Table S1. LCI Scenario A: Acrolein from glycerol produced as a by-product of triglycerides trans-esterification

	Process name input	Amount	Unit
Input		2.27.01	
Cultivation phase	Rape seed conventional, at farm/DE U *	3.3E+01	kg
Oil production			
Inputs	Heat, natural gas, at industrial furnace >100kW/RER U*	2.3E+01	MJ
	Transport, freight, rail/RER U *	7.4E-02	tkm
	Transport, lorry >16t, fleet average/RER U	1.2E-02	tkm
	I ransport, lorry 3.5-16t, fleet average/RER U	3.3E+00	tkm
	Oll mill/CH/I U Bentemite, et messessing/DE U *	1.1E-08 7.6E-02	p
	Havena at plant/PEP U*	7.0E-02 2.7E_02	кg
	Phosphoric acid industrial grade 85% in H2O at plant/REP U*	5.7E-02 1.2E.02	кg
	Electricity medium voltage production LICTE at grid/LICTE U *	1.2E-02 1.4E+00	kWh
Outputs & Waste	Carbon dioxide biogenic*	3.9E+01	ko
<u>oupus comuse</u>	Heat, waste *	1.6E+01	MJ
	Hexane *	3.6E-02	kg
	Treatment, sewage, from residence, to wastewater treatment, class	8.8E-05	m ³
	2/CH U*		
Triglycerides trans-esterification	Nitrogen, in air *	5.9E-02	kg
	Methanol, at regional storage/CH U *	1.7E+00	kg
	Sodium methoxide, at plant/GLO U *	2.9E-01	kg
	Hydrochloric acid, 30% in H ₂ O, at plant/RER U*	2.2E-01	kg
	Sodium hydroxide, 50% in $\mathrm{H_2O}$, production mix, at plant/RER U *	6.3E-02	kg
	Compressed air, average generation, <30kW, 10 bar gauge, at	1.2E-01	Nm ³
	compressor/RER U *		
	Steam, for chemical processes, at plant/RER U*	6.2E+00	kg
	Electricity, medium voltage, at grid/IT U*	3.6E-01	kWh
	Crude glycerol 84% ***,	2.1E+00	kg
	Biodiesel *,"	1.7E+01	kg
Glycerol refining (84%→100%)	Nitrogen, in air *	9.5E-02	kg
	Sodium hydroxide, 50% in H_2O , production mix, at plant/RER U *	3.0E-03	kg
	Compressed air, average generation, <30kW, 10 bar gauge at compressor/RER U*	7.6E-02	Nm ³
	Steam for chemical processes at plant/RER U*	3 3E+00	ka
	Natural gas burned in power plant/IT U *	1.0E+00	kWh
	Electricity medium voltage at orid/IT U *	1.0E+00	kWh
Avoided products	Diesel, at refinery/RER U *	1.7E+01	kg
* Calculated on the basis of mass b	palance and data furnished by Spiga BD Srl.		0
Calculated on the basis of mass	balance.		
"Inot included in the inventory, yie	a conversion into acroienti is 100%.		
" This now was included in the inv	remory muneculy (see Avoided products field).		

Table S2. LCI Scenario B: Acrolein from glycerol produced as a by-product of triglycerides hydrolysis

	Process name input	Amount	Unit
Input			
Breeding phase	Beef (farm type 23) *	2.3E+00	kg
Tallow production	Tallow, at plant/CH U *	2.3E+01	kg
Hydrolysis process	Water, process, unspecified natural origin/kg *	1.4E+01	kg
	Compressed air, average generation, >30kW, 7 bar gauge, at compressor/RER U*	1.8E-02	Nm ³
	Steam, for chemical processes, at plant/RER U *	5.9E+00	kg
	Electricity, medium voltage, at grid/IT U *	4.6E-01	kWh
	Crude glycerol 20% **,i	2.1E+00	kg
	Crude fatty acids *, ii	2.0E+01	kg
Glycerol refining (20%→99.5%)	Water, cooling, unspecified natural origin/m3 *	5.0E-01	m ³
	Compressed air, optimized generation, >30kW, 7 bar gauge at compressor/RER U*	8.5E+00	Nm ³
	Steam, for chemical processes, at plant/RER U *	7.0E+00	K٤
	Electricity, medium voltage, at grid/IT U *	9.4E-02	kWł
Fatty acids refining	Water, cooling, unspecified natural origin/m ³ *	1.2E+00	m
	Compressed air, optimized generation, >30kW, 7 bar	1.2E-01	Nm
	Steam, for chemical processes, at plant/RER U *	1.9E+01	kg
	Electricity, medium voltage, at grid/IT U *	6.2E-01	kWh
	Dama ail at ail mill/DED U*	2 1E+01	k

Table S3. LCI Glycerol dehydration to acrolein

	Process name input	Amount	Unit
nput	Water, cooling, unspecified natural origin/kg *	2.6E06	kg
	Water, process, unspecified natural origin/ kg *	5.2E03	kg
	Chemicals organic, at plant/GLO U **	1.2E-02	kg
	Argon *	2.5E+00	kg
	Chemical plant, organics/RER/I U **	4.0E-10	F
	Transport, freight, rail/RER U **	5.2E-01	tkm
	Transport, lorry >16t, fleet average/RER U **	8.6E-02	tkn
	Steam, for chemical processes, at plant/RER U *	5.4E+00	kg
	Steam, for chemical processes, at plant/RER U ***	3.7E+00	kg
	Natural gas, burned in industrial furnace $> 100 kW/$ RER U *	1.2E+00	M.
	Electricity, medium voltage, production FR, at grid/FR U *	3.7E-01	kWł
	Silicon *	3.8E-06	kg
	Tungsten *	3.0E-04	kg
	Titanium dioxide, production mix, at plant/RER U *	3.0E-04	kg
Air emissions	Carbon dioxide, fossil *	6.3E-01	kį
	Heat, waste **	6.8E+02	k.
Avoided processes	Heat, unspecific, in chemical plant/RER U *	3.4E+02	k.
	Electricity, production mix IT/IT U *	2.9E-02	kWł

