Supporting Information

Selective N-alkylation of indoles with primary alcohols by Pt/HBEA catalyst

S. M. A. Hakim Siddiki,^a Kenichi Kon,^b Ken-ichi Shimizu*^{a,b}

^a Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan

^b Catalysis Research Center, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan

*Corresponding author: E-mail: kshimizu@cat.hokudai.ac.jp, Fax: +81-11-706-9163

Experimental Section

General: Commercially available organic and inorganic compounds (from Tokyo Chemical Industry, Wako Pure Chemical Industries, Kishida Chemical, or Mitsuwa Chemicals) were used without further purifications. Benzyl- α , α - d_2 alcohol (BzCD₂OH) with 99.5 atom % D was purchased from Aldrich. The GC (Shimadzu GC-14B) and GCMS (Shimadzu GCMS-QP2010) analyses were carried out with Ultra ALLOY capillary column UA+-5 (Frontier Laboratories Ltd.) using nitrogen or He as the carrier gas. ¹H and ¹³C NMR spectra were recorded using at ambient temperature on JEOL-ECX 600 operating at 600.17 and 150.92 MHz, respectively with tetramethylsilane as an internal standard.

Catalyst Preparation: H⁺-type BEA zeolite (HBEA, SiO₂/Al₂O₃ = 25±5, JRC-Z-HB25), CeO₂ (JRC-CEO-1), MgO (JRC-MGO-3), TiO₂ (JRC-TIO-4), HY (JRC-Z-HY5.5) and SiO₂-Al₂O₃ (JRC-SAL-2) were supplied by Catalysis Society of Japan. HMFI (SiO₂/Al₂O₃ = 22.3) was kindly supplied by Tosoh Co. γ -Al₂O₃ was prepared by calcination of γ -AlOOH (Catapal B Alumina purchased from Sasol) at 900 °C for 3 h. Hydroxide of Zr was prepared by hydrolysis of zirconium oxynitrate 2-hydrate in distilled water by gradually adding an aqueous NH₄OH solution (1.0 mol dm⁻³), followed by filtration of precipitate, washing with distilled water three times, drying at 100 °C for 12 h. ZrO₂ was prepared by calcination of this hydroxide at 500 °C for 3 h. Active carbon (296 m² g⁻¹) was purchased from Kishida Chemical. SiO₂ (Q-10, 300 m² g⁻¹) was kindly supplied by Fuji Silysia Chemical Ltd.

According to our recent report²³ HBEA-supported Pt nanocluster (5 wt%) was prepared by impregnation method; a mixture of HBEA powder and aqueous HNO₃ solution of Pt(NH₃)₂(NO₃)₂ was evaporated, followed by drying at 90 °C. The precursor in a pyrex tube was reduced under a flow of H₂ (20 cm³ min⁻¹) at 300 °C (0.5 h), and the pre-reduced catalyst (Pt/HBEA) was obtained. Platinum oxides-loaded HBEA (PtOx/HBEA), as a comparative catalyst, was prepared by calcination of the precursor in air at 300 °C for 3 h. By using various supports, several pre-reduced Pt catalysts were prepared by the same method as Pt/HBEA. FAU–supported metal catalysts, M/FAU (M = Ir, Re, Pd, Rh, Ru, Ag, Co, Ni, Cu) with metal loading of 5 wt% were prepared by impregnation method in the similar manner as Pt/HBEA using aqueous solution of metal nitrates (for Ag, Ni, Cu), RuCl₃, IrCl₃•nH₂O, NH₄ReO₄ or aqueous HNO₃ solution of Rh(NO₃)₃ or Pd(NO₃)₂.

Characterization: The number of surface metal atoms in Pt/HBEA, in situ reduced under H₂ at 300 °C, was estimated by the CO pulse-adsorption experiment at room temperature in a flow of He using BELCAT (BELL Japan Inc.). The average Pt particle size was calculated from the CO uptake assuming that CO was adsorbed on the surface of spherical Pt particles at CO/(surface Pt atom) = 1/1 stoichiometry. Transmission electron microscopy (TEM)

measurements were carried out by using a JEOL JEM-2100F TEM operated at 200 kV. X-ray diffraction (XRD) patterns of the powdered catalysts were recorded with a Rigaku MiniFlex II/AP diffractometer with Cu K α radiation.

