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S1. Procedure for the preparation of cobalt oxide-based nanocatalysts

All chemicals used for the preparation of catalysts are commercially available..The
vulcan XC72R was purchased form Cabot Limited. The pyrolsis experiments were carried
out in Centurion™ Neytech Qex Vacuum Furnace. The tyipcal procedure for the
preparation of the active catalyst is described as follows: A mixture of Co(OAc),.4H,0
(corresponds to 3 wt% Co) and 1,10-phenanthroline (Co:phenanthroline = 1:2 mole ratio)
in ethanol was stirred for 20-30 minutes at room temperature. Then, vulcan XC72R
carbon powder was added and the whole reaction mixture was stirred at 60 °C for 5-6
hours. The reaction mixture was cooled to room temperature and ethanol was removed
slowely under vacuum. The remaining solid sample obtained was dried at 60 °C for 12
hours. The dried sample was grinded to a powder. Then, the grinded powder was
pyrolyzed at 800 °C for 2 hours in the gradiant of 25 °C per minut in argon atmosphere

and cooled to room temperature.

Elemental analysis of Co-Phenanthroline/C (Wt%): C = 89.68, H=10.199, N = 2.70, Co =
3.05.
XPS data of Co-Phenanthroline/C (Atom%): C =92.38, N =2.80, Co=0.61, O =4.02

S2. TEM measurements and images of the cobalt oxide-based nanocatalysts

The TEM measurements were performed at 200kV on a JEM-ARM200F (JEOL) which is
aberration corrected by a CESCOR (CEOS) for the STEM applications. The microscope is
equipped with a JED-2300 (JEOL) EDXS spectrometer for chemical analysis. The HAADF
imaging was performed with spotsize 6¢ and a 40um condenser aperture. The sample was
deposited on a holey carbon supported grid mesh 300 and transferred to the microscope. To
image the full size spectra of Co;04 particles, High Angle Annular Dark Field (HAADF) at a
Cs corrected microscope was used. With a conventional TEM it was not possible to image the
smallest particles due to the weak contrast. As shown in Fig. S1, in the catalyst contains
mainly small particles of 2-10 nm in size. By EDXS analysis, cobalt along with oxygen was
detected in such particles (Fig. S2), suggesting that they consist of CoO and/or Co3;0,. This
agrees very well with the XRD pattern showing only very weak signals of CoO and
Co304(Fig. S7). Due to their small size, such particles are hardly visible by XRD.
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Fig. S2. EDX analysis (right) of the particle indicated in the left plot.

Besides the small particles shown in Fig. S1 and S2, there are also a few larger particles and
agglomerates in a range of 20-80 nm and occasionally even larger structures up to 800 nm. As
an example, one of these structures is shown in Fig. S3. EDXS mapping shows clearly that Co
is concentrated in the core of such particles, while oxygen is enriched in the shell. Thus, those
larger particles might consist of a Co core and a CoO and/or Co304 shell. In the XRD pattern
(Fig. S7) these particles, though much less abundant than the small particles shown in Fig. S1, give
rise to the sharp reflections for metallic Co. This is due to their much larger size and higher

crystallinity.



Fig. S3. Micrograph and elemental mapping (green: Co; red: oxygen; blue: carbon (from the grid)

S3. XPS Measurements and data of cobalt oxide-based nanocatalysts

To obtain further insight into the structure of the catalyst surface and especially into the role
of nitrogen coming from the organic ligand, XPS investigations of N and Co species were
carried out. Interestingly, three distinct peaks are observed in the N1s spectra of the Co304-
NGr/C-catalyst with an electron binding energy of 399.0 eV, 400.8 eV and 402.3 eV (Fig.
S4). The lowest binding energy peak can be attributed to pyridine-type nitrogen, which is
bound to a metal ion.[S! The electron binding energy of 400.8 eV is characteristic for pyrrole-
type nitrogen contributing two electrons to the carbon matrix. It is bound to a hydrogen atom.
Such types of nitrogen are found after the carbonization of nitrogen-containing organic
materials.[5?] Finally, the small peak at 402.3 eV is typical for ammonium species like NH4* or
R-NH;".[53] The ratio between all Co atoms and all N atoms in the near surface region is 1:4.7.

