# **Supporting information for**

# Efficient 4,5-Dihydro-1*H*-imidazol-5-one Formation from Amidines and Ketones under Transition-Metal Free Conditions

Yanjun Xie,<sup>a</sup> Xiufang Cheng,<sup>a</sup> Saiwen Liu,<sup>a</sup> Hui Chen,<sup>a</sup> Wang Zhou,<sup>b</sup> Luo Yang,<sup>a</sup> Guo-Jun Deng<sup>a,c</sup>\*

# **Table of Contents**

| 1. General information                                                  | 2     |
|-------------------------------------------------------------------------|-------|
| 2. Optimization of the Reaction Conditions                              | 3     |
| 3. Control experiments                                                  | 4-8   |
| 4. General experimental procedure                                       | 8     |
| 5. Characterization data of products                                    | 8-21  |
| 6. References                                                           | 22    |
| 7. Copies of <sup>1</sup> H and <sup>13</sup> C NMR spectra of products | 23-52 |
| 8. X-ray structure of 3y                                                | 52-58 |

<sup>&</sup>lt;sup>a</sup> Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China; Fax: (+86)-731-58292251; e-mail: gjdeng@xtu.edu.cn

<sup>&</sup>lt;sup>b</sup> College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China

<sup>&</sup>lt;sup>c</sup> Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China.

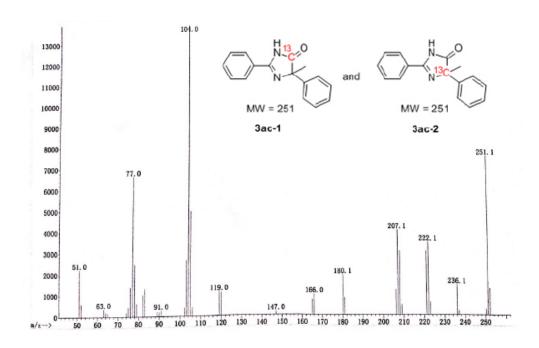
#### **General information:**

All experiments were carried out under an atmosphere of oxygon. Flash column chromatography was performed over silica gel 48-75 μm. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded on Bruker-AV (400 or 500 MHz and 100 or 125 MHz, respectively) instrument internally referenced to SiMe<sub>4</sub>, chloroform or dimethyl sulfoxide signals. Chemical shifts are referenced to solvent residual peak (2.50 ppm <sup>1</sup>H, 39.50 ppm <sup>13</sup>C for DMSO - *d*<sub>6</sub>, and 0 ppm <sup>1</sup>H for tetramethylsilane, 77.00 ppm <sup>13</sup>C for CDCl<sub>3</sub>). MS analyses were performed on Agilent 5975 GC-MS instrument (EI). The new compounds were characterized by <sup>1</sup>H NMR, <sup>13</sup>C NMR, MS and HRMS. The structure of known compounds were further corroborated by comparing their <sup>1</sup>H NMR, <sup>13</sup>C NMR and MS data with those of literature. All reagents were used as received from commercial sources without further purification.

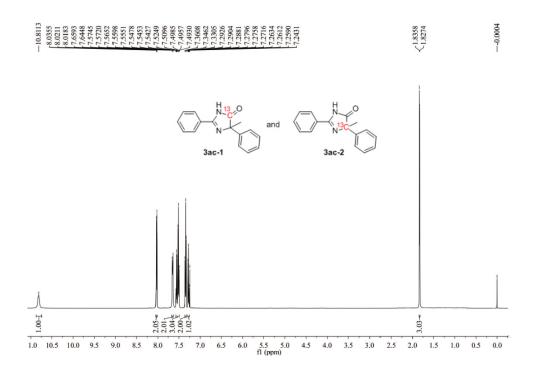
Table S1. Optimization of the Reaction Conditions<sup>a</sup>

| entry           | base (equiv)                       | T (°C) | solvent   | yield (%) <sup>b</sup> |
|-----------------|------------------------------------|--------|-----------|------------------------|
| 1               |                                    | 80     | NMP       | trace                  |
| 2               |                                    | 80     | pyridine  | 5                      |
| 3               | K <sub>2</sub> CO <sub>3</sub> (2) | 80     | pyridine  | 6                      |
| 4               | NaOH (2)                           | 80     | pyridine  | 33                     |
| 5               | KOH (2)                            | 80     | pyridine  | 23                     |
| 6               | <sup>t</sup> BuOK (2)              | 80     | pyridine  | 28                     |
| 7               | NaOH (4)                           | 80     | pyridine  | 88                     |
| 8               | NaOH (4.5)                         | 80     | pyridine  | 93                     |
| 9               | NaOH (5)                           | 80     | pyridine  | 91                     |
| 10              | NaOH (4.5)                         | 80     | NMP       | 20                     |
| 11              | NaOH (4.5)                         | 80     | quinoline | 89                     |
| 12              | NaOH (4.5)                         | 80     | toluene   | 50                     |
| 13 <sup>c</sup> | NaOH (4.5)                         | 80     | pyridine  | 75                     |
| 14              | NaOH (4.5)                         | 60     | pyridine  | 87                     |
| 15              | NaOH (4.5)                         | 100    | pyridine  | 88                     |
| 16 <sup>d</sup> | NaOH (4.5)                         | 80     | pyridine  | 21                     |

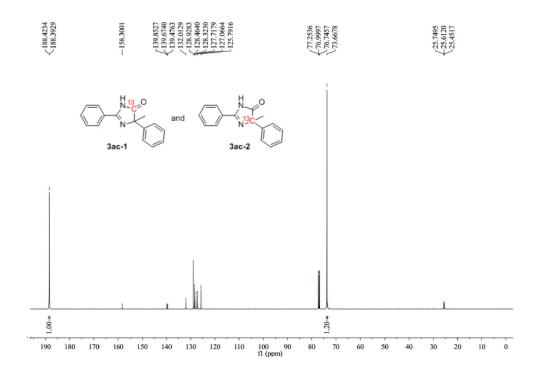
<sup>a</sup>Conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), solvent (0.8 mL), 24 h, under oxygen unless otherwise noted. <sup>b</sup>GC yield based on **1a** using 1,3,5-trimethylbenzene as internal standard. <sup>c</sup>0.2 mmol of **2a** was used. <sup>d</sup>24 h under air.


# **Control experiments:**

# 1) <sup>13</sup>C labeling reaction


The reaction of **1a** with <sup>13</sup>C labeled propiophenone (**2t**) was carried out under the standard reaction conditions (Scheme S1). The corresponding product **3ac** was isolated and analysed by MS (EI) and NMR. The <sup>13</sup>C labeling reaction showed that the <sup>13</sup>C-labeled carbon atom of **2t** appeared in two different sites in the product **3ac** (**3ac-1** and **3ac-2**). The ratio of **3ac-1/3ac-2** was calculated based on the <sup>13</sup>C NMR spectra.

Scheme S1 <sup>13</sup>C labeling reaction of **1a** with **2t**.

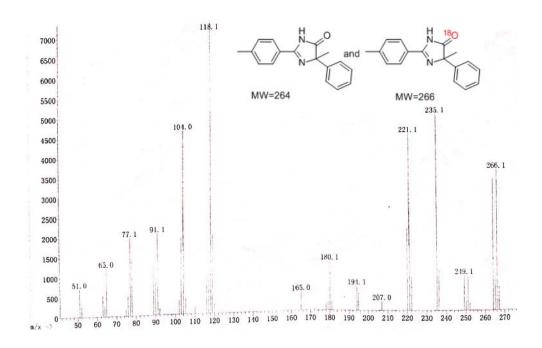

# MS analysis of <sup>13</sup>C labeling products of 3ac-1 and 3ac-2



# <sup>1</sup>H NMR spectra of 3ac-1 and 3ac-2



# $^{13}\mathrm{C}$ NMR spectra of 3ac-1 and 3ac-2




# 2) <sup>18</sup>O labeling reaction

The reaction of 4-methylbenzimidamide hydrochloride (**1b**) with propiophenone (**2t**) was carried out under <sup>18</sup>O<sub>2</sub> atmosphere with modified reaction conditions (Scheme S2). To avoid any other oxygen source, NaH was used as the base to replace NaOH. The reaction result showed that more than half of the product is <sup>18</sup>O-labeled as calculated by MS (by comparing to the product spectra under O<sub>2</sub>). This means part of the oxygen atoms in the product came from the molecular oxygen.

Scheme S2 Reaction of **1b** with **2t** under <sup>18</sup>O<sub>2</sub> atmosphere.

# The MS spectra of reaction under <sup>18</sup>O<sub>2</sub>



#### 3) Reaction of 1a with benzil

Under the standard reaction conditions, benzamidine hydrochloride hydrate (1a) smoothly reacted with benzil to afford the corresponding produce 3ad in 85% yield (Scheme S3, eq.1). However,

1,2-diphenylethanone ( $2\mathbf{u}$ ) could not be converted into benzil under the standard condition (Scheme S3, eq.2). This means the CH<sub>2</sub> group *ortho* to the carbonyl group in ketone might be oxidized into the carbonyl group and serves as a key intermediate under the standard reaction conditions with the aid of amidine substrate (Scheme S3, eq.3).

Scheme S3 Reaction of 1a with benzil.

#### 4) HRMS monitoring result of reaction 1a with 2a

Scheme S4 Reaction of **1a** with **2a**.

The reaction of **1a** with **2a** was carried out under the standard conditions for 4 h and the mixture was directly analysed by HRMS (Scheme S4). The HRMS analysis result showed that two possible intermediates were detected with  $[M+H]^+=201.13883$ ,  $[M+H]^+=217.13375$  which could be:

Chemical Formula: C<sub>13</sub>H<sub>16</sub>N<sub>2</sub> Exact Mass: 200.13 Chemical Formula: C<sub>13</sub>H<sub>16</sub>N<sub>2</sub>O Exact Mass: 216.13



 Bruker Compass DataAnalysis 4.0
 printed:
 5/14/2014 4:26:37 PM
 Page 1 of 1

#### General procedure: 2-phenyl-1,3-diazaspiro[4.4]non-1-en-4-one (3a):

A 10 mL oven-dried reaction vessel was charged with NaOH (36 mg, 0.9 mmol), benzamidine hydrochloride hydrate (1a, 35.6 mg, 0.2 mmol). The reaction vessel was purged with oxygen for three times and was added cyclohexanone (2a, 31.2  $\mu$ L, 0.3 mmol), pyridine (0.8 mL) by syringe. The sealed vessel was stirred at 80 °C for 24 h. After cooling to room temperature, the volatiles were removed under vacuum and the residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give 3a as white solid; yield: 36.8 mg (86%). m.p.: 201-203 °C.

#### 2-Phenyl-1,3-diazaspiro[4.4]non-1-en-4-one (3a, CAS: 779309-80-7)<sup>[1]</sup>

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  10.02 (br, 1H), 7.92 (d, J = 6.8 Hz, 2H), 7.54-7.49 (m, 3H), 2.07-1.97 (m, 8H); <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ , ppm)  $\delta$  188.0, 157.4, 131.5, 128.7, 128.4,

126.7, 77.4, 37.0, 25.5; MS (EI) *m/z* (%) 214, 171, 104 (100), 83, 54.

# 2-(*p*-Tolyl)-1,3-diazaspiro[4.4]non-1-en-4-one (3b)

The reaction was conducted with 4-methylbenzimidamide hydrochloride (**1b**, 34.1 mg. 0.2 mmol) and cyclohexanone (**2a**, 31.2  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 40.1 mg, 88% yield of **3b** as white solid. m.p.: 194-196 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  10.14 (br, 1H), 7.80 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 2.42 (s, 3H), 2.07-1.94 (m, 8H); <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ , ppm)  $\delta$  187.8, 156.6, 136.2, 128.8, 128.5, 126.7, 77.5, 37.0, 25.5, 21.0; MS (EI) m/z (%) 228, 185, 118 (100), 83, 65; HRMS calcd. for: C<sub>14</sub>H<sub>17</sub>ON<sub>2</sub> [M+H]<sup>+</sup> 229.1335, found 229.1333.

#### 2-(4-Chlorophenyl)-1,3-diazaspiro[4.4]non-1-en-4-one (3c)

$$CI \longrightarrow N \longrightarrow N$$

The reaction was conducted with 4-chlorobenzamidine hydrochloride (1c, 38.2 mg. 0.2 mmol) and cyclohexanone (2a, 31.2  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 43.2 mg, 87% yield of 3c as white solid. m.p.: 258-259 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  10.02 (br, 1H), 7.86 (d, J = 7.7 Hz , 2H), 7.49 (d, J = 8.2 Hz , 2H), 2.06-1.94 (m, 8H); <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ , ppm)  $\delta$  187.9, 156.7, 136.2, 128.9, 128.5, 127.7, 77.6, 37.0, 25.5; MS (EI) m/z (%) 248, 138 (100), 83, 75, 54; HRMS calcd. for: C<sub>13</sub>H<sub>14</sub>ON<sub>2</sub> Cl[M+H]<sup>+</sup> 249.0789, found 249.0787.