X-ray absorption near-edge structures (XANES) and extended X-ray absorption fine structure (EXAFS) at Pt L₃-edge were measured at the BL14B2 in the SPring-8 (Proposal No. 2012A1734) in a transmittance mode. The storage ring was operated at 8 GeV. A Si(111) single crystal was used to obtain a monochromatic X-ray beam. The Pt/HBEA catalyst pre-reduced in a flow of 100% H₂ (20 cm³ min⁻¹) for 0.5 h at 300 °C was cooled to room temperature in the flow of H₂ and was sealed in cells made of polyethylene under N₂, and then the EXAFS spectrum was taken at room temperature. The spectrum of Pt foil was recorded without the pre-reduction treatment. The EXAFS analysis was performed using the REX version 2.5 program (RIGAKU). The parameters for Pt–Pt shells were provided by the FEFF6.

In situ IR (infrared) spectra were recorded by connecting a conventional flow reaction system with a JASCO FT/IR-4200 equipped with a quartz IR cell at 40 °C. Self-supporting wafer ($\varphi = 2$ cm) was prepared by pressing 40 mg of the sample and mounted in to the quartz IR cell with CaF₂ windows. Spectra were measured accumulating 30 scans at a resolution of 4 cm⁻¹. A reference spectrum of the catalyst wafer was subtracted from each spectrum, which was measured at same temperature in He. Prior to the experiment the disk of Pt/HBEA was heated in H₂ flow (20 cm³ min⁻¹) at 300 °C for 0.5 h, followed by cooling to 40 °C and purging with He. Then, the catalyst was exposed to a flow of CO(5%)/He (20 cm³ min⁻¹) for 180 s, followed by purging with He (40 cm³ min⁻¹) for 600 s.

Typical Procedure of Catalytic Reactions: Typically, the mixture indole (1.0 mmol) and 1-octanol (1.0 mmol) in *o*-xylene (1 g) was injected to the pre-reduced catalyst inside the reactor (cylindrical glass tube) through a septum inlet, followed by heating at 130 °C under 1 atm N₂. After cooling the mixture, followed by removal of the catalyst by filtration, evacuation, and by purification by column chromatography with silica gel 60 (spherical) 63-210 μ m (Kanto Chemical Co. Ltd.) using eluting solvent of hexane/ethyl acetate (50/1) to isolate *N*-adducts in Table 2. For the standard reaction of indole and 1-octanol for catalyst screening (Table 1) and kinetic studies, conversion and yields of products were determined by GC using *n*-dodecane as an internal standard adopting the GC sensitivity estimated using the isolated product.

Figure S1 Pt L₃-edge XANES spectra (A) and EXAFS Fourier transforms (B).

Sample	Shell	N ^a	<i>R∕</i> Å ^b	$\sigma / \mathring{A}^{c}$	$R_f / \text{\% d}$
Pt/HBEA	Pt	10.2	2.74	0.080	1.8
Pt metal ^e	Pt	12	2.76	-	-

Table S1. Curve-fitting analysis of Pt L3-edge EXAFS.

^a Coordination numbers. ^b Bond distance. ^c Debye-Waller factor. ^d Residual factor.

^e Crystallographic data of Pt metal.

Figure S2. Typical TEM image and Pt particle size distribution of Pt/HBEA (TEM analysis). Average size is 3.3 ± 0.7 nm.

Figure S3. IR spectra of CO adsorbed at 40 °C on (a) as-reduced Pt/HBEA and (b) Pt/HBEA after re-oxidation in air at room temperature.

Figure S4. Kinetic isotopic effect (KIE) in the reaction of benzylalcohol (1 mmol) with indole (1 mmol) by Pt/HBEA (1 mol%) at 130 °C. The KIE estimated from the zero order rate constants (the slope of the lines) is 2.3.

Figure S5. Hammett plot for N-alkylation of indole (1 mmol) with *p*-substituted benzylalcohols (1 mmol) by Pt/HBEA (1 mol%) at 130 °C.

NMR and GC/MS analysis

¹H and ¹³C NMR spectra for alkylated/arylated indole of Table-3 and Table-4 were assigned and reproduced to the corresponding literature. ¹H and ¹³C NMR spectra were recorded using at ambient temperature on JEOL-ECX 600 operating at 600.17 and 150.92 MHz, respectively with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. All chemical shifts are reported relative to tetramethylsilane and *d*-solvent peaks (77.00 ppm chloroform, 40.45 ppm dimethylsulfoxide), respectively. Abbreviations used in the NMR experiments: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. GC-MS spectra was taken by SHIMADZU QP2010.