Deconvolution reveals that around 64% of all N atoms are bound to the metal ions.
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Fig. S4. N1s spectrum of the catalyst. The different N1s state are labelled: Ncon N bound to

Co; Npyrror.: pyrrolic N; Nymm : N of ammonium species

In the cobalt region, only peaks characteristic for oxidic Co are found (Fig. S5) with the
typical binding energy of 780.4 eV of the Co2p;,; and 795.3 eV of the Co 2p,,, electrons
are found. Additionally, the satellite peaks at 786.7 eV and 802.8 eV are charecteristic for
oxidic Co. This agrees very well with TEM results, which suggest that the very small
particles of 2-10 nm are oxidic (in line with XRD) and the bigger particles contain a Co
core and a cobalt oxide shell. In the literaturetS4! it is discussed, that CoO on the surface is
not stable and therefore oxidized to Co304. Thus, it can be concluded that the surface of
all Co-containing particles in the catalyst consists of Co;O04 while CoO and Co (reflected

by XRD) might be enriched in the bulk.
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Fig. S5. Co2p spectrum of the catalyst with the typical features of Co;04



S4. EPR measurements and data

EPR spectra were recorded in X-band at 80 K and 290 K on a Bruker EMX CW-micro
spectrometer equipped with an ER 4119HS-WI high-sensitivity cavity and a variable
temperature control unit (microwave power: 6.64 mW, modulation frequency: 100 kHz,
modulation amplitude: 1 G). The EPR spectrum of the active catalyst contains a broad signal
at g = 2.12 (Fig. S6). The intensity of this signal increases slightly with rising temperature,
which is characteristic for antiferromagnetic Co;0, particles. The Neel temperature Ty above
which bulk Co;0,4 becomes paramagnetic is below 40 K.[5>5¢] Previously it was found that the
temperature dependence of the EPR signal intensity reflects very sensitively the onset of anti-
ferromagnetic ordering in Co3O4 and also in other antiferromagnetic oxide materials already
well above Tn.I5] In bulk Co304 the EPR intensity increased gradually up to 150 K and then
remained constant up to 250 K before it started decreasing.[3®) The observed intensity

behaviour in Fig. S6 is exactly in line with these previous results.
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Figure S6. EPR spectra of the active cobalt catalyst recorded at 88 and 290 K.

The EPR signal at g = 2.12 is superimposed on a second very broad anisotropic signal, the

positive lobe of which is cut off at B = 0. This suggests that the magnetic properties are not

exactly the same for each particle. The reason may be different particle sizes (see above)

and/or replacement of O by N in the coordination of Co (as observed by XPS above). In
6



contrast to Co3;04, CoO is not expected to contribute to the EPR spectrum since CoO is
antiferromagnetic below Ty~ 293K[58] and thus EPR silent. Metallic Co is ferromagnetic up to
a Curie temperature of 1120 °CI31 and could in principle cause a ferromagnetic resonance
signal, the intensity of which does not depend on temperature between 88 and 290 K. Such
signal is not seen in Fig. S6 (possibly due to the very low amount of metallic particles in the
catalyst as suggested by TEM), however, it cannot be excluded that it contributes to some

extend to the background of the EPR spectrum.

S5. XRD measurements and data

The XRD powder pattern was recorded on a Stoe STADI P diffractometer, equipped with
a linear Position Sensitive Detector (PSD) using Cu Ko radiation (A = 1.5406 A).
Processing and assignment of the powder patterns was done using the software WinXpow
(Stoe) and the Powder Diffraction File (PDF) database of the International Centre of
Diffraction Data (ICDD). The powder pattern of the catalyst shows two sharp peaks
characteristic for metallic Co (Fig. S1) at 20 =44.16° and 51.42° besides weak reflections
at 20 = 36.35°, 36.89°, 42.47 and 61.52°. The peaks at 36.35°, 42.47°and 61.52° confirm
the existence of CoO, whereas the peak at 36.89° and the features around 59° 65.5° point
to small Co3;0, particles just above the detection limit of XRD, which were confirmed by

TEM (see above).
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Fig. S7. XRD powder pattern of the active cobalt catalyst. The PDF (Powder Diffraction
Files) numbers are in brackets.