#### 2-(4-Bromophenyl)-1,3-diazaspiro[4.4]non-1-en-4-one (3d)

9

The reaction was conducted with 4-bromobenzamidine hydrochloride (**1d**, 47.1 mg. 0.2 mmol) and cyclohexanone (**2a**, 31.2  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 49.1 mg, 84% yield of **3d** as white solid. m.p.: 279-281 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  9.98 (br, 1H), 7.78 (d, J = 8.2 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 2.11-1.94 (m, 8H); <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ , ppm)  $\delta$  187.9, 156.8, 131.8, 128.7, 128.0, 125.2, 77.6, 37.0, 25.5; MS (EI) m/z (%) 292, 184, 83 (100), 76, 54; HRMS calcd. for: C<sub>13</sub>H<sub>14</sub>ON<sub>2</sub> Br[M+H]<sup>+</sup> 293.0284, found 293.0282.

#### 2-(4-(Trifluoromethyl)phenyl)-1,3-diazaspiro[4.4]non-1-en-4-one (3e)

$$F_3C$$

The reaction was conducted with 4-(trifluoromethyl)benzamidine hydrochloride (**1e**, 44.9 mg. 0.2 mmol) and cyclohexanone (**2a**, 31.2  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 50.8 mg, 90% yield of **3e** as white solid. m.p.: 217-219 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  10.81 (br, 1H), 8.09 (d, J = 8.2 Hz, 2H), 7.79 (d, J = 8.3 Hz, 2H), 2.14-1.94 (m, 8H); <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ , ppm)  $\delta$  187.7, 156.7, 132.6, 131.3 (q, J = 33.6 Hz), 127.6, 126.0 (q, J = 274.5 Hz), 125.6, 77.8, 37.0, 25.5; MS (EI) m/z (%) 282, 239, 172 (100), 145, 54; HRMS calcd. for: C<sub>14</sub>H<sub>14</sub>ON<sub>2</sub>F<sub>3</sub> [M+H]<sup>+</sup> 283.1053, found 283.1049.

#### 2-(4-nitrophenyl)-1,3-diazaspiro[4.4]non-1-en-4-one (3f)

$$O_2N$$

The reaction was conducted with 4-nitrobenzimidamide hydrochloride (1f, 40.2 mg, 0.2 mmol) and cyclohexanone (2a, 31.2  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column

chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 38.3 mg. 74% yield of **3f** as white solid. m.p.: 262-264 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  10.86 (br, 1H), 8.38 (d, J = 8.8 Hz, 2H), 8.15 (d, J = 8.7 Hz, 2H), 2.14-1.95 (m, 8H); <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ , ppm)  $\delta$  187.7, 156.4, 149.1, 134.4, 128.1, 123.9, 78.0, 37.0, 25.5; MS (EI) m/z (%) 259, 149, 103, 83 (100), 54; HRMS calcd. for: C<sub>13</sub>H<sub>14</sub>O<sub>3</sub>N<sub>3</sub> [M+H]<sup>+</sup> 260.1030, found 260.1033.

## 2-(o-Tolyl)-1,3-diazaspiro[4.4]non-1-en-4-one (3g)

The reaction was conducted with 2-methylbenzimidamide hydrochloride (1g, 34.1 mg, 0.2 mmol) and cyclohexanone (2a, 31.2  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 40.6 mg. 89% yield of 3g as white solid. m.p.: 143-145 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  8.86 (br, 1H), 7.50-7.48 (m, 1H), 7.39-7.36 (m, 1H), 7.30-7.28 (m, 2H), 2.52 (s, 3H), 2.08-1.92 (m, 8H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  189.6, 158.3, 137.2, 131.2, 130.4, 128.8, 128.4, 125.9, 78.6, 37.5, 26.0, 20.4; MS (EI) m/z (%) 228, 158, 118 (100), 83, 54; HRMS calcd. for: C<sub>14</sub>H<sub>17</sub>ON<sub>2</sub> [M+H]<sup>+</sup> 229.1335, found 229.1333.

# 2-(2-Chlorophenyl)-1,3-diazaspiro[4.4]non-1-en-4-one (3h, CAS: 1316305-72-2)<sup>[2]</sup>

The reaction was conducted with 2-chlorobenzimidamide hydrochloride (**1h**, 38.2 mg, 0.2 mmol) and cyclohexanone (**2a**, 31.2  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 42.2 mg. 85% yield of **3h** as white solid. m.p.: 183-185 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  8.68 (br, 1H), 7.92 (d, J = 7.4 Hz, 1H), 7.46-7.45 (m, 2H), 7.41-7.37 (m, 1H), 2.07-1.94 (m, 8H); <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ , ppm)  $\delta$  187.9, 157.3,

132.0, 130.7, 129.9, 129.2, 127.3, 126.7, 77.6, 36.7, 25.5; MS (EI) *m/z* (%) 248, 185, 138 (100), 83, 54.

#### 2-(Pyridin-3-yl)-1,3-diazaspiro[4.4]non-1-en-4-one (3i)

The reaction was conducted with 3-pyridinecarboximidamide hydrochloride ( $\bf{1i}$ , 31.5 mg, 0.2 mmol) and cyclohexanone ( $\bf{2a}$ , 31.2  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 30.5 mg. 71% yield of  $\bf{3i}$  as white solid. m.p.: 193-195 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  10.98 (br, 1H), 9.20 (d, J = 1.6 Hz, 1H), 8.79-8.78 (m, 1H), 8.32-8.29 (m, 1H), 7.48-7.46 (m, 1H), 2.13-1.93 (m, 8H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  190.6, 155.7, 152.0, 150.0, 134.5, 125.0, 123.7, 78.8, 37.5, 26.1; MS (EI) m/z (%) 215, 172, 105 (100), 78, 54; HRMS calcd. for: C<sub>12</sub>H<sub>14</sub>ON<sub>3</sub> [M+H]<sup>+</sup> 216.1131, found 216.1130.

#### 2-(Pyridin-4-yl)-1,3-diazaspiro[4.4]non-1-en-4-one (3j)

The reaction was conducted with 4-pyridinecarboximidamide hydrochloride (1j, 31.5 mg, 0.2 mmol) and cyclohexanone (2a, 31.2  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 32.3 mg. 75% yield of 3j as white solid. m.p.: 215-217 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  10.89 (br, 1H), 8.82 (d, J = 5.1 Hz, 2H), 7.83 (d, J = 6.0 Hz, 2H), 2,14-1.93 (m, 8H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  190.8, 155.9, 150.6, 136.1, 120.7, 79.5, 37.6, 26.2; MS (EI) m/z (%) 215, 172, 105 (100), 83, 54; HRMS calcd. for: C<sub>12</sub>H<sub>14</sub>ON<sub>3</sub> [M+H]<sup>+</sup> 216.1131, found 216.1135.

#### 7-Methyl-2-phenyl-1,3-diazaspiro[4.4]non-1-en-4-one (3k)

The reaction was conducted with benzamidine hydrochloride hydrate (1a, 35.6 mg, 0.2 mmol) and 4-methylcyclohexanone (2b, 36.8  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 36.5 mg. 80% yield of 3k as white solid.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, mixture, ppm) δ 10.27 (br, 0.5H), 10.19 (br, 0.5H), 7.92 (d, J = 7.6 Hz, 2H), 7.55-7.49 (m, 3H), 2.61-2.53 (m, 0.5H), 2.48-2.40 (m, 0.5H), 2.22-1.93 (m, 4H), 1.75-1.54 (m, 2H), 1.15 (t, J = 7.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, mixture, ppm) δ 191.2, 190.6, 157.3, 131.6, 128.8, 128.6, 126.9, 79.2, 78.6, 46.1, 44.8, 37.6, 36.7, 35.4, 35.1, 35.0, 34.5, 19.9, 19.6; MS (EI) m/z (%) 228, 185, 104 (100), 82, 51; HRMS calcd. for: C<sub>14</sub>H<sub>17</sub>ON<sub>2</sub> [M+H]<sup>+</sup> 229.1335, found 229.1334.

#### 7-Ethyl-2-phenyl-1,3-diazaspiro[4.4]non-1-en-4-one (3l)

$$N$$
 $C_2H_5$ 

The reaction was conducted with benzamidine hydrochloride hydrate (1a, 35.6 mg, 0.2 mmol) and 4-ethylcyclohexanone (2c, 42.3  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 40.7 mg. 84% yield of 31 as white solid.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, mixture, ppm) δ 10.15 (br, 0.5H), 10.05 (br, 0.5H), 7.92-7.90 (m, 2H), 7.55-7.48 (m, 3H), 2.43-1.92 (m, 5H), 1.76-1.47 (m, 4H), 0.97-0.94 (m, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, mixture, ppm) δ 191.1, 190.5, 157.3, 131.6, 128.8, 128.7, 126.9, 78.9, 78.3, 44.1, 42.8, 42.6, 42.3, 37.4, 36.4, 32.7, 32.1, 28.4, 28.2, 13.0, 12.9; MS (EI) m/z (%) 242, 173, 104 (100), 82, 54; HRMS calcd. for: C<sub>15</sub>H<sub>19</sub>ON<sub>2</sub> [M+H]<sup>+</sup> 243.1492, found 243.1489.

#### 2-phenyl-7-(iso-propyl)-1,3-diazaspiro[4.4]non-1-en-4-one (3m)

The reaction was conducted with benzamidine hydrochloride hydrate (1a, 35.6 mg, 0.2 mmol) and 4-(iso-propyl)cyclohexanone (2d, 46.5  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 42.5 mg. 83% yield of 3m as white solid.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, mixture, ppm) δ 10.12 (br, 0.5H), 9.99 (br, 0.5H), 7.92-7.90 (t, J = 6.1 Hz, 2H), 7.55-7.48 (m, 3H), 2.18-1.58 (m, 8H), 0.98-0.97 (m, 3H), 0.94-0.92 (m, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, mixture, ppm) δ 191.1, 190.6, 157.3, 131.6, 128.8, 128.7, 128.66, 126.9, 126.88, 78.9, 78.3, 48.3, 47.9, 42.8, 41.4, 37.4, 36.3, 33.4, 33.3, 31.3, 30.6, 21.6, 21.56, 21.55, 21.5; MS (EI) m/z (%) 256, 228, 173, 104 (100), 82; HRMS calcd. for: C<sub>16</sub>H<sub>21</sub>ON<sub>2</sub> [M+H]<sup>+</sup> 257.1648, found 257.1649.

#### 7-(n-Pentyl)-2-phenyl-1,3-diazaspiro[4.4]non-1-en-4-one (3n)

The reaction was conducted with benzamidine hydrochloride hydrate (1a, 35.6 mg, 0.2 mmol) and 4-(n-pentyl)cyclohexanone (2e, 57  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 48.3 mg. 85% yield of 3n as white solid.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, mixture, ppm) δ 10.14 (br, 0.5H), 10.04 (br, 0.5H), 7.92-7.90 (m, 2H), 7.55-7.49 (m, 3H), 2.49-2.28 (m, 1H), 2.22-1.92 (m, 4H), 1.76-1.25 (m, 10H), 0.89 (t, J = 6.8 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, mixture, ppm) δ 191.1, 190.6, 157.2, 131.6, 128.8, 128.7, 126.9, 78.9, 78.3, 44.5, 43.1, 40.8, 40.5, 37.4, 36.4, 35.5, 35.3, 33.1, 32.5, 32.0, 31.9, 29.7, 28.34, 28.31, 22.63, 22.62, 14.1; MS (EI) m/z (%) 284, 173, 104 (100), 82, 55; HRMS calcd. for: C<sub>18</sub>H<sub>25</sub>ON<sub>2</sub> [M+H]<sup>+</sup> 285.1961, found 285.1958.

#### 7- (*tert*-Pentyl)-2-phenyl-1,3-diazaspiro[4.4]non-1-en-4-one (30)

The reaction was conducted with benzamidine hydrochloride hydrate ( $\mathbf{1a}$ , 35.6 mg, 0.2 mmol) and 4-(*tert*-pentyl)cyclohexanone ( $\mathbf{2f}$ , 55  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 40.3 mg. 71% yield of  $\mathbf{3o}$  as white solid.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm) δ 9.97 (br, 1H), 7.92 (d, J = 5.2 Hz, 2H), 7.56-7.48 (m, 3H), 2.38-2.31 (m, 1H), 2.02-1.82 (m, 6H), 1.32-1.27 (q, J = 7.5 Hz, 2H), 0.90-0.85 (m, 9H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, mixture, ppm) δ 191.3, 190.7, 157.4, 157.35, 131.5, 128.7, 128.66, 128.62, 126.9, 126.87, 78.6, 77.9, 49.0, 48.8, 38.9, 37.7, 36.8, 36.3, 34.4, 34.2, 33.8, 33.7, 27.2, 26.5, 23.9, 23.8, 23.75, 23.70, 8.3, 8.2; MS (EI) m/z (%) 284, 255, 173 (100), 82, 55; HRMS calcd. for:  $C_{18}H_{25}ON_2$  [M+H]<sup>+</sup> 285.1961, found 285.1957.