1-Octyl-1#-indole:1

¹H NMR (600.17 MHz, CDCl₃, TMS): δ 7.67 (d, J = 8.94 Hz, 1H), 7.38 (d, J = 8.22 Hz, 1H), 7.24 (m, 1H), 7.14-7.12 (m, 2H), 6.52 (d, J = 2.76 Hz, 1H), 4.13 (t, J = 6.61 Hz, 2H), 1.87-1.85 (t, J = 6.54 Hz, 2H), 1.41-1.22 (m, 10H), 0.92 (t, J = 6.61 Hz, 3H); ¹³C NMR (150.92 MHz, CDCl₃): δ 135.88, 128.51, 127.74, 121.21, 120.87, 119.07, 109.34, 100.73, 46.36, 31.75, 30.12, 29.19, 29.14, 26.98, 22.59, 14.05; GC-MS m/e 229.185.

1-Hexyl-1*H*-indole:²

¹H NMR (600.17 MHz, CDCl₃, TMS): δ 7.71 (d, J = 7.56 Hz, 1H), 7.41 (d, J = 6.85 Hz, 1H), 7.29-7.27 (m, 1H), 7.18-7.15 (m, 2H), 6.56 (d like s, 1H), 4.16 (t, J = 6.60 Hz, 2H), 1.90-1.88 (m, 2H), 1.37-1.34 (m, 6H), 0.95 (t, J = 6.60 Hz, 3H); ¹³C NMR (150.92 MHz, CDCl₃): δ 135.87, 128.50, 127.73, 121.20, 120.85, 119.06, 109.32, 100.73, 46.33, 31.39, 30.16, 26.62, 22.50, 13.97; GC-MS m/e 201.155.

1-Decyl-1*H*-indole:¹

¹H NMR (600.17 MHz, CDCl₃, TMS): δ 7.68 (d, J = 8.22 Hz, 1H), 7.38 (d, J = 8.28 Hz, 1H), 7.26-7.23 (m, 1H), 7.15-7.12 (m, 2H), 6.53 (d, J = 2.76 Hz, 1H), 4.13 (t, J = 6.60 Hz, 2H), 1.87-1.85 (m, 2H), 1.34-1.29 (m, 14H), 0.93 (t, J = 6.60 Hz, 3H); ¹³C NMR (150.92 MHz, CDCl₃): δ 135.88, 128.51, 127.73, 121.21, 120.87, 119.07, 109.33, 100.73, 46.35, 31.84, 30.21, 29.50, 29.48, 29.25, 29.23, 26.97, 21.52, 14.09; GC-MS m/e 257.215.

1-Dodecyl-1*H*-indole:¹

¹H NMR (600.17 MHz, CDCl₃, TMS): δ 7.78 (d, J = 7.56 Hz, 1H), 7.49 (d, J = 8.22 Hz, 1H), 7.37-7.34 (m, 1H), 7.24-7.23 (m, 2H), 6.63 (d, J = 3.42 Hz, 1H), 4.25 (t, J = 6.87 Hz, 2H), 1.98-1.96 (m, 2H), 1.45-1.39 (m, 18H), 1.03 (t, J = 6.87 Hz, 3H); ¹³C NMR (150.92 MHz, CDCl₃): δ 135.89, 128.51, 127.75, 121.22, 120.87, 119.08, 109.34, 100.74, 46.38, 31.89, 30.23, 29.58 (C×2), 29.55, 29.49, 29.32, 29.23, 26.99, 22.67, 14.11; GC-MS m/e 285.245.

1-Isobutyl-1*H*-indole:²

¹H NMR (600.17 MHz, CDCl₃, TMS): δ 7.67 (d, J = 7.56 Hz, 1H), 7.37 (d, J = 8.28 Hz, 1H), 7.25-7.22 (m, 1H), 7.15-7.10 (m, 2H), 6.53 (d, J = 3.42 Hz, 1H), 3.94 (d, J = 7.56 Hz, 2H), 2.25-2.23 (m, 1H), 0.97 (d, J = 6.90 Hz, 6H); ¹³C NMR (150.92 MHz, CDCl₃): δ 136.21, 128.50, 128.37, 121.22, 120.85, 119.08, 109.56, 100.69, 54.10, 29.49, 20.29 (C×2); GC-MS m/e 173.125.

