Low content Au-based catalyst for hydrochlorination of C₂H₂ and its industial scale-up for future PVC process

Kai Zhou,^{*a*} Jinchao Jia,^{*a*} Chunhua Li,^{*b*} Hao Xu,^{*a*} Jun Zhou,^{*b*} Guohua Luo,^{*a*,*} and Fei Wei,^{*a*,*}

Supplementary Information

Figure S1. (a) The capacity and production of PVC in China in recent years; **(b)** The PVC yield derived from pyrolysis of dichloroethane method (ethylene method) and calcium carbide method in China in recent years.

Figure S2. The main reactions of ethylene method in synthesis of VCM (addition reaction of ethylene and chlorine and pyrolysis of dichloroethane).

Figure S3. The distribution of global PVC production capacity in 2012.

Figure S4. The cost of diffrent Au catalysts. (The cost of 0.1 wt% gold catalyst is set to be 1 as the benchmark for comparision).

Figure S5. The reactivity evaluation of *Catal. ACS* (0.5 wt% Au, HAuCl₄, CuCl₂ and KSCN as precursors, n(Cu):n(Au)=5:1) with various mole ratio of SCN:Au=20:1 and 40:1 (T=180 °C, GHSV=1200 h⁻¹).

Figure S6. (a), (b) TEM and SEM images of Catal. ACS respectively; (c) Morphology of Catal. AC and (d) Catal. ACK.

Figure S7. XPS spectrum of S 2p in KSCN and Catal. ACS.

Figure S8. The reactivity evaluation of the gold catalysts with KSCN and K₂S as complexing precursors (T=180 °C, GHSV=1200 h⁻¹).

Figure S9. The optimized structure of reactant of (a) Au_2Cl_5 -SCN and C_2H_2 , (b) Au_2Cl_6 and C_2H_2 ; (c) The optimized structure of transition state of (c) Au_2Cl_5 -SCN and C_2H_2 , (d) Au_2Cl_6 and C_2H_2 (The yellow ball is Au, green ball is Cl, grey ball is C, blue ball is S and white ball is H).

Figure S10. (a) The schematic diagram of the reactor and selected spent catalyst; (b) 200 hrs' reactivity evaluation of 96 kg·a⁻¹ scale test in fixed bed reactor; (c) XRD patterns of the fresh catalyst and the spent catalyst selected from different layers of the reactor (\bullet : C, \bullet : KCl, \bullet :Au); (d) The reactivity evaluation of the spent catalyst selected from the different layers of the reactors (T=180 °C and GHSV=360 h⁻¹).

Figure S11. Surface area of fresh catalyst and spent catalysts in the upper, middle and bottom layer in the 96 kg \cdot a⁻¹ scale fixed bed reactor.

Figure S12. GC-MS spectrums of the coke species in (a) upper layer, (b) middle layer and (c) bottom layer of the spent catalysts.

Figure S13. Flow chart of 4 t ·a ·1 pilot-trial analysis.

Figure S14. Surface area of spent catalysts in five different layers in the pilot-trial test.

Catalwat type	Au species (%)			B	Binding energies (eV)		
	Au ³⁺	Au ⁰	Au ⁰ -s	Au ³⁺	Au ⁰	Au ⁰ -s	
Fresh Catalyst	68.0	29.1	2.9	86.4	84.0	84.9	
Spent Catalyst	20.1	75.3	4.6	86.3	84.1	85.0	

Table S1. Quantification and identification of fresh and spent Au species over Catal. ACS from XPS data.

Table S2. Textural properties of Catal. ACK, Catal. ACS and Catal. AC.

Sample		S _{BET}	S _{micro}	S _{ext}	V _{tot}	V _{mic}	D
	Status	$(m^2 \cdot g^{-1})$	$(m^2 \cdot g^{-1})$	$(m^2 \cdot g^{-1})$	$(cm^{3} \cdot g^{-1})$	$(cm^{3} \cdot g^{-1})$	(nm)
	Fresh	719.7	626.3	93.4	0.3213	0.2743	2.7
Catal. ACK	Spent	571.3	489.6	81.7	7 0.2588 0.2260	0.2260	2.5
	Fresh	756.4	663.8	92.6	0.3454	0.3061	2.4
Catal. ACS	Spent	674.9	600.3	74.6	0.3068	0.2769	2.3
	Fresh	874.8	768.9	105.9	0.4143	0.3563	3.2
Catal. AC	Spent	669.9	596.4	73.5	0.3053	0.2756	2.2