#### **2,7-Diphenyl-1,3-diazaspiro**[**4.4**]non-1-en-4-one (**3p**)

The reaction was conducted with benzamidine hydrochloride hydrate (**1a**, 35.6 mg, 0.2 mmol) and 4-phenylcyclohexanone (**2g**, 50.2 mg, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 44.1 mg. 76% yield of **3p** as white solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, mixture, ppm) δ 10.18 (br, 0.5H), 10.03 (br, 0.5H), 7.96 (d, J = 6.4 Hz, 2H), 7.57-7.52 (m, 3H), 7.41-7.32 (m, 4H), 7.23-7.22 (m, 1H), 3.75-3.71 (m, 0.5H), 3.60-3.56 (m, 0.5H), 2.52-2.07 (m, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, mixture, ppm) δ 190.7, 190.3, 157.7, 157.6, 144.2, 144.0, 131.8, 131.7, 128.92, 128.91, 128.7, 128.4, 127.3, 127.2, 126.92, 126.90, 126.3, 126.2, 78.7, 78.2, 46.0, 45.6, 45.4, 44.3, 37.6, 36.6, 35.2, 34.3; MS (EI) m/z (%) 290, 173 (100), 104, 77, 51; HRMS calcd. for: C<sub>19</sub>H<sub>19</sub>ON<sub>2</sub> [M+H]<sup>+</sup> 291.1492, found 291.1491.

# 2-Phenyl-1,3-diazaspiro[4.5]dec-1-en-4-one (3q, CAS: 34935-85-8)<sup>[3]</sup>

The reaction was conducted with benzamidine hydrochloride hydrate (**1a**, 35.6 mg, 0.2 mmol) and cycloheptanone (**2h**, 35.4  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 36.9 mg. 81% yield of **3g** as white solid. m.p.: 175-177 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm) δ 10.24 (br, 1H), 7.95-7.93 (m, 2H), 7.55-7.49 (m, 3H), 1.91-1.50 (m, 10H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, ppm) δ 190.7, 157.2, 131.5, 128.8, 128.7, 127.0, 72.1, 33.2, 25.3, 21.6; MS (EI) *m/z* (%) 228, 173, 104 (100), 97, 54.

#### 2-Phenyl-1,3-diazaspiro[4.6]undec-1-en-4-one (3r)

The reaction was conducted with benzamidine hydrochloride hydrate (1a, 35.6 mg, 0.2 mmol) and cyclooctanone (2i, 39.5  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 43.1 mg. 89% yield of 3r as white solid. m.p.: 164-165 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm) δ 10.11 (br, 1H), 7.93 (d, J = 6.9 Hz, 2H), 7.56-7.49 (m, 3H), 1.92-1.68 (m, 12H); <sup>13</sup>C NMR (100 MHz, C<sub>2</sub>D<sub>6</sub>SO, ppm) δ 188.4, 156.7, 131.0, 128.2, 128.0, 126.3, 72.5, 35.4, 29.1, 22.0; MS (EI) m/z (%) 242,173, 104 (100), 83, 54; HRMS calcd. for: C<sub>15</sub>H<sub>19</sub>ON<sub>2</sub> [M+H]<sup>+</sup> 243.1492, found 243.1490.

# 4-Ethyl-4-methyl-2-phenyl-1*H*-imidazol-5(4*H*)-one (3s)

The reaction was conducted with benzamidine hydrochloride hydrate (1a, 35.6 mg, 0.2 mmol) and 2-pentanone (2j, 31.9  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 27.5 mg. 68% yield of

**3s** as white solid. m.p.: 150-151 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  10.23 (br, 1H), 7.94 (d, J = 7.0 Hz, 2H), 7.57-7.51 (m, 3H), 1.92 (q, J = 7.0 Hz, 2H), 1.47 (s, 3H), 0.84 (t, J = 7.4 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  190.1, 158.1, 131.7, 128.8, 128.4, 126.9, 73.0, 30.9, 22.9, 8.2; MS (EI) m/z (%) 202, 173, 104 (100), 77, 51; HRMS calcd. for: C<sub>12</sub>H<sub>15</sub>ON<sub>2</sub> [M+H]<sup>+</sup> 203.1179, found 203.1176.

#### 4-Methyl-2-phenyl-4-propyl-1*H*-imidazol-5(4*H*)-one (3t)

The reaction was conducted with benzamidine hydrochloride hydrate (**1a**, 35.6 mg, 0.2 mmol) and 2-hexanone (**2k**, 37.1  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 30.7 mg. 71% yield of **3t** as white solid. m.p.: 130-132 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  10.16 (br, 1H), 7.94 (d, J = 6.6 Hz, 2H), 7.57-7.50 (m, 3H), 1.86 (t, J = 8.4 Hz, 2H), 1.46 (s, 3H), 1.34-1.14 (m, 2H), 0.88 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  190.2, 157.9, 131.7, 128.8, 128.4, 126.9, 72.7, 39.9, 23.3, 17.1, 14.0; MS (EI) m/z (%) 216, 173, 104 (100), 77, 51; HRMS calcd. for: C<sub>13</sub>H<sub>17</sub>ON<sub>2</sub> [M+H]<sup>+</sup> 217.1335, found 217.1334.

# 4-Methyl-2-phenyl-4-(iso-propyl)-1H-imidazol-5(4H)-one (3u)

The reaction was conducted with benzamidine hydrochloride hydrate (1a, 35.6 mg, 0.2 mmol) and 4-methylpentan-2-one (2l, 37.6  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 26.4 mg. 61% yield of 3u as white solid. m.p.: 120-123 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  10.23 (br, 1H), 7.94 (d, J = 7.1 Hz, 2H), 7.56-7.50 (m, 3H), 2.16-2.10 (m, 1H), 1.45 (s, 3H), 1.08 (d, J = 6.8 Hz, 3H), 0.92 (d, J = 6.8 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  190.3, 158.0, 131.7, 128.9, 128.5, 126.9, 75.2, 34.9, 21.2, 16.9, 16.8; MS (EI)

m/z (%) 216, 174, 104 (100), 77, 51; HRMS calcd. for:  $C_{13}H_{17}ON_2$  [M+H]<sup>+</sup> 217.1335, found 217.1337.

#### 4-Butyl-4-methyl-2-phenyl-1*H*-imidazol-5(4*H*)-one (3v)

The reaction was conducted with benzamidine hydrochloride hydrate (**1a**, 35.6 mg, 0.2 mmol) and 2-heptanone (**2m**, 41.8  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 36.8 mg. 80% yield of **3v** as white solid. m.p.: 94-95 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  10.29 (br, 1H), 7.94 (d, J = 7.1 Hz, 2H), 7.58-7.51 (m, 3H), 1.87 (t, J = 8.1 Hz, 2H), 1.46 (s, 3H), 1.31-1.10 (m, 4H), 0.84 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  190.3, 158.0, 131.7, 128.8, 128.4, 126.9, 72.5, 37.6, 25.8, 23.3, 22.6, 13.8; MS (EI) m/z (%) 230, 144, 104 (100), 77, 57; HRMS calcd. for: C<sub>14</sub>H<sub>19</sub>ON<sub>2</sub> [M+H]<sup>+</sup> 231.1492, found 231.1491.

# 4-Methyl-4-pentyl-2-phenyl-1*H*-imidazol-5(4*H*)-one (3w)

The reaction was conducted with benzamidine hydrochloride hydrate (**1a**, 35.6 mg, 0.2 mmol) and 2-octanone (**2n**, 47  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 37.6 mg. 77% yield of **3w** as white solid. m.p.: 99-100 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  10.16 (br, 1H), 7.94 (d, J = 7.3 Hz, 2H), 7.58-7.50 (m, 3H), 1.87 (t, J = 8.0 Hz, 2H), 1.46 (s, 3H), 1.28-1.11 (m, 6H), 0.82 (t, J = 6.9 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  190.3, 157.9, 131.7, 128.8, 128.4, 126.9, 72.7, 37.8, 31.7, 23.4, 23.3, 22.3, 13.9; MS (EI) m/z (%) 244, 174, 104 (100), 77, 51; HRMS calcd. for: C<sub>15</sub>H<sub>21</sub>ON<sub>2</sub> [M+H]<sup>+</sup> 245.1648, found 245.1646.

#### 4-Hexyl-4-methyl-2-phenyl-1*H*-imidazol-5(4*H*)-one (3x)

The reaction was conducted with benzamidine hydrochloride hydrate (1a, 35.6 mg, 0.2 mmol) and 2-nonanone (2o, 51.5  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 38.7 mg. 75% yield of 3x as white solid. m.p.: 73-75 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  10.30 (br, 1H), 7.95 (d, J = 7.2 Hz, 2H), 7.58-7.51 (m, 3H), 1.87 (t, J = 7.7 Hz, 2H), 1.47 (s, 3H), 1.25-1.12 (m, 8H), 0.82 (t, J = 6.9 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  190.2, 157.8, 131.7, 128.8, 128.4, 126.9, 72.7, 37.9, 31.6, 29.3, 23.7, 23.4, 22.5, 14.0; MS (EI) m/z (%) 258, 187, 104 (100), 77, 57; HRMS calcd. for: C<sub>16</sub>H<sub>23</sub>ON<sub>2</sub> [M+H]<sup>+</sup> 259.1805, found 259.1803.

#### 4-Heptyl-4-methyl-2-phenyl-1*H*-imidazol-5(4*H*)-one (3y)

The reaction was conducted with benzamidine hydrochloride hydrate (1a, 35.6 mg, 0.2 mmol) and 2-decanone (2p, 57.2  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 39.7 mg. 73% yield of 3y as white solid. m.p.: 90-92 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  10.00 (br, 1H), 7.95 (d, J = 5.2 Hz, 2H), 7.59-7.51 (m, 3H), 1.88 (t, J = 7.3 Hz, 2H), 1.47 (s, 3H), 1.25-1.12 (m, 10H), 0.83 (t, J = 7.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  190.3, 157.9, 131.7, 128.8, 128.4, 126.9, 72.7, 37.9, 31.7, 29.5, 29.0, 23.8, 23.3, 22.5, 14.0; MS (EI) m/z (%) 272, 174, 104 (100), 77, 57; HRMS calcd. for: C<sub>17</sub>H<sub>25</sub>ON<sub>2</sub> [M+H]<sup>+</sup> 273.1961, found 273.1959.

#### 4-Ethyl-4-methyl-2-phenyl-1*H*-imidazol-5(4*H*)-one (3z)

The reaction was conducted with benzamidine hydrochloride hydrate (1a, 35.6 mg, 0.2 mmol) and 3-pentanone (2q, 31.9  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 29.9 mg. 74% yield of 3z as white solid. This product is same as 3s.

## 4-Ethyl-2-phenyl-4-propyl-1*H*-imidazol-5(4*H*)-one (3aa)

The reaction was conducted with benzamidine hydrochloride hydrate (**1a**, 35.6 mg, 0.2 mmol) and 4-heptanone (**2r**, 41.8  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 32.2 mg. 70% yield of **3aa** as white solid. m.p.: 144-146 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  10.11 (br, 1H), 7.93 (d, J = 7.1 Hz, 2H), 7.58-7.50 (m, 3H), 1.96-1.81 (m, 4H), 1.31-1.13 (m, 2H), 0.87 (t, J = 7.3 Hz, 3H), 0.81 (t, J = 7.4 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  189.7, 158.4, 131.7, 128.8, 128.3, 126.9, 77.2, 39.2, 30.3, 16.9, 14.1, 7.9; MS (EI) m/z (%) 230, 187, 104 (100), 77, 51; HRMS calcd. for: C<sub>14</sub>H<sub>19</sub>ON<sub>2</sub> [M+H]<sup>+</sup> 231.1492, found 231.1491.

# 4-Butyl-2-phenyl-4-propyl-1*H*-imidazol-5(4*H*)-one (3ab)

The reaction was conducted with benzamidine hydrochloride hydrate (**1a**, 35.6 mg, 0.2 mmol) and 5-nonanone (**2s**, 52  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 41.8 mg. 81% yield of **3ab** as white solid. m.p.: 114-116 °C.

 $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  9.98 (br, 1H), 7.94 (d, J = 4.7 Hz, 2H), 7.59-7.51 (m, 3H),

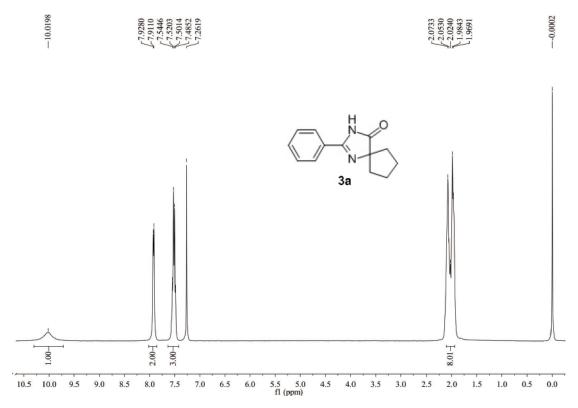
1.93-1.8 (m, 4H), 1.32-1.09 (m, 6H), 0.86 (t, J = 7.3 Hz, 3H), 0.82 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  189.7, 158.3, 131.7, 128.7, 128.3, 126.9, 76.2, 39.5, 37.1, 25.5, 22.6, 16.8, 14.0, 13.8; MS (EI) m/z (%) 258, 187, 104 (100), 77, 57; HRMS calcd. for: C<sub>16</sub>H<sub>23</sub>ON<sub>2</sub> [M+H]<sup>+</sup> 259.1805, found 259.1804.

