectra

--- End Of Report ---

Printed at: 14:27 on: 2013/6/13

State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences ESI High Resolution MS Date Report

Data Filename Sample Name User Name Acquired Time Instrument Agilent Technologies 6224 TOF LC/MS

2013-4-17 4:24:01 PM

zyq1427.d

zyq1427

User Spectra

Tgt Mass | Diff (ppm) | Score

3.69

92.97

178.0863

C10 H12 N O2

IonFormula

Measured Mass

178.0856

Agilent Technologies

Printed at: 14:27 on: 2013/6/13

4