S6. Procedure for catalyst recycling

100 mg Co3;04NGr1/C catalyst (1 mol% Co) and 10 mL dry THF were added to oven
dried pressure tube (ACE). Then, nitrobenzene (5 mmol) and HCOOH/Et;N (5:2) mixture
corresponds to 3.5 equiv. HCOOH and 250 pL n-hexadecane as internal standard were
added sequentially. The pressure tube was flushed with argon, fitted with screw caps and
the reactions were allowed progress at 100 for 13-15h After completion of the reaction,
reaction mixture was cooled to room temperature. In each run catalyst was filtered off
washed with THF and ethyl acetate. Filtrate containg reaction products was subjected
GC-analysis. The fwashed catalyst was dryed and used for next run without any

purifcation.

S7. NMR Data
3, O
F
HN, N F
F
<N

'H NMR (300 MHz, CDCl5) § = 7.38 (d, J=2.4, 1H), 7.22 (dd, J=8.7, 2.4, 1H), 6.72 (d, J=8.7,
1H), 6.27 (s, 1H), 4.26 (s, 2H), 1.45 (s, 6H).

3C NMR (75 MHz, DMSO-Dg) 8 = 176.67, 154.57, 145.88, 131.93, 124.91 (d, Jcr=5.25
Hz), 122.80 (d, Jor = 5.25 Hz), 119.62, 116.70, 110.19 (d, Jor = 3.48 Hz), 57.65, 24.64.

'H NMR (300 MHz, CDCls) & = 7.46 (d, J=8.6, 1H), 6.88 (d, J=2.4, 1H), 6.78 (dd, J=8.6, 2.4,
1H), 4.36 (s, 2H). 13C NMR (101 MHz, DMSO-Dg) = 153.03, 134.89, 117.49, 117.22,
116.90, 116.41, 115.49, 97.78.

NH,

0]



'H NMR (300 MHz, CDCl3) & = 7.52 (d, J=15.9, 1H), 7.31 — 7.22 (m, 2H), 6.57 (d, J=8.5,
2H), 6.16 (d, J=15.9, 1H), 4.16 (g, J=7.1, 2H), 1.25 (t, J=7.1, 3H). 13C NMR (75 MHz,
CDCl3) § = 167.76, 148.59, 144.89, 129.89, 124.99, 124.78, 114.91, 113.73, 60.22, 14.43

10
o CHO
'H NMR (300 MHz, CDCl3) § = 9.53 (s, 1H), 6.74 (s, 1H), 6.22 (s, 2H), 6.07 (s, 1H), 5.85 (s,

2H). 3C NMR (75 MHz, CDCl;) 6 = 190.97, 154.02, 149.28, 139.41, 111.85, 111.55, 101.51,
95.99.

'H NMR (300 MHz, CDCls) & = 7.90 (d, J=9.8, 2H), 7.70 (d, J=9.2, 2H), 7.59 — 7.51 (m, 2H),
7.45 —7.37 (m, 2H), 6.57 (d, J=8.8, 1H), 4.30 (s, 2H). 3C NMR (75 MHz, DMSO-Dy) § =
195.99, 191.70, 155.96, 134.84, 133.08, 133.01, 132.27, 129.28, 129.25, 119.64, 113.08.

PO

N o

o

'H NMR (300 MHz, CDCl3) 8 = 6.43 (s, 1H), 6.28 (s, 1H), 3.92 (dq, J=8.9, 7.0, 4H), 3.99 —

3.72 (m, 4H), 2.97 — 2.86 (m, 4H), 1.33 (td, J=7.0, 1.4, 6H). '*C NMR (75 MHz, CDCl;) § =
146.55, 140.34, 132.81, 131.92, 105.47, 102.64, 67.40, 65.12, 64.24, 51.76, 15.25, 15.11.