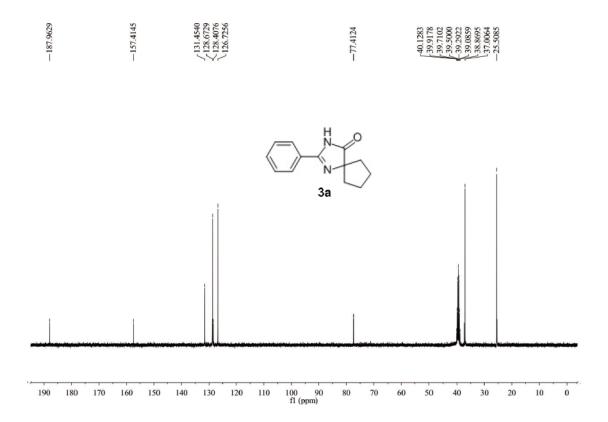
# 4-Methyl-2,4-diphenyl-1*H*-imidazol-5(4*H*)-one (3ac)<sup>[4]</sup>

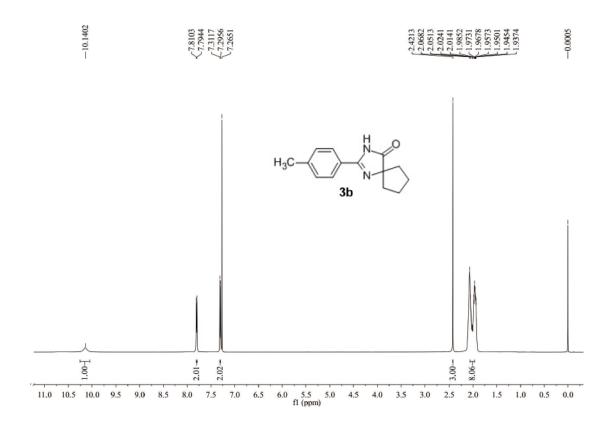
The reaction was conducted with benzamidine hydrochloride hydrate (1a, 35.6 mg, 0.2 mmol) and propiophenone (2t, 39.8  $\mu$ L, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 42.5 mg. 85% yield of 3ac as white solid. m.p.: 161-163 °C.

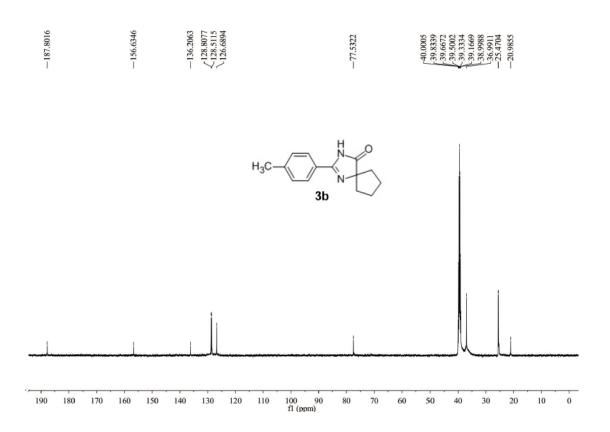
<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  10.14 (br, 1H), 8.01 (d, J = 7.0 Hz, 2H), 7.65 (d, J = 7.6 Hz, 2H), 7.61-7.52 (m, 3H), 7.38-7.27 (m, 3H), 1.84 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  188.7, 158.9, 139.5, 132.0, 128.8, 128.4, 128.2, 127.7, 127.1, 125.7, 73.5, 25.4; MS (EI) m/z (%) 250, 180, 104 (100), 77, 51; HRMS calcd. for: C<sub>16</sub>H<sub>15</sub>ON<sub>2</sub> [M+H]<sup>+</sup> 251.1179, found 251.1178.

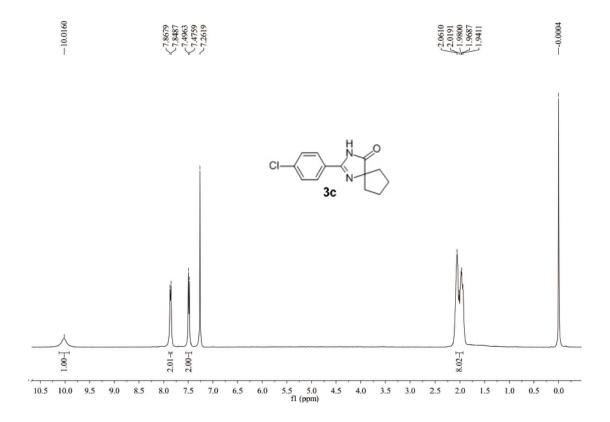
# 2,4,4-triphenyl-1*H*-imidazol-5(4*H*)-one (3ad, CAS: 37068-60-3)<sup>[5]</sup>

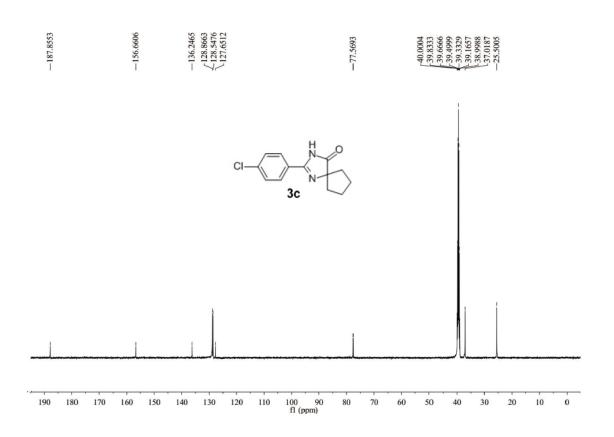

The reaction was conducted with benzamidine hydrochloride hydrate (**1a**, 35.6 mg, 0.2 mmol) and 1,2-diphenylethanone (**2u**, 58.9 mg, 0.3 mmol). The crude mixture was purified by flash column chromatography on silica (petroleum ether/ethyl acetate = 9:1) to provide 53.7 mg. 86% yield of **3ad** as white solid. m.p.: 224-225 °C.

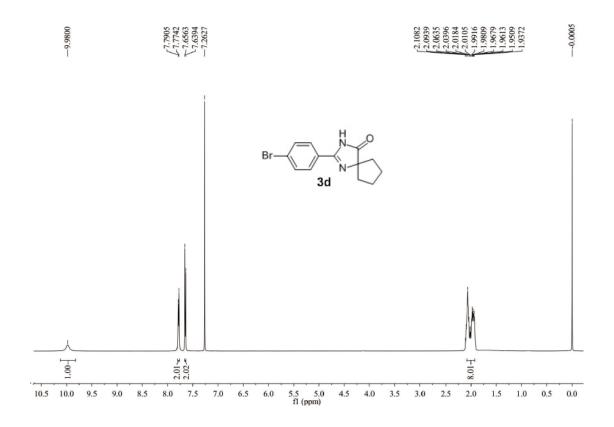

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  10.05 (br, 1H), 8.01 (d, J = 7.2 Hz, 2H), 7.62-7.49 (m, 7H), 7.35-7.27 (m, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  185.9, 158.2, 140.3, 132.1, 129.2, 128.9, 128.4, 127.8, 127.4, 127.2, 84.1; MS (EI) m/z (%) 312, 269, 180 (100), 104, 51.

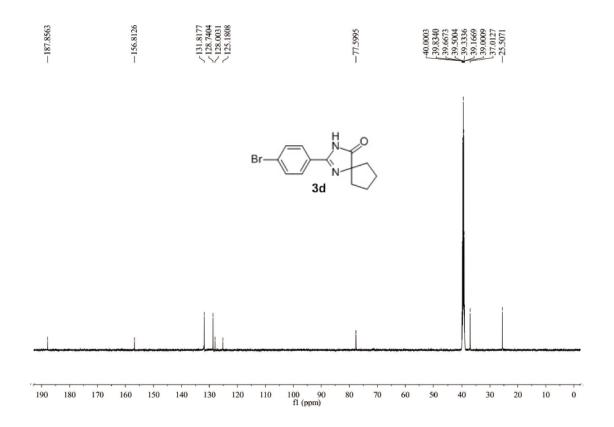

# References

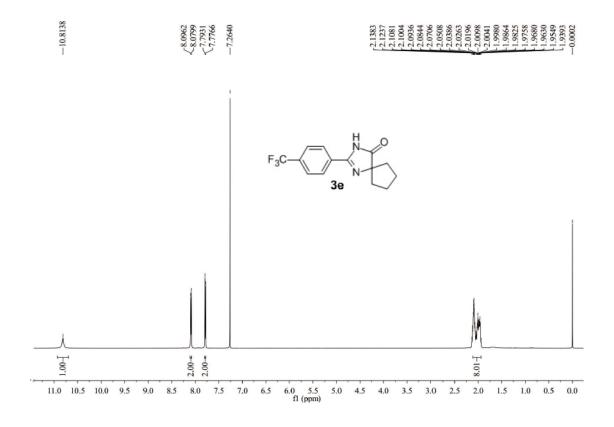

- [1] I. Panov, P. Drabina, Z. Padělková, J. Hanusek and M. Sedlák, *J. Heterocyclic Chem.*, 2010, 47, 1356.
- [2] M. R. Wood, I. M. Bell, J. J. Kim, H. G. Selnick and C. A. Stump, WO2010/21919 A1, 2010.
- [3] T. Toda, S. Morimura, E. Mori, H. Horiuchi and K. Murayama, *Bull. Chem. Soc. Jpn.*, 1971,44, 3445.
- [4] Sakaguchi and Tanabe; Yakugaku Zasshi, 1977, 97, 223.
- [5] K. Gillman, M. Higgins, G. Poindexter, M. Browning, W. Clarke, S. Flowers, J. Grace, J. Hogan, R. McGovern, L. Iben, G. Mattson, A. Ortiz, S. Rassnick, J. Russell and I. Antal-Zimanyi, *Bioorgan. Med. Chem.*, 2006, 14, 5517.