1-(2-Methyl-pentyl)-1*H*-indole:5

¹H NMR (600.17 MHz, CDCl₃, TMS): δ 7.67 (d, J = 7.56 Hz, 1H), 7.36 (d, J = 8.22 Hz, 1H), 7.25-7.23 (m, 1H), 7.14-7.09 (m, 2H), 6.51 (d, J = 3.48 Hz, 1H), 4.08-4.05 (m, 1H), 3.88-3.85 (m, 1H), 2.10-2.07 (m, 1H), 1.51-1.45 (m, 1H), 1.39-1.30 (m, 2H), 1.21-1.19 (m, 1H), 0.93-0.89 (m, 6H); ¹³C NMR (150.92 MHz, CDCl₃): δ 136.25, 128.50, 128.45, 121.22, 120.85, 119.07, 109.54, 100.67, 52.95, 36.73, 34.01, 19.99, 17.71, 14.22; GC-MS m/e 201.155.

1-Cyclohexylmethyl-1*H*-indole:³

¹H NMR (600.17 MHz, CDCl₃, TMS): δ 7.63-7.61 (m, 1H), 7.33-7.32 (m, 1H), 7.21-7.17 (m, 1H), 7.08-7.06 (m, 1H), 7.05-7.04 (m, 1H), 6.46 (d, J = 3.42 Hz, 1H), 3.92-3.91 (m, 2H) 1.85-1.82 (m, 1H), 1.72-1.68 (m, 2H), 1.64-1.58 (m, 3H), 1.22-1.14 (m, 3H), 0.99-0.95 (m, 2H); 1³C NMR (150.92 MHz, CDCl₃): δ 136.22, 128.54, 128.42, 121.17, 120.83, 119.04, 109.60, 100.54, 52.95, 38.78, 31.06(C×2), 26.29, 25.70 (C×2); GC-MS m/e 213.155.

1-Phenethyl-1*H*-indole:²

¹H NMR (600.17 MHz, CDCl₃, TMS): δ 7.63-7.61 (m, 1H), 7.33-7.31 (m, 1H), 7.25-7.19 (m, 4H), 7.10-7.05 (m, 3H), 6.89-6.88 (m, 1H), 6.43-6.42 (m, 1H), 4.30 (t, *J* = 7.56 Hz, 2H), 3.06 (t, *J* = 7.56 Hz, 2H); ¹³C NMR (150.92 MHz, CDCl₃): δ 138.47, 135.63, 128.70 (C×2), 128.60 (C×2), 128.55, 127.83, 126.58, 121.36, 120.95, 119.26, 109.21, 100.91, 48.04, 36.67; GC-MS m/e 221.125.

1-Benzyl-1*H*-indole:⁴

¹H NMR (600.17 MHz, CDCl₃, TMS): δ 7.73 (d, *J* = 7.56 Hz, 1H), 7.35-7.30 (m, 4H), 7.27-7.23 (m, 1H), 7.21-7.15 (m, 4H), 6.63 (d, *J* = 3.41 Hz, 1H), 5.35 (s, 2H); ¹³C NMR (150.92 MHz, CDCl₃): δ 137.47, 136.21, 128.67 (C×2), 128.63, 128.20, 127.50, 126.68 (C×2), 121.61, 120.90, 119.46, 109.63, 101.60, 49.95; GC-MS m/e 207.105.

1-(4-Methyl-benzyl)-1*H*-indole:⁵

¹H NMR (600.17 MHz, CDCl₃, TMS): δ 7.63 (d, J = 7.56 Hz, 1H), 7.27 (d, J = 8.22 Hz, 1H), 7.15 (t, J = 6.90 Hz, 1H), 7.10-7.07 (m, 4H), 6.99 (d, J = 8.28 Hz, 2H), 6.52 (d, J = 2.70 Hz, 1H), 5.24 (s, 2H), 2.29 (s, 3H); ¹³C NMR (150.92 MHz, CDCl₃): δ 137.24, 136.23, 134.43, 129.36 (C×2), 128.66, 128.15, 126.76 (C×2), 121.57, 120.90, 119.41, 109.66, 101.50, 49.80, 21.04; GC-MS m/e 221.125.