'H NMR (300 MHz, CDCl5) § = 7.36 (d, J=5.5, 1H), 6.96 (s, 1H), 6.81 (d, J=4.3, 2H), 6.66
(d, J=5.5, 1H), 4.15 (s, 2H), 3.77 (s, 3H). 3C NMR (75 MHz, DMSO-Dg) & = 160.80, 156.81,
145.73, 140.10, 132.22, 129 (m), 122.55, 121.19, 118.12, 114.11, 112.48 (d, Jor = 5.75 Hz),
112.38, (d, Jop = 4.5 Hz), 111.41 (d, Jop = 3.75 Hz), 51.77.
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'H NMR (300 MHz, CDCls) & = 8.02 — 7.97 (m, 1H), 7.10 (d, J = 8.6, 2H), 6.65 — 6.61 (m,
2H), 4.29 (q, J = 7.1, 2H), 3.88 (s, 2H), 1.30 (t, /= 7.1, 3H). 13C NMR (75 MHz, CDCl;) § =
161.24, 147.87, 142.05, 130.17, 126.96 (d, Jor = 5.27 Hz), 121.00, 116.16, 114.66 (d, Jor =
3.25 Hz), 112.43, 111.53 (d, Jor = 5.25 Hz), 61.21, 14.14.

'H NMR (300 MHz, CDCl5) § = 7.30 (t, J=8.0, 2H), 7.12 — 7.07 (m, 1H), 6.95 (s, 2H), 6.35
(d, J=8.6, 2H), 6.26 (s, 1H), 6.09 (s, 1H), 3.60 (s, 2H), 2.85 (s, 3H). 3C NMR (75 MHz,
CDClLy) § = 155.78, 151.04, 150.50, 146.07, 130.10, 126.96, 124.14, 118.91, 117.73, 110.61,
104.48, 38.96.

0
NH,
H-N
0

'H NMR (400 MHz, DMSO-Dy) & = 10.72 (s, 1H), 7.43 (d, J=8.2, 1H), 6.87 (d, J=2.0, 1H),
6.80 (dd, J=8.2, 2.1, 1H), 6.40 (s, 2H). 13C NMR (101 MHz, DMSO-Dy) & = 169.65, 169.32,
154.81, 135.43, 124.61, 117.88, 116.79, 106.59.

cl NH,
CI: : :N~<
H "o

'H NMR (400 MHz, DMSO-Dy) § =9.17 (s, 1H), 7.54 (s, 1H), 6.90 (s, 1H), 5.43 (m, 2H),
2.05 (s, 3H). 3C NMR (101 MHz, DMSO-Dy) 6 = 168.61, 141.79, 126.78, 125.57, 124.72,
123.39, 115.96, 115.55, 23.39.

10



o~ O

'H NMR (300 MHz, DMSO-Dy) 5 = 7.87 (d, J=9.5, 1H), 7.10 (d, J=8.8, 1H), 6.86 (dd, J=8.8,
2.7, 1H), 6.75 (d, J=2.8, 1H), 6.35 (d, J=9.5, 1H), 5.26 (s, 2H). 13*C NMR (75 MHz, DMSO-
D) & = 160.48, 145.56, 145.13, 144.34, 119.06, 118.70, 116.54, 115.81, 110.16.

NH,

'H NMR (300 MHz, CDCl3) § = 7.01 — 6.81 (m, 1H), 6.84 — 6.68 (m, 2H), 3.70 (s, 2H). 3C
NMR (75 MHz, CDCls) & = 158.16, 154.87, 143.19 (d, Jor = 2.25 Hz), 121.19 (d, Jor = 7.5
Hz), 117.41 (d, Jor = 29.25 Hz), 116.94, 114.45, 101.2 (d, Jor = 16.5 Hz).

cl
Cl NH,

Cl Cl
Cl

'H NMR (300 MHz, CDCl5) § = 4.68 (s, 2H). 13C NMR (101 MHz, DMSO-Dy) & = 142.46,
129.96, 116.87, 115.49.

NC™ X

'H NMR (300 MHz, CDCls) & = 7.19 — 7.16 (m, 3H), 6.56 (d, J=8.6, 2H), 5.53 (d, J=16.6,
1H), 3.97 (s, 2H). 3C NMR (101 MHz, DMSO-D6) & = 151.95, 150.89, 133.42, 129.57,
121.22, 114.85, 113.73, 112.78.
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