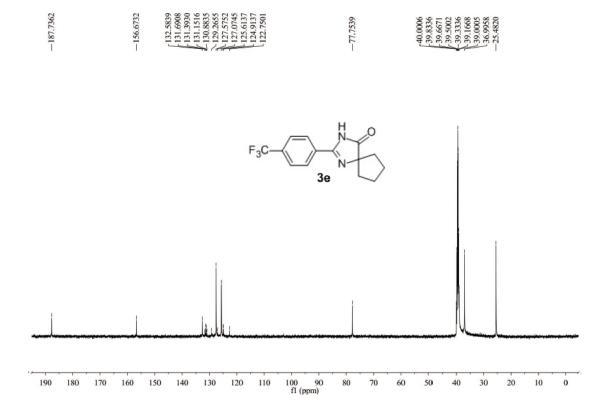

# <sup>1</sup>H and <sup>13</sup>C NMR of products

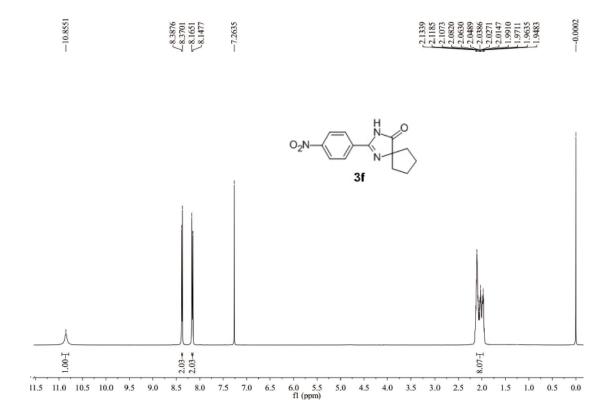


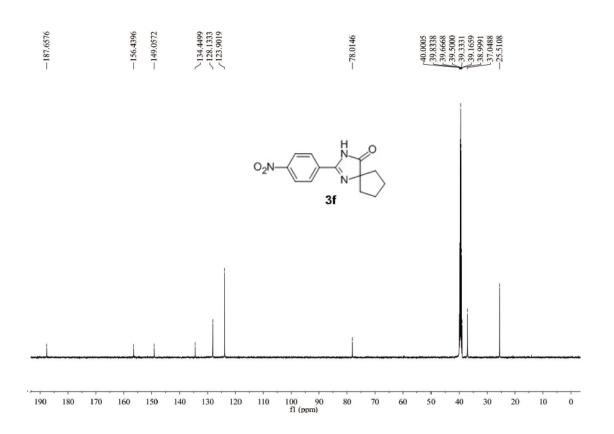



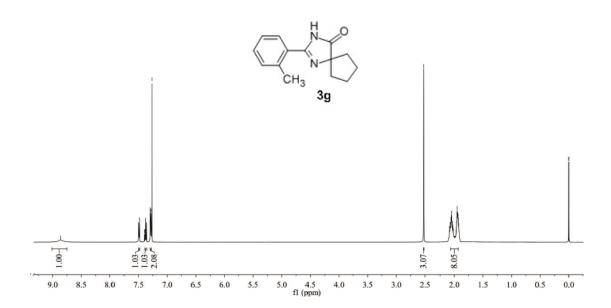



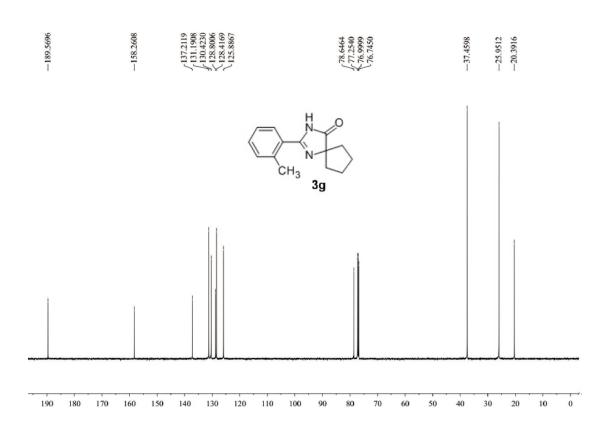



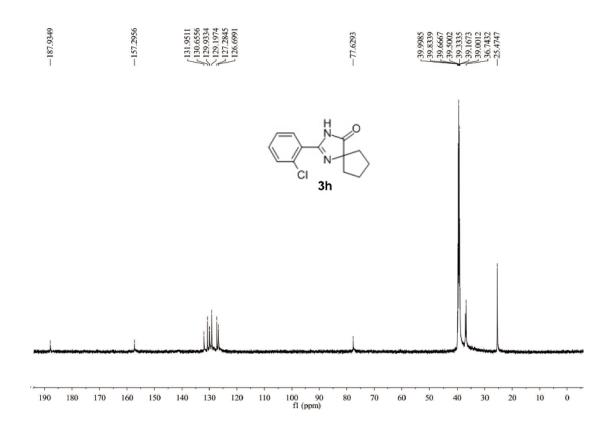


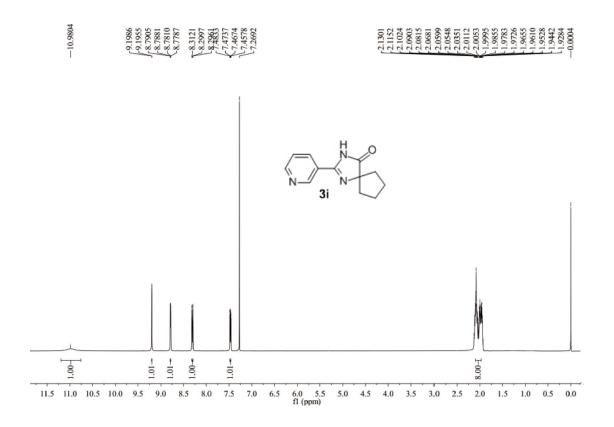


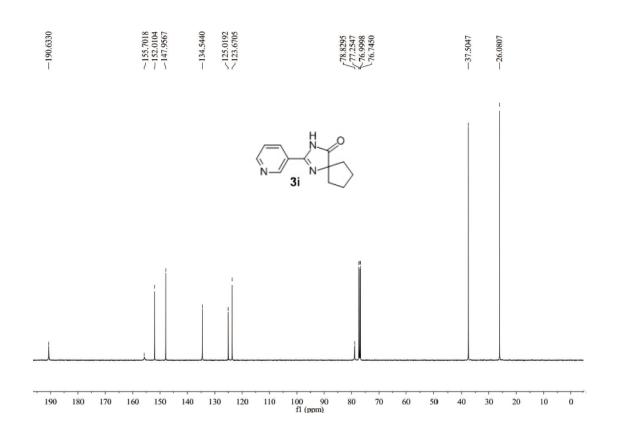



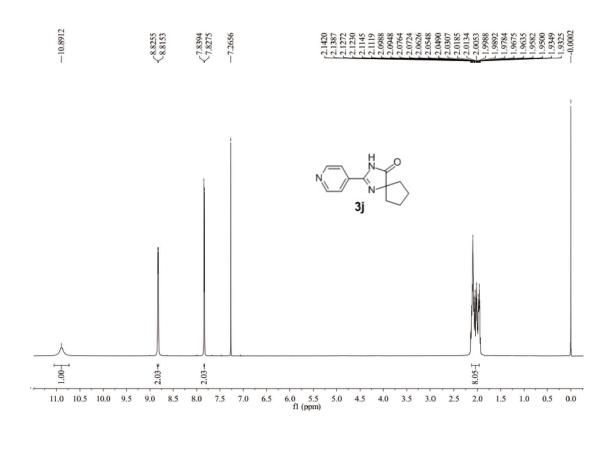



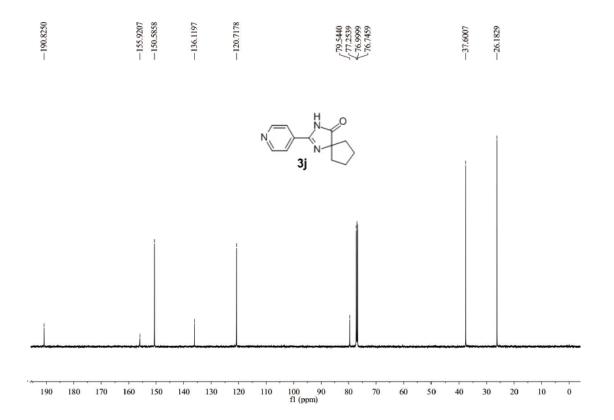


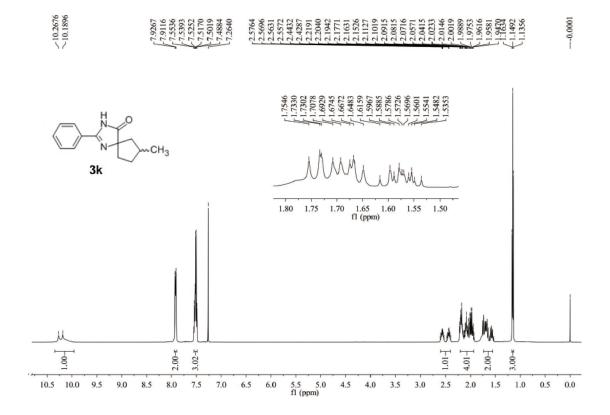



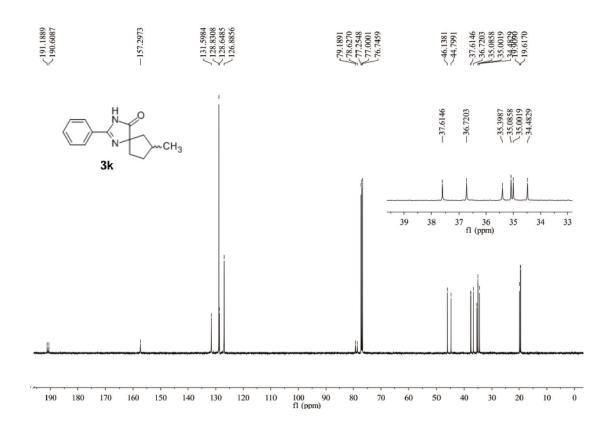



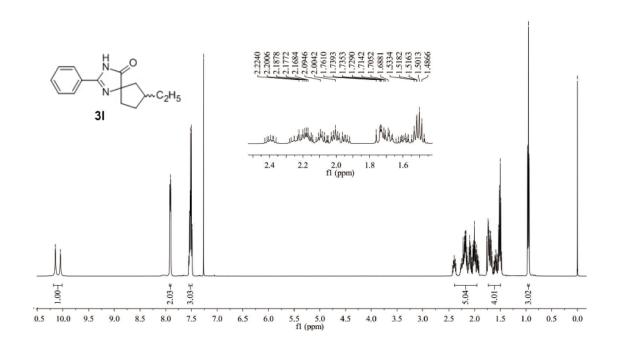



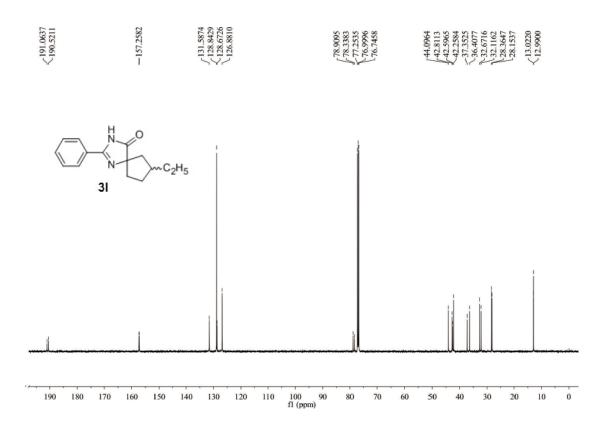



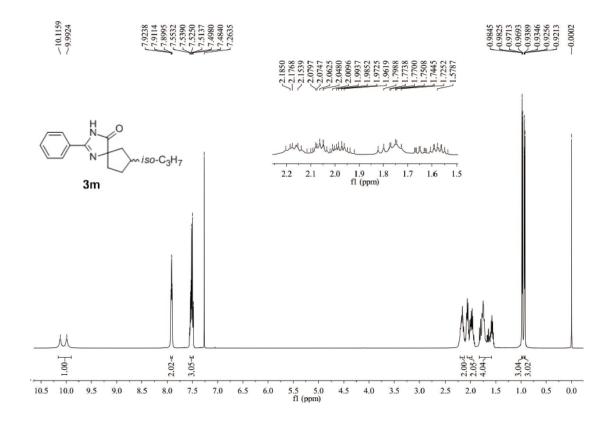



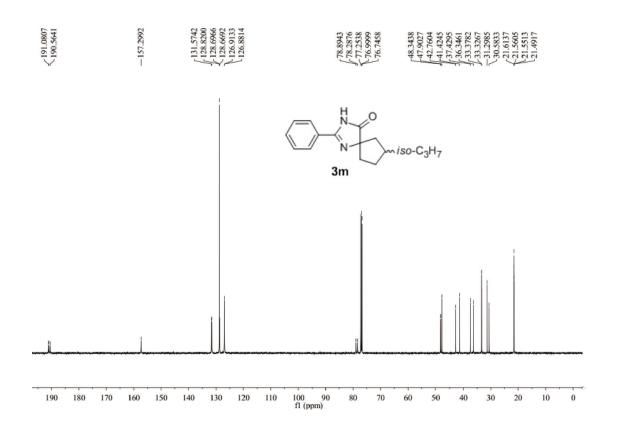



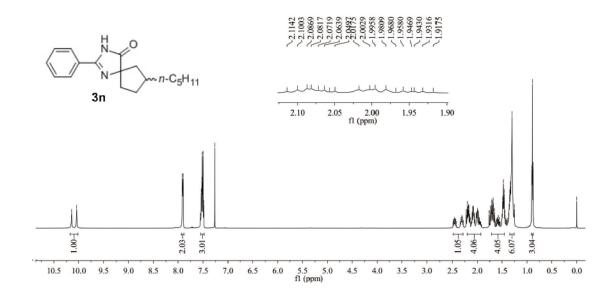