		I						Final State
Au ₂ Cl ₆	C_2H_2	Au _o Cl ₂ +C ₂ H ₂	R	TS	Р	СНСІСНСІ	Au ₂ Cl ₄	ClC ₂ H ₂ Cl
		11u2C16+C2112						$+ Au_2Cl_4$
-	-	0	-0.096	22.081	-45.585	-	-	-39.474
-	-	0	-0.996	21.181	-46.485	-	-	-39.474
-	-	0	6.519	33.025	-35.748	-	-	-41.613
	Au ₂ Cl ₆ - -	Au ₂ Cl ₆ C ₂ H ₂	Au2Cl6C2H2Initial State Au2Cl6+C2H2000-0	Au ₂ Cl ₆ C ₂ H ₂ Initial State Au ₂ Cl ₆ +C ₂ H ₂ R - - 0 -0.096 - - 0 -0.996 - - 0 6.519	Au ₂ Cl ₆ C ₂ H ₂ Initial State Au ₂ Cl ₆ +C ₂ H ₂ R TS - - 0 -0.096 22.081 - - 0 -0.996 21.181 - - 0 6.519 33.025	Au_2Cl_6C_2H2Initial State $Au_2Cl_6+C_2H_2$ RTSP0-0.09622.081-45.5850-0.99621.181-46.48506.51933.025-35.748	Au ₂ Cl ₆ C ₂ H ₂ Initial State Au ₂ Cl ₆ +C ₂ H ₂ R TS P CHCICHCE - - 0 -0.096 22.081 -45.585 - - - 0 -0.996 21.181 -46.485 - - - 0 6.519 33.025 -35.748 -	Au2ChInitial State Au_2Ch_6+C2H2RTSPCHCHCHCAu2Ch0-0.09622.081-45.5850-0.99621.181-46.48506.51933.025-35.748

Table S3. Energy changes in DFT study of Au₂Cl₆ and C₂H₂

			Initial State						Final State
	Au ₂ Cl ₅ -SCN	C_2H_2		R	TS	Р	C ₂ H ₂ Cl-SCN	Au ₂ Cl ₄	C ₂ H ₂ Cl-SCN
		Au_2Cl_5 -SCN + C_2H_2						$+ Au_2Cl_4$	
E _{453.15K}	-	_	0	-7.597	20.700	-54,159	-	_	-41.059
(Kcal/mol)									
H _{453.15K}	-	_	0	-2.849	25 447	-49 412	_	_	-35 412
(Kcal/mol)			Ū	2.017	20.117	19.112			50.112
G _{453.15K}	_	_	0	8 014	37 215	-32 306	_	_	-37 483
(Kcal/mol)	_	_	0	0.014	57.215	52.500	-	_	57.405

Table S4. Energy changes in DFT study of Au₂Cl₅–SCN and C_2H_2

Test Time (h)	1.1-dichloroethane	Trans-1,2-dichloroethylene
	(μL/L)	(μL/L)
120	299.41	101.58
1000	90.36	54.49
1460	22.86	-
1800	122.24	-
2390	101.43	-
2920	19.68	10.92

Table S5. Test of by-products in outlet by GC analysis during the evaluation.

Table S6. Quantification of Au content in *Catal. ACS* by ICP analysis.

Sample		Au
expected Set	ω_{0} (%)	0.25
	ICP (mg/L)	24.6
Test 1 (m ₀ =0.5072 g)	ω ₁ (%)	0.24
	Δ (%)	-3.2
	ICP (mg/L)	26.3
Test 2 (m ₀ =0.5069 g)	ω_2 (%)	0.26
	Δ (%)	+4.0

Sample weight (g)	<i>n</i> (Au) (mol)	<i>n</i> (Au ³⁺) (mol)	mol C ₂ H ₂ converted (mol·s ⁻¹)	mol C ₂ H ₂ converted /mol Au (s ⁻¹)	$\begin{array}{c} mol \ C_2H_2\\ converted/mol\\ Au^{3+} \left(s^{\text{-}1}\right) \end{array}$
0.506	4.36E-06	3.74E-08	2.49E-07	0.057	6.67
0.502	3.08E-06	3.32E-08	2.70E-07	0.088	8.12
0.504	3.47E-06	2.98E-07	1.04E-06	0.300	3.48
0.502	3.70E-06	3.45E-07	1.12E-06	0.303	3.26
0.501	4.03E-06	5.08E-07	1.78E-06	0.443	3.51

Table S7. The correlation of Au^{3+} content and conversion of C_2H_2 .