Calculated on the basis of mass balance and data furnished by patent (US. Pat., 0 053 595 A1, 2013)

or internal report (Chem Systems – Process Evaluation/Research Planning (PERP program), *Acrylic Acid 08/09-3*, 2010.) *** Collected from Ecoinvent database. **** Collected from literature (P.A. Holman, D.R. Shonnard, J.H. Holles, *Ind. Eng. Chem. Res.*, 2009, **48**, 6668-6674).

Table S4. LCI Acrolein production from propylene oxidation

	Process name input	Amount	Unit
Input	Water, cooling, unspecified natural origin/kg *	2.7E-05	kş
	Water, process, unspecified natural origin/ kg *	1.7E-04	k
	Steam, for chemical processes, at plant/RER U *	6.0E-03	k
	Natural gas, burned in industrial furnace $>100 kW/$ RER U *	7.0E+00	М
	Electricity, medium voltage, production FR, at grid/FR U *	1.6E+00	kW
	Propylene, at plant/RER U *	9.9E-01	k
	Chemical plant, organics/RER/I U **	4.0E-10	
	Transport, freight, rail/RER U **	5.2E-01	tkr
	Transport, lorry >16t, fleet average/RER U **	8.6E-02	tkr
	Molybdenum ***	3.5E-04	k
	Iron ***	4.1E-05	k
	Bismuth ***	5.1E-05	k
	Cobalt ***	1.3E-04	k
	Potassium ***	9.6E-07	k
	Silicon ***	1.3E-05	k
Air emissions			
	Carbon dioxide, fossil *	7.8E-01	k
Avoided processes	Heat, unspecific, in chemical plant/RER U *	1.9E+03	k
	Electricity, production mix IT/IT U *	1.7E-01	kW

Table S5. Scenario A:	: percentage contribution	of each life cycle stage	e in terms of Im	pacts and Avoided impacts

Impact category	Cultivation phase	Oil production	Triglycerides trans-esterification	Avoided glycerine combustion	Avoided diesel extraction	Glycerol refining (84% -> 100%)	Dehydration process
Impacts							
Climate Change	77	6	9	-	-	2	5
Terrestrial ecotoxicity	100	0	0	0	-	0	0
Agricultural land occupation	100	0	0	0	-	0	0
Metal depletion	87	4	6	-	-	0	3
Fossil fuel depletion	53	10	22	5	-	3	7
Avoided impacts							
Climate Change	-	-	-	8	92	-	-
Terrestrial ecotoxicity	-	-	-	-	100	-	-
Agricultural land occupation	-	-	-	-	100	-	-
Metal depletion	-	-	-	4	96	-	-
Fossil fuel depletion	-	-	-	-	100	-	-

Table S6. Scenario B: percentage contribution of each life cycle stage in terms of Impacts and Avoided impacts

Impact category	Breeding phase	Tallow production	Triglyceride hydrolysis	Glycerol refining (20%- >99.5%)	Fatty Acids Purification	Avoided rape oil production	Dehydration process	Avoided glycerine combustion
Impacts								
Climate Change	72	16	2	2	5	-	3	-
Terrestrial ecotoxicity	4	29	8	12	24	-	12	10
Agricultural land occupation	100	0	0	0	0	-	0	0
Metal depletion	3	68	2	10	4	-	13	-
Fossil fuel depletion	17	46	5	6	14	-	7	5
Avoided impacts								
Climate Change	-	-	-	-	-	99	-	1
Terrestrial ecotoxicity	-	-	-	-	-	100	-	-
Agricultural land occupation	-	-	-	-	-	100	-	-
Metal depletion	-	-	-	-	-	100	-	0
Fossil fuel depletion	-	-	-	-	-	100	-	-

Table S7. Typical analyses of various types	of glycerol produced at different i	ndustrial sites by triglycerides t	rans-esterification
(extrapolated from US Pat., 8 530 697 B2	, 2013.)		

		Diester Industries	
Site	Robbe	Saipol	Marl (RFA)
Production (kt/year)	10	25	15
Glycerol (wt %)	65	93	85
Water (wt %)	31	4	10
NGOM [*] (wt %)	1	1	0.5
Ash (wt %)	3 (Na ₂ SO ₄)	2.5 (NaCl)	4.5 (NaCl)
Methanol (wt %)	0.3	0.2	< 0.01

Table S8. LCIA using crude instead of purified glycerol

Analysis method	Impact category	Unit	Scenario A	Scenario B
ReCiPe2008				
	Total Impact	Pt	8.5E+00	-4.0E+00
	Agricultural land occupation	species·yr	1.5E-06	-6.4E-07
	Terrestrial ecotoxicity	species·yr	1.4E-06	-1.7E-06
	Climate change Ecosystems	species·yr	3.6E-07	3.8E-07
	Climate change Human Health	DALY	5.4E-05	5.6E-05
	Fossil fuel depletion	\$	-4.8E-01	1.5E-01
	Metal depletion	\$	1.6E-01	-1.5E-01