Electronic Supplementary Information

Towards the synthesis of glycosylated dihydrochalcone natural products using glycosyltransferase-catalysed cascade reactions

Alexander Gutmann,^{*a*}Linda Bungaruang,^{*a*}Hansjoerg Weber,^{*b*}Mario Leypold,^{*b*}Rolf Breinbauer^{*b*} and Bernd Nidetzky^{*a,c}

^a Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/1, 8010 Graz, Austria

^b Institute of Organic Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria

^c Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria

Fig. S1 SDS-PAGE of enzymes from *E. coli* overexpression cultures purified by *Strep*-tag affinity chromatography; lane 1: *Pc*OGT (55.4 kDa), lane 2: *Os*CGT I121D (51.3 kDa), lane 3: *Gm*SuSy (94.1 kDa)

Fig. S2 Reversed-phase C-18 HPLC-analysis of a mixture of glucosylations of **2** by *Pc*OGT and *Os*CGT I121D clearly shows that the minor product of the *Pc*OGT reaction (**?**) is distinct from confusoside (**6**), formed by the *Os*CGT variant.

Fig. S3 Time courses of 3 formation through glucosylation of 5 mM 1 by coupled *Pc*OGT-*Gm*SuSy reaction (0.5 mM 9, 100 mM 8) using BisTris and TAPS reaction buffers at various pH.

Fig. S4 Reversed-phase C-18 HPLC-analysis of (a) davidioside (5) and (b) confusoside (6) after purification by preparative HPLC confirms them to be of high purity (>98% based on HPLC peak area).

Table S1 ¹ H a	nd ¹³ C-NMR	spectral data	of davidigenin	(2), davidiosid	e (5) and	confusoside (6	5)
---------------------------	------------------------	---------------	----------------	-----------------	-----------	----------------	----

	dav	davidigenin (2) $(R_1, R_2 = H)^a$		davidioside (5) (R_1 = glucose, R_2 = H) ^b		confusoside (6) $(R_1 = H, R_2 = glucose)^b$	
nr	δ _C	δ _H	δ _C	δ _H	δ _C	δ _H	
1	133.0		133.8		133.4		
2/6	129.2	7.07 (2H, d, J = 8.5 Hz)	130.3	7.03 (2H, d, <i>J</i> = 8.4 Hz)	130.4	7.05 (2H, d, <i>J</i> = 8.4 Hz)	
3 / 5	115.0	6.68 (2H, d, J = 8.5 Hz)	116.1	6.67 (2H, d, <i>J</i> = 8.2 Hz)	116.2	6.69 (2H, d, J = 8.4 Hz)	
4	155.5	9.17 (1H, s)	156.4		156.7		
C=O	203.9		202.9		206.2		
α	39.4	3.22 (2H, t, <i>J</i> = 7.6 Hz)	46.2	~3.3 ^c	41.2	3.23 (2H, t, <i>J</i> = 7.3 Hz)	
β	29.1	2.83 (2H, t, J = 7.4 Hz)	31.0	2.86 (2H, t, <i>J</i> = 7.5 Hz)	30.9	2.92 (2H, t, J = 7.3 Hz)	
1'	112.5		121.9		116.0		
2'	164.7	10.62 (1H, s)	160.3		165.8		
3'	102.4	6.26 (1H, d, J = 2.2 Hz)	103.9	6.70 (1H, d, J = 2.0 Hz)	105.1	6.58 (1H, d, J = 2.2 Hz)	
4'	164.3	12.65 (1H, s)	164.4		165.1		
5'	108.1	6.37 (1H, dd, J = 8.74, 2.3 Hz)	110.8	6.50 (1H, dd, J = 8.5, 1.9 Hz)	109.4	6.62 (1H, dd, J = 8.9, 2.3 Hz)	
6'	131.0	7.81 (1H, d, J = 8.8 Hz)	133.2	7.58 (1H, d, J = 8.6 Hz)	133.1	7.81 (1H, d, J = 8.9 Hz)	
1"			102.6	4.99 (1H, d, J = 7.1 Hz)	101.3	5.00 (1H, d, <i>J</i> = 7.2 Hz)	
2"			74.9		74.7		
3"			78.3		77.9	3.45-3.50 (3H, unresolved)	
4"			71.2	5.53-5.48-(4H, unresolved)	71.2		
5"			78.4		78.3	3.41 (1H, m)	
6"	12		62.6	3.91 (1H, dd, <i>J</i> = 12.4, 2.0 Hz) 3.72 (1H, dd, <i>J</i> = 12.1, 5.7 Hz)	62.4	3.89 (1H, dd, <i>J</i> = 12.1, 2.1 Hz) 3.70 (1H, dd, <i>J</i> = 12.3, 5.5 Hz)	

 a $^{1}H:$ 300.36 MHz, $^{13}C:$ 75.53 MHz; (DMSO- d_{6},δ in ppm) b $^{1}H:$ 499.89 MHz, $^{13}C:$ 125.70 MHz; (CD₃OD, δ in ppm) c overlap with MeOH signal

Scheme S1 Key HMBC couplings to identify (a) davidioside (5) and (b) confusoside (6), respectively

Fig. S5 ¹H-NMR of davidigenin (2)

Fig. S7 ¹H-NMR of HPLC purified davidioside (5)

Fig. S8 ¹³C-NMR of HPLC purified davidioside (5)

Fig. S9 2D COSY-NMR of HPLC purified davidioside (5)

Fig. S10 2D HMQC-NMR of HPLC purified davidioside (5)

Fig. S11 2D HMBC-NMR of HPLC purified davidioside (5)

Fig. S12 ¹H-NMR of HPLC purified confusoside (6)

Fig. S13 ¹³C-NMR of HPLC purified confusoside (6)

Fig. S14 2D COSY-NMR of HPLC purified confusoside (6)

Fig. S15 2D HMBC-NMR of HPLC purified confusoside (6)