1-(4-Fluoro-benzyl)-1*H*-indole:6

¹H NMR (600.17 MHz, CDCl₃, TMS): δ 7.64 (d, J = 7.56 Hz, 1H), 7.24 (d, J = 8.28 Hz, 1H), 7.16 (t, J = 7.56 Hz, 1H), 7.12-7.09 (m, 2H), 7.06-7.04 (m, 2H), 6.95 (t, J = 8.94 Hz, 2H), 6.54 (d, J = 3.42 Hz, 1H), 5.26 (s, 2H); ¹³C NMR (150.92 MHz, CDCl₃): δ 162.16 (d, J = 245.29 Hz, 4-F-C), 136.11, 133.23, 128.72, 128.37 (d, J = 8.06 Hz, *meta to* 4-F, C×2), 128.03, 121.74, 121.02, 119.60, 115.61 (d, J = 21.88 Hz, *ortho* to 4-F, C×2), 109.55, 101.83, 49.36; GC-MS m/e 225.105.

1-(4-tert-Butyl-benzyl)-1H-indole:7

¹H NMR (600.17 MHz, CDCl₃, TMS): 7.65 (d, *J* = 7.56 Hz, 1H), 7.30-7.28 (m, 3H), 7.18-7.155 (m, 1H), 7.11-7.08 (m, 2H), 7.05-7.03 (m, 2H), 6.54-6.53 (m, 1H), 5.27 (s, 2H), 1.27 (s, 9H); ¹³C NMR (150.92 MHz, CDCl₃): δ 150.50, 136.27, 134.50, 128.64, 128.20, 126.51 (C×2), 125.61 (C×2), 121.56, 120.90, 119.41, 109.67, 101.52, 49.66, 34.46, 31.40 (C×3); GC-MS m/e 263.165.

3-Methyl-1-octyl-1*H*-indole:

¹H NMR (600.17 MHz, CDCl₃, TMS): δ 7.55 (d, J= 8.28 Hz, 1H), 7.28 (d, J= 8.28 Hz, 1H), 7.19-7.17 (m, 1H), 7.09-7.07 (m, 1H), 6.84 (d, J= 3.42 Hz, 1H), 4.01 (t, J= 7.20 Hz, 2H), 2.32 (s, 3H), 1.79-1.76 (m, 2H), 1.29-1.23 (m, 10H), 0.86 (t, J= 7.20 Hz, 3H); ¹³C NMR (150.92 MHz, CDCl₃): δ 136.21, 128.62, 125.41, 121.14, 118.92, 118.31, 109.88, 109.12, 46.05, 31.77, 30.36, 29.24, 29.15, 27.02, 22.60, 14.06, 9.57; GC-MS m/e 243.200.

5-Methyl-1-octyl-1*H*-indole:

¹H NMR (600.17 MHz, CDCl₃, TMS): δ 7.43-7.40 (m, 1H), 7.23-7.20 (m, 1H), 7.03-7.02 (m, 2H), 6.39 (d, J = 3.42 Hz, 1H), 4.05 (t, J = 7.56 Hz, 2H), 2.46-2.43 (m, 3H), 1.81-1.79 (m, 2H), 1.31-1.25 (m, 10H), 0.87 (t, J = 7.56 Hz, 3H); ¹³C NMR (150.92 MHz, CDCl₃) δ 134.29, 128.79, 128.23, 127.82, 122.84, 120.51, 109.03, 100.13, 46.40, 31.77, 30.22, 29.19 (C×2), 26.99, 22.62, 21.36, 14.06; GC-MS m/e 243.200.

1-Oct-1-enyl-1#-indole: GC-MS m/e 227.165.

References:

1 E. G. Pérez, B. K. Cassels, C. Eibl and D. Gündisch, *Bioorg. Med. Chem.*, 2012, 20, 3719.

2 S. Bahn, S. Imm, K. Mevius, L. Neubert, A. Tillack, J. M. J. Williams and M.Beller, *Chem. Eur. J.*, 2010, **16**, 3590.

3 I. Deb, D. J. Coiro and D. Seidel, Chem. Commun., 2011, 47, 6473.

4 I. Deb, D. Das and D.Seidel, Org. Lett., 2011, 13, 812.

5 G. A. Molander, D. W. Ryu, M. H. Sarvari, R. Devulapally and D. G. Seapy, *J. Org. Chem.*, 2013, **78**, 6448.

6 P. S. Fier and J. F. Hartwig, J. Am. Chem. Soc., 2012, 134, 10795.

7 Y. H. Lim, Q. Ong, H. A. Duong, T. M. Nguyen and C. W. Johannes, *Org. Lett.*, 2012, **14**, 5676.