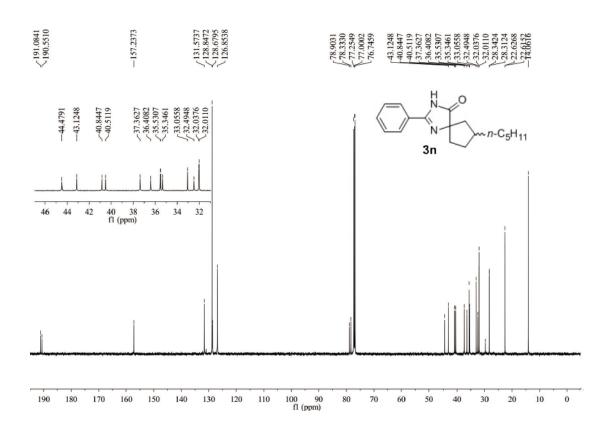



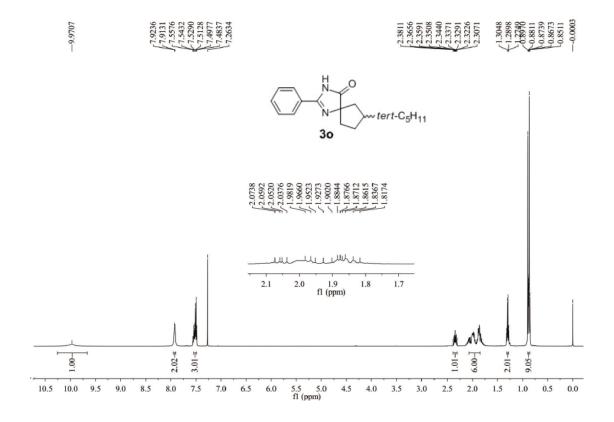



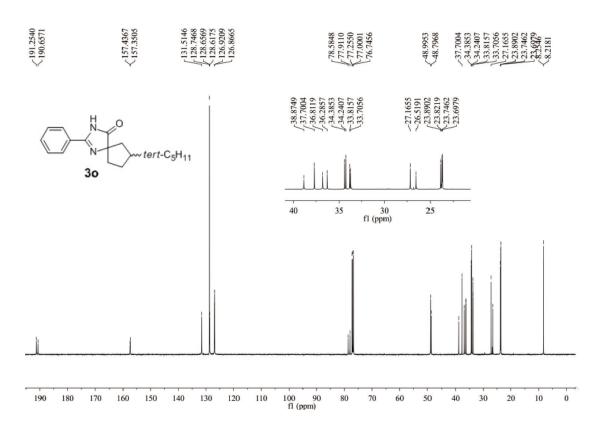



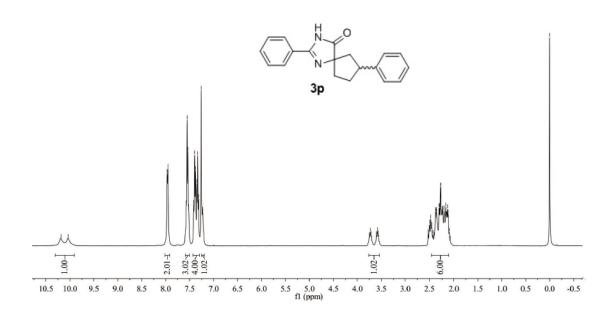



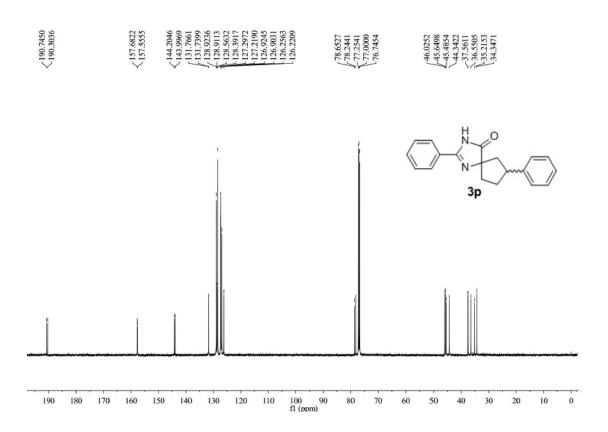



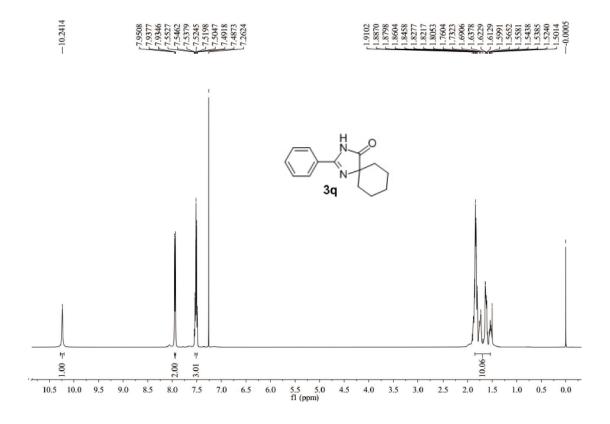



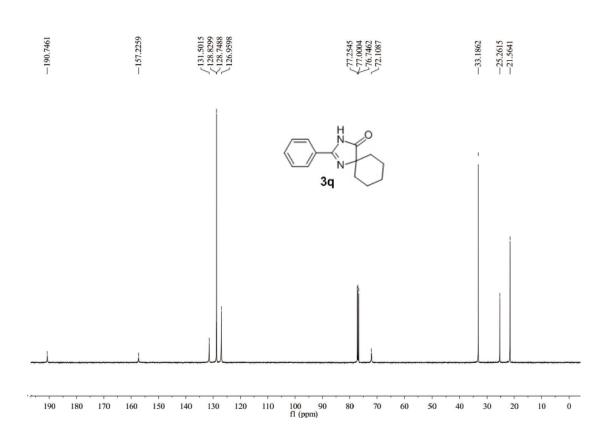


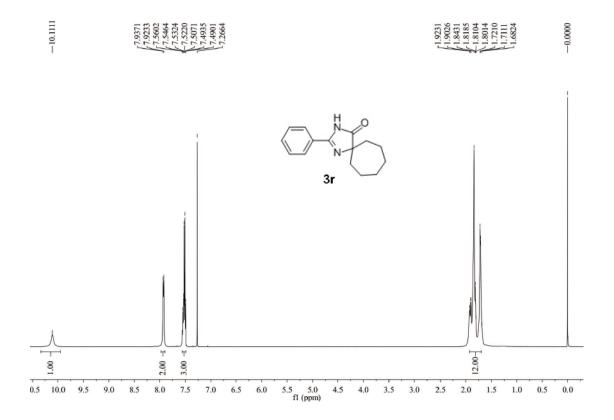


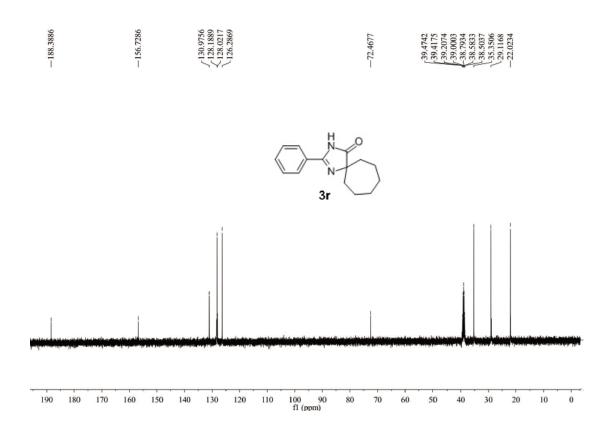



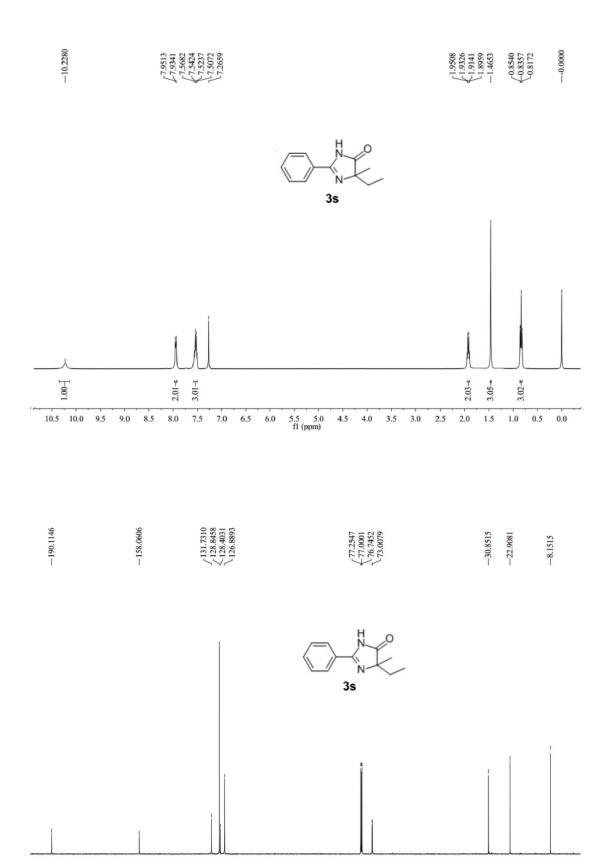





## 3.7486 (3.7278 (3.5649 (2.2378 (2.2378 (2.2378 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318 (2.2318



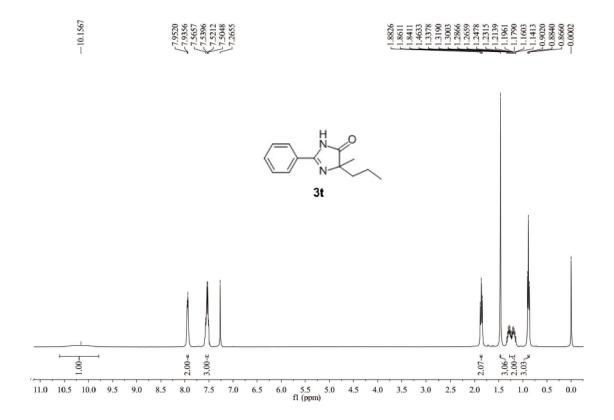


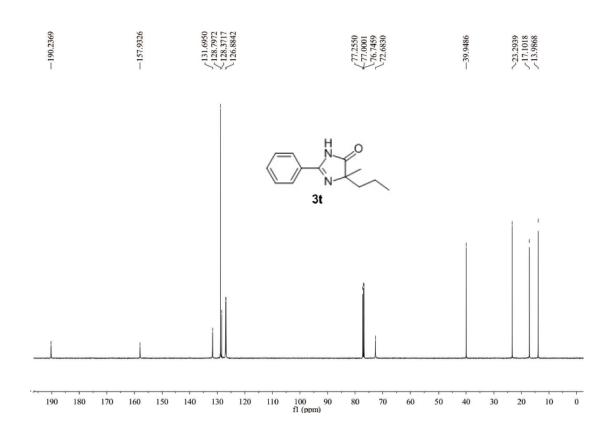


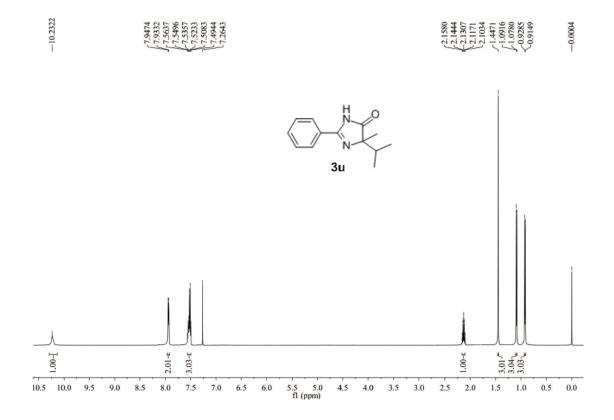


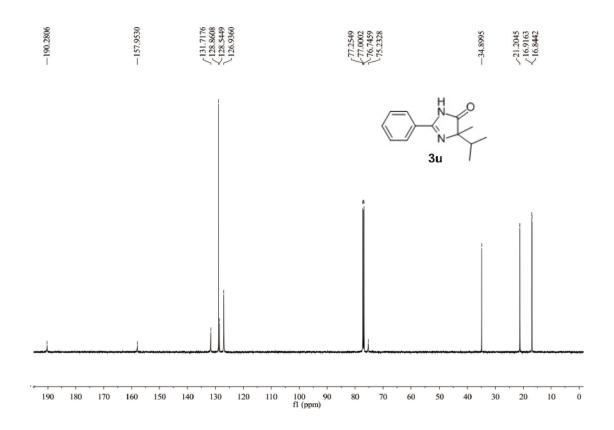


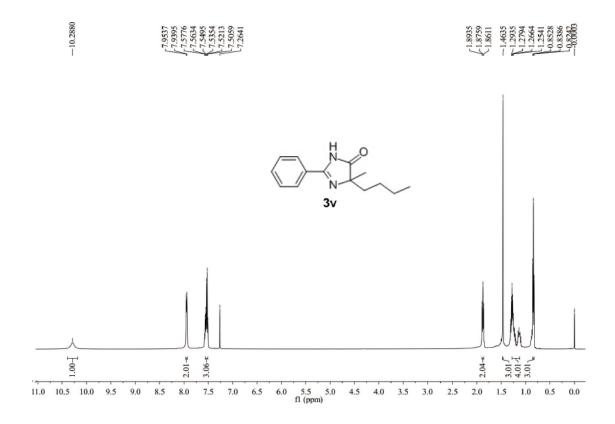


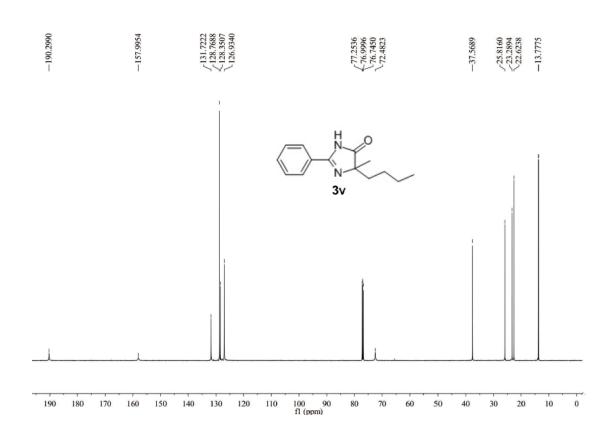


100 90 fl (ppm)

