SUPPLEMENTARY INFORMATION

DIRECT IONIC LIQUID EXTRACTANT INJECTION FOR VOLATILE CHEMICAL ANALYSIS – A GAS CHROMATOGRAPHY SAMPLING TECHNIQUE

S. U. Mokhtar,^{a,b} S. T. Chin,^a R. Vijayaraghavan,^c D. R. MacFarlane,^c O. H. Drummer,^d

P. J. Marriott^{a*}

 ^aAustralian Centre of Research on Separation Science, School of Chemistry, Faculty of Science, Monash University, Clayton, VIC 3800, Australia.
 ^bFaculty of Chemical Engineering and Natural Resources, Universiti Malaysia Pahang, 26300 Pahang,

Malaysia.

^cSchool of Chemistry, Faculty of Science, Monash University, Clayton, VIC 3800, Australia. ^dVictorian Institute of Forensic Medicine, Kavanagh Street, Southbank, VIC 3006, Australia.

Green Chemistry

Figure S1. PTV condition for alkanes and alcohols

Figure S2. Chromatogram of 100 μg/mL n-alkanes with 0.2 mL (20%) of [BMIM][TfSA].
(1): octadecane C18; (2): nonadecane C19; (3): docosane C22

Figure S3. Chromatogram of 100 μg/mL n-alcohols with 0.2 mL (20%) of [BMIM][TfSA]. (1): octanol; (2): nonanol; (3): decanol

Figure S4. PTV condition of PAHs mixture with several parameters (a - e) were analysed to obtain the acceptable condition for analysis

Figure S5. Chromatograms of PAH mixture (16 compounds) with 20% of [BMIM][TfSA] at two different vent open time for vaporisation (same T; 60 °C), (a) 3 min (b) 0.4 min

Figure S6. Schematic diagram of GC-MS with PTV injector and retention gap for preliminary study