1 Supplementary data

- 2 **Table S1.** Chemical composition of sorghum stover.
- **Table S2.** ¹³C chemical shift assignments in solid state CP-MAS analysis.
- 4 Figure S1. Released reducing sugar of untreated wild-type (WT), bmr6 mutant (b6), bmr12
- 5 mutant (b12) and *bmr6/bmr12* double mutant (b6b12) sorghum stover after 48h hydrolysis with
- 6 different cellulase loadings (3.0, 4.5 and 6.0 FPU/g sorghum) at 28 °C.
- Figure S2. Reducing sugar concentration of the cultivation supernatant during the conversion of
 wild type (solid square), *bmr6* mutant (solid triangle), *bmr12* mutant (open square) and *bmr6/bmr12* double mutant (open triangle) sorghum biomass by *C. echinulata* FR3.
- Figure S3. Solid state ¹³C CPMAS NMR analysis of control and fungus-treated sorghum 10 biomass. (A) wild-type sorghum without fungal conversion; (B) sample 1 of wild-type sorghum 11 12 after 6 days of fungal conversion by C. echinulata FR3; (C) sample 2 of wild-type sorghum after 6 days of fungal conversion by C. echinulata FR3; (D) sample 3 of wild-type sorghum after 6 13 days of fungal conversion by C. echinulata FR3; (E) bmr6/bmr12double mutant sorghum 14 without fungal conversion; (F) sample 1 of *bmr6/bmr12* double mutant sorghum after 6 days of 15 fungal conversion by C. echinulata FR3; (G) sample 2 of bmr6/bmr12double mutant sorghum 16 after 6 days of fungal conversion by C. echinulata FR3; and (H) sample 3 of bmr6/bmr12 double 17 mutant sorghum after 6 days of fungal conversion by C. echinulata FR3. 18
- Figure S4. Comparison of the expanded ¹³C CPMAS NMR region of fungus-conversed sorghum 19 by C. echinulata FR3 and their corresponding controls. (A) aromatic resonances, (B) 20 21 carbohydrate carbon resonances. (black) wild-type sorghum without fungal conversion; (red) sample 1 of wild-type sorghum after 6 days of fungal conversion by C. echinulata FR3; (blue) 22 sample 2 of wild-type sorghum after 6 days of fungal conversion by C. echinulata FR3; (green) 23 sample 3 of wild-type sorghum after 6 days of fungal conversion by C. echinulata FR3; 24 (magenta) bmr6/bmr12 double mutant sorghum without fungal conversion; (lite blue) sample 1 25 of *bmr6/bmr12* double mutant sorghum after 6 days of fungal conversion by *C. echinulata* FR3; 26 27 (orange) sample 2 of *bmr6/bmr12* double mutant sorghum after 6 days of fungal conversion by C. echinulata FR3; and (olive) sample 3 of bmr6/bmr12 double mutant sorghum after 6 days of 28 fungal conversion by C. echinulata FR3. 29

Figure S5. GC/MS analysis of lipid profile of *C. echinulata* FR3 after growing 6 days on dilute
 acid pretreated wild-type sorghum and un-pretreated *bmr6/bmr12* double mutant sorghum
 biomass.

Figure S6. Functional analysis of lignocellulose degradation gene categories based on CAZy database. (A). Distribution of glycoside hydrolases (GH), glycosyl transferases (GT), polysaccharide lyases (PL), carbohydrate esterases (CE) and auxiliary activities (AA) among the CAZy orthologous genes. (B). Distribution of each GH family among the putative glycoside hydrolases genes.

- **Figure S7.** Phylogenetic analysis of CeFR1943 laccase-like multiple copper oxidase with the
- 39 other 35 published laccases from 30 different species including fungus (ascomycetes and
- 40 basidiomycetes) and plants.
- 41

Genotype	Cellulose (%)	Hemicellulose (%)	Lignin (%)	Ash (%)
Wild type	24.71	19.00	17.28	4.42
bmr6 mutant	25.31	19.85	16.49	5.20
bmr12 mutant	24.60	19.30	16.72	5.52
<i>bmr6/bmr12</i> double mutant	24.10	18.45	15.50	6.23

Table S1

$\delta_{C}(ppm)$	Assignment
198	Aromatic carbonyl (-CO-) resonances
185-175	Aliphatic carbonyl/carboxyl (-COOR, -COO-) resonances
160-200	Carbonyl and carboxyl carbon resonances
175-165	Aromatic carboxyl (-COO-) resonances
155-160	C4 resonances in <i>p</i> -coumarate ester/ <i>p</i> -hydroxyphenyl unit
100-162	Aromatic ring resonances (H,G,S)
149-152	C3,C5 in etherified S- and C3 in etherified G-unit
147-149	C3, C5 in non-etherified S- and C3 in non-etherified G-unit.
136-140	C1 resonances in etherified H,G and S-unit
132-134	C1 resonances in non-etherified H,G and S-unit
103-130	C2, C6 in S- /C3,C5 in H- /C5 in G-unit
60-100	Carbohydrate carbon resonances
52-55	Methoxyl in S- and G-unit
40-20	Aliphatic carbon resonances of fatty acids & triglycerides
	Table S2

Figure S1

Figure S2

Figure S3

Figure S5

Figure S7