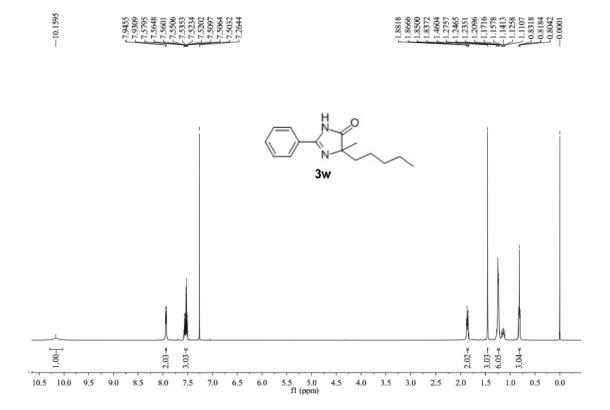

80 70

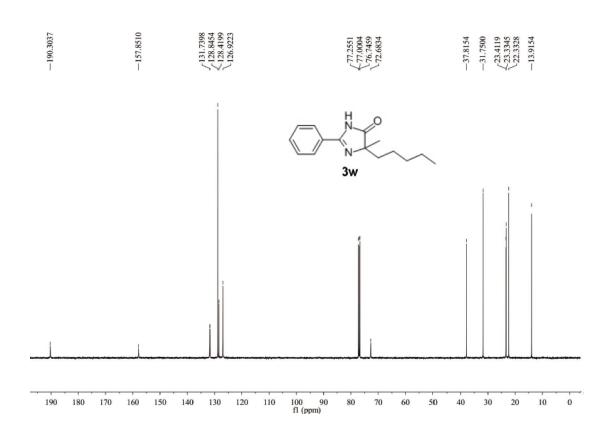

190 180

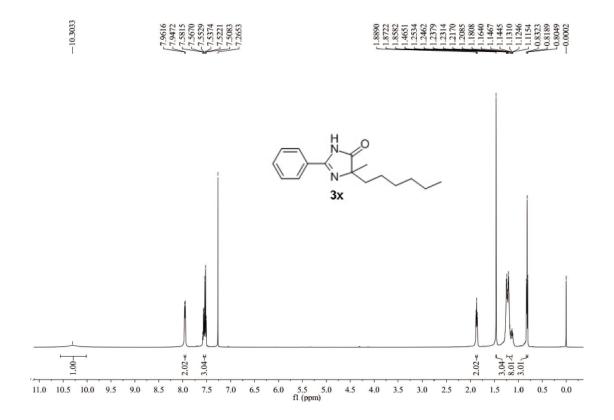

150 140

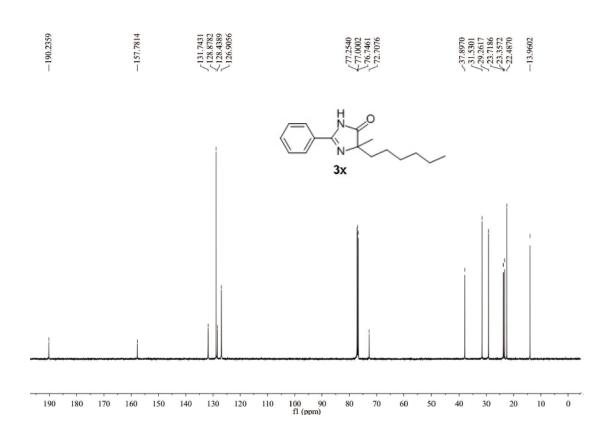

130 120

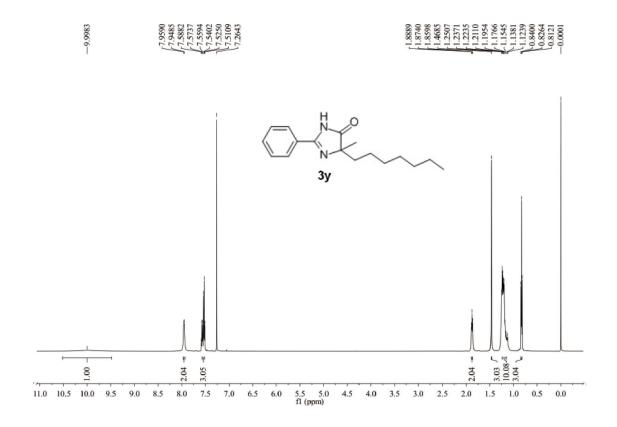


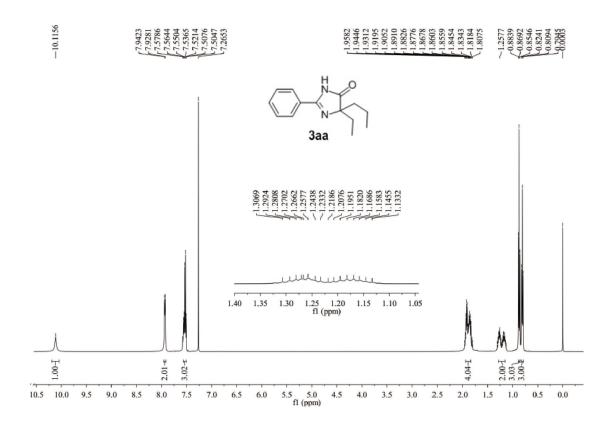



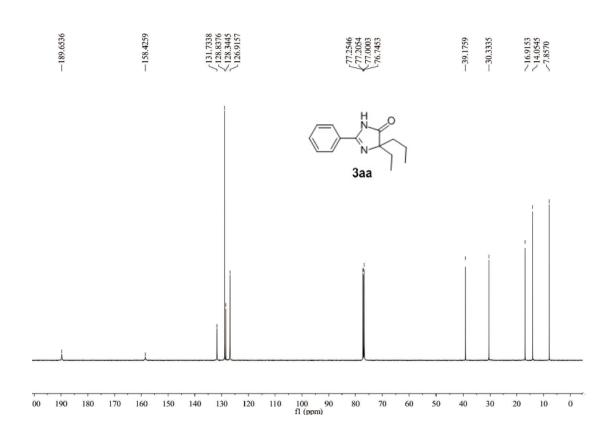



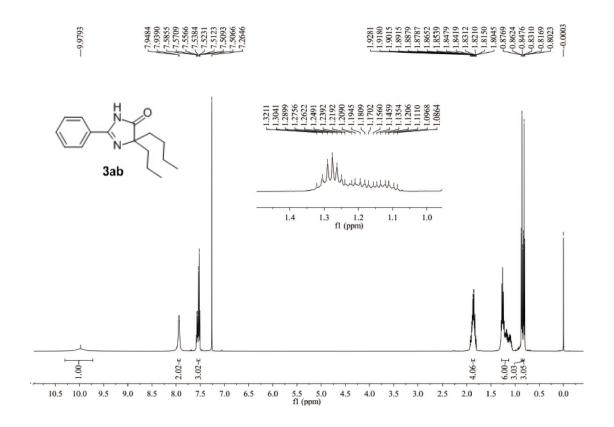



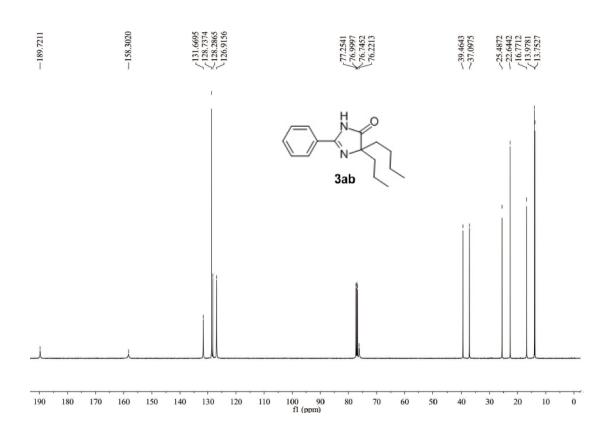


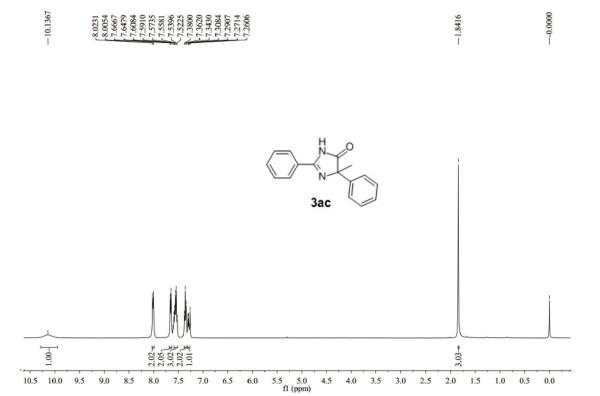


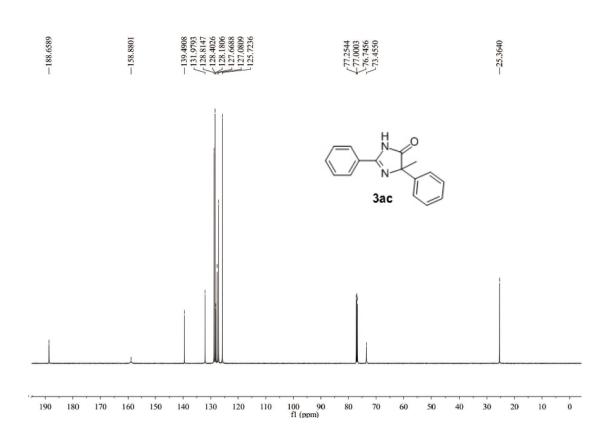


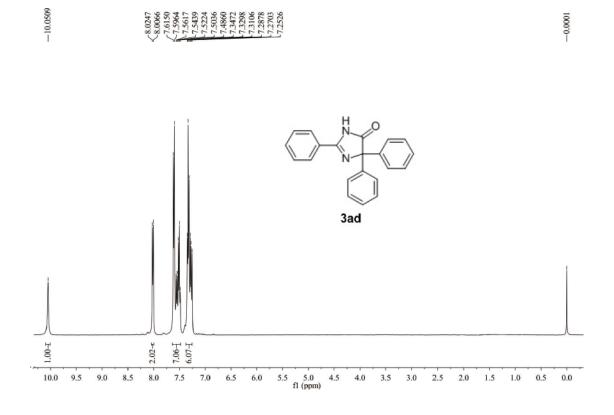



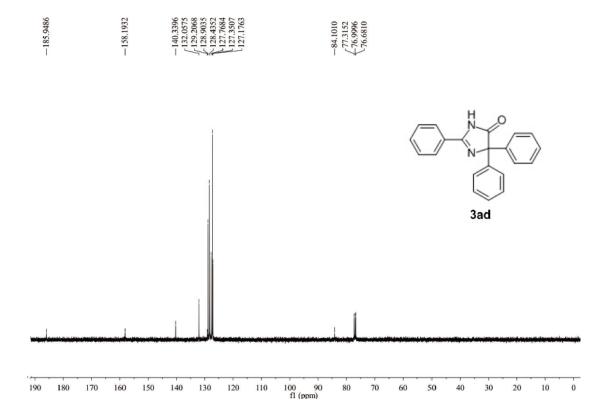














## X-ray structure of 3y:

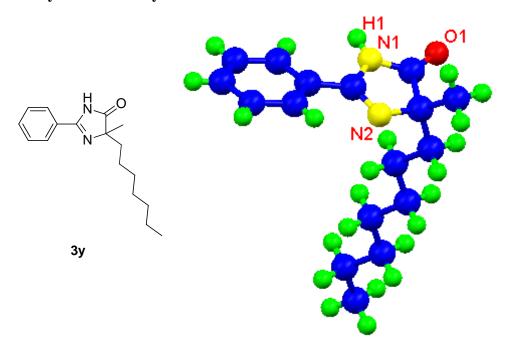



Figure S1. X-ray structure of 3y

Index ranges

Reflections collected

Independent reflections

Table 1. Crystal data and structure refinement for 3v.

| <b>Table 1.</b> Crystal data and structure refiner | ment for 3y.                               |                         |
|----------------------------------------------------|--------------------------------------------|-------------------------|
| Identification code                                | <b>3</b> y                                 |                         |
| Empirical formula                                  | C17 H24 N2 O                               |                         |
| Formula weight                                     | 272.38                                     |                         |
| Temperature                                        | 173.1500 K                                 |                         |
| Wavelength                                         | 0.71073 Å                                  |                         |
| Crystal system                                     | Monoclinic                                 |                         |
| Space group                                        | C 1 2/c 1                                  |                         |
| Unit cell dimensions                               | a = 29.745(11)  Å                          | α= 90°.                 |
|                                                    | b = 5.802(2)  Å                            | $\beta$ = 112.103(4)°.  |
|                                                    | c = 19.967(8)  Å                           | $\gamma = 90^{\circ}$ . |
| Volume                                             | $3192(2) \text{ Å}^3$                      |                         |
| Z                                                  | 8                                          |                         |
| Density (calculated)                               | $1.133 \text{ Mg/m}^3$                     |                         |
| Absorption coefficient                             | 0.071 mm <sup>-1</sup>                     |                         |
| F(000)                                             | 1184                                       |                         |
| Crystal size                                       | $0.5 \times 0.21 \times 0.18 \text{ mm}^3$ |                         |
| Theta range for data collection                    | 2.957 to 27.458°.                          |                         |

12176

3635 [R(int) = 0.0277]

-38<=h<=38, -7<=k<=6, -20<=l<=25

| Completeness to theta = $26.000^{\circ}$ | 99.6 %                                      |
|------------------------------------------|---------------------------------------------|
| Absorption correction                    | Semi-empirical from equivalents             |
| Max. and min. transmission               | 1.0000 and 0.8989                           |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters           | 3635 / 0 / 187                              |
| Goodness-of-fit on F <sup>2</sup>        | 1.118                                       |
| Final R indices [I>2sigma(I)]            | R1 = 0.0525, $wR2 = 0.1152$                 |
| R indices (all data)                     | R1 = 0.0593, $wR2 = 0.1190$                 |
| Extinction coefficient                   | n/a                                         |
| Largest diff. peak and hole              | 0.221 and -0.174 e.Å-3                      |

**Table 2.** Atomic coordinates (x  $10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x  $10^3$ ) for **3y**. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

|     | X       | y        | Z       | U(eq) |
|-----|---------|----------|---------|-------|
| O1  | 2859(1) | 2055(2)  | 5992(1) | 31(1) |
| N1  | 2929(1) | 384(2)   | 4983(1) | 26(1) |
| N2  | 3551(1) | -2109(2) | 5476(1) | 26(1) |
| C1  | 3193(1) | -2011(2) | 4154(1) | 25(1) |
| C2  | 2946(1) | -668(2)  | 3549(1) | 28(1) |
| C3  | 2937(1) | -1301(3) | 2873(1) | 31(1) |
| C4  | 3173(1) | -3277(3) | 2798(1) | 32(1) |
| C5  | 3413(1) | -4644(3) | 3395(1) | 34(1) |
| C6  | 3424(1) | -4026(2) | 4071(1) | 31(1) |
| C7  | 3237(1) | -1316(2) | 4887(1) | 24(1) |
| C8  | 3485(1) | -867(2)  | 6077(1) | 24(1) |
| С9  | 3055(1) | 729(2)   | 5706(1) | 24(1) |
| C10 | 3366(1) | -2554(3) | 6574(1) | 32(1) |
| C11 | 3940(1) | 551(2)   | 6500(1) | 27(1) |
| C12 | 4107(1) | 2172(3)  | 6039(1) | 31(1) |
| C13 | 4545(1) | 3628(3)  | 6481(1) | 31(1) |
| C14 | 4726(1) | 5125(3)  | 6008(1) | 33(1) |
| C15 | 5134(1) | 6772(3)  | 6421(1) | 34(1) |
| C16 | 5295(1) | 8247(3)  | 5928(1) | 48(1) |
| C17 | 5670(1) | 10068(3) | 6314(1) | 51(1) |

Table 3. Bond lengths  $[\mathring{A}]$  and angles  $[^{\circ}]$  for 3y.

| O1-C9    | 1.2294(16) |  |
|----------|------------|--|
| N1-C7    | 1.4068(17) |  |
| N1-C9    | 1.3622(17) |  |
| N2-C7    | 1.2804(17) |  |
| N2-C8    | 1.4748(17) |  |
| C1-C2    | 1.3926(19) |  |
| C1-C6    | 1.3965(19) |  |
| C1-C7    | 1.4759(18) |  |
| C2-C3    | 1.3913(19) |  |
| C3-C4    | 1.381(2)   |  |
| C4-C5    | 1.386(2)   |  |
| C5-C6    | 1.386(2)   |  |
| C8-C9    | 1.5259(18) |  |
| C8-C10   | 1.5274(19) |  |
| C8-C11   | 1.5379(18) |  |
| C11-C12  | 1.5225(19) |  |
| C12-C13  | 1.5259(19) |  |
| C13-C14  | 1.522(2)   |  |
| C14-C15  | 1.521(2)   |  |
| C15-C16  | 1.513(2)   |  |
| C16-C17  | 1.520(2)   |  |
|          |            |  |
| C9-N1-C7 | 108.27(11) |  |
| C7-N2-C8 | 107.26(11) |  |
| C2-C1-C6 | 119.23(12) |  |
| C2-C1-C7 | 121.89(12) |  |
| C6-C1-C7 | 118.84(12) |  |
| C3-C2-C1 | 120.35(13) |  |
| C4-C3-C2 | 120.00(13) |  |
| C3-C4-C5 | 120.00(13) |  |
| C4-C5-C6 | 120.40(13) |  |
| C5-C6-C1 | 120.00(13) |  |
| N1-C7-C1 | 120.48(11) |  |
| N2-C7-N1 | 114.48(12) |  |
| N2-C7-C1 | 125.01(12) |  |
| N2-C8-C9 | 104.20(10) |  |
|          |            |  |

| N2-C8-C10   | 110.48(11) |
|-------------|------------|
| N2-C8-C11   | 110.39(11) |
| C9-C8-C10   | 110.38(11) |
| C9-C8-C11   | 110.27(11) |
| C10-C8-C11  | 110.93(11) |
| O1-C9-N1    | 126.55(12) |
| O1-C9-C8    | 127.71(12) |
| N1-C9-C8    | 105.74(11) |
| C12-C11-C8  | 114.71(11) |
| C11-C12-C13 | 113.18(12) |
| C14-C13-C12 | 112.41(12) |
| C15-C14-C13 | 114.66(12) |
| C16-C15-C14 | 112.67(13) |
| C15-C16-C17 | 114.52(15) |
|             |            |

Symmetry transformations used to generate equivalent atoms:

**Table 4**. Anisotropic displacement parameters (Å $^2$  x  $10^3$ ) for 3y. The anisotropic displacement factor exponent takes the form:  $-2\pi^2$ [  $h^2$   $a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$ ]

|     | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | $U^{13}$ | $U^{12}$ |
|-----|-----------------|-----------------|-----------------|-----------------|----------|----------|
| O1  | 33(1)           | 32(1)           | 26(1)           | -3(1)           | 10(1)    | 7(1)     |
| N1  | 27(1)           | 28(1)           | 22(1)           | -1(1)           | 7(1)     | 6(1)     |
| N2  | 30(1)           | 24(1)           | 25(1)           | 0(1)            | 11(1)    | 2(1)     |
| C1  | 24(1)           | 25(1)           | 25(1)           | -3(1)           | 10(1)    | -3(1)    |
| C2  | 29(1)           | 27(1)           | 29(1)           | -1(1)           | 13(1)    | 3(1)     |
| C3  | 31(1)           | 36(1)           | 26(1)           | 1(1)            | 11(1)    | 1(1)     |
| C4  | 34(1)           | 38(1)           | 26(1)           | -9(1)           | 14(1)    | -3(1)    |
| C5  | 39(1)           | 29(1)           | 36(1)           | -7(1)           | 16(1)    | 4(1)     |
| C6  | 36(1)           | 27(1)           | 29(1)           | -1(1)           | 12(1)    | 4(1)     |
| C7  | 26(1)           | 21(1)           | 27(1)           | -1(1)           | 11(1)    | 1(1)     |
| C8  | 28(1)           | 22(1)           | 22(1)           | 1(1)            | 10(1)    | 3(1)     |
| C9  | 26(1)           | 24(1)           | 23(1)           | -2(1)           | 9(1)     | -1(1)    |
| C10 | 39(1)           | 29(1)           | 31(1)           | 3(1)            | 16(1)    | -1(1)    |
| C11 | 28(1)           | 28(1)           | 23(1)           | 2(1)            | 7(1)     | 1(1)     |
| C12 | 30(1)           | 32(1)           | 27(1)           | 2(1)            | 8(1)     | -2(1)    |
| C13 | 30(1)           | 32(1)           | 29(1)           | -1(1)           | 9(1)     | -2(1)    |
|     |                 |                 |                 |                 |          |          |

| C14 | 30(1) | 35(1) | 31(1) | 1(1) | 8(1)  | -3(1)  |
|-----|-------|-------|-------|------|-------|--------|
| C15 | 31(1) | 35(1) | 34(1) | 0(1) | 10(1) | -3(1)  |
| C16 | 43(1) | 54(1) | 45(1) | 5(1) | 14(1) | -15(1) |
| C17 | 39(1) | 43(1) | 70(1) | 0(1) | 20(1) | -10(1) |
|     |       |       |       |      |       |        |

**Table 5**. Hydrogen coordinates (x  $10^4$ ) and isotropic displacement parameters (Å<sup>2</sup> x  $10^{-3}$ ) for 3y.

|      | X       | у        | Z       | U(eq) |
|------|---------|----------|---------|-------|
|      |         |          |         |       |
| H2   | 2785    | 659      | 3598    | 33    |
| Н3   | 2773    | -394     | 2471    | 37    |
| H4   | 3171    | -3689    | 2347    | 38    |
| H5   | 3568    | -5984    | 3342    | 41    |
| H6   | 3584    | -4953    | 4470    | 37    |
| H10A | 3084    | -3436    | 6298    | 48    |
| H10B | 3304    | -1713    | 6944    | 48    |
| H10C | 3636    | -3574    | 6793    | 48    |
| H11A | 3876    | 1454     | 6863    | 33    |
| H11B | 4203    | -502     | 6750    | 33    |
| H12A | 3841    | 3189     | 5772    | 37    |
| H12B | 4188    | 1270     | 5691    | 37    |
| H13A | 4459    | 4607     | 6808    | 37    |
| H13B | 4806    | 2617     | 6771    | 37    |
| H14A | 4837    | 4129     | 5712    | 39    |
| H14B | 4455    | 6017     | 5685    | 39    |
| H15A | 5025    | 7766     | 6722    | 41    |
| H15B | 5408    | 5889     | 6737    | 41    |
| H16A | 5012    | 9007     | 5582    | 58    |
| H16B | 5429    | 7250     | 5659    | 58    |
| H17A | 5755    | 10918    | 5966    | 77    |
| H17B | 5954    | 9336     | 6652    | 77    |
| H17C | 5538    | 11102    | 6568    | 77    |
| H1   | 2687(6) | 1070(30) | 4647(9) | 34(4) |

**Table 6**. Torsion angles [°] for **3y**.

| N2-C8-C9-O1     | 177.74(13)  |
|-----------------|-------------|
| N2-C8-C9-N1     | -2.14(13)   |
| N2-C8-C11-C12   | 53.31(15)   |
| C1-C2-C3-C4     | 0.3(2)      |
| C2-C1-C6-C5     | 1.3(2)      |
| C2-C1-C7-N1     | 16.74(19)   |
| C2-C1-C7-N2     | -161.40(13) |
| C2-C3-C4-C5     | 0.8(2)      |
| C3-C4-C5-C6     | -0.9(2)     |
| C4-C5-C6-C1     | -0.2(2)     |
| C6-C1-C2-C3     | -1.4(2)     |
| C6-C1-C7-N1     | -165.93(12) |
| C6-C1-C7-N2     | 15.9(2)     |
| C7-N1-C9-O1     | -178.42(13) |
| C7-N1-C9-C8     | 1.46(14)    |
| C7-N2-C8-C9     | 2.08(14)    |
| C7-N2-C8-C10    | 120.63(12)  |
| C7-N2-C8-C11    | -116.30(12) |
| C7-C1-C2-C3     | 175.94(13)  |
| C7-C1-C6-C5     | -176.08(13) |
| C8-N2-C7-N1     | -1.31(15)   |
| C8-N2-C7-C1     | 176.91(12)  |
| C8-C11-C12-C13  | 177.37(11)  |
| C9-N1-C7-N2     | -0.13(16)   |
| C9-N1-C7-C1     | -178.45(12) |
| C9-C8-C11-C12   | -61.29(14)  |
| C10-C8-C9-O1    | 59.12(18)   |
| C10-C8-C9-N1    | -120.76(12) |
| C10-C8-C11-C12  | 176.12(12)  |
| C11-C8-C9-O1    | -63.80(17)  |
| C11-C8-C9-N1    | 116.32(12)  |
| C11-C12-C13-C14 | 176.41(12)  |
| C12-C13-C14-C15 | 174.75(12)  |
| C13-C14-C15-C16 | -179.13(14) |
| C14-C15-C16-C17 | 174.74(14)  |
|                 |             |

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for 3y [Å and  $^{\circ}].$ 

| D-HA      | d(D-H)    | d(HA)     | d(DA)      | <(DHA)    |
|-----------|-----------|-----------|------------|-----------|
| N1-H1O1#1 | 0.873(17) | 1.973(17) | 2.8386(16) | 171.1(15) |

Symmetry transformations used to generate equivalent atoms:

#1 -x+1/2,-y+1/2,-z+1