Supporting Information for

Transition-Metal Free 2-Arylbenzoxazole Formation from Aryl Amides and Cyclohexanones

Xiangxiang Cao,^a Xiufang Cheng,^a Yang Bai,^a Saiwen Liu,^a and Guo-Jun Deng^{a,b}*

- ^a Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China; Fax: (+86)-731-58292251; e-mail: gjdeng@xtu.edu.cn
- ^b Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China.

Table of Contents

1. General information	2
2. General experimental procedure	2
3. Characterization data of products	2-10
4. References	11
5. ¹ H and ¹³ C NMR spectra of products	12-30
6. HRMS spectra of new products	31-33

General information:

All experiments were carried out under an atmosphere of oxygen. Flash column chromatography was performed over silica gel 48-75 µm. ¹H NMR and ¹³C NMR spectra were recorded on Bruker-AV (400 and 100 MHz, respectively) instrument internally referenced to SiMe₄ or chloroform signals. MS analyses were performed on an Agilent 5975 GC-MS instrument (EI). High-resolution mass spectra were recorded at Institute of Chemistry, Chinese Academy of Sciences. The structures of known compounds were further corroborated by comparing their NMR data and MS data with those of literature. The structures of unknown compounds were further characterized by HRMS. Reagents were used as received from commercial sources without further purification.

General procedure: (3a):

A 25 mL oven-dried reaction vessel was charged with benzamide (**1a**, 36.3 mg, 0.3 mmol), cyclohexanone (**2a**, 21 μ L, 0.2 mmol), KI (39.8 mg, 0.24 mmol) and *p*-toluenesulfonic acid (34.2 mg, 0.2 mmol), DMSO (15 μ L, 0.2 mmol). The reaction vessel was flushed with oxygen three times and then sealed. Toluene / *o*-dichlorobenzene (4:1, 1 mL) were added by syringe and the resulting solution was stirred at 160 °C for 30 h. After cooling to room temperature, the volatiles were removed under vacuum and the residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 100:2) to give **3a** as white solid; yield: 71% (27.8 mg), mp 104-105 °C. R_f = 0.40 (100:2 petroleum ether/ethyl acetate).

2-Phenylbenzoxazole (3a, CAS: 833-50-1)^[1]

¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.28-8.26 (m, 2H), 7.80-7.78 (m, 1H), 7.61-7.54 (m, 4H), 7.38-7.35 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 163.1, 150.8, 142.2, 131.5, 128.9, 127.7, 127.3, 125.1, 124.6, 120.1, 110.6; MS (EI) m/z (%): 195 (100), 167, 92, 77, 63, 51.

6-Methyl-2-phenylbenzoxazole (3b, CAS: 14016-00-3)^[1]

The reaction was conducted with benzamide (**1a**, 36.3 mg, 0.3 mmol) and 4-methylcyclohexanone (**2b**, 25 μ L, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 100:2) to give **3b** as white solid; yield: 73% (30.5 mg), mp 84-86 °C. R_f = 0.41 (100:2 petroleum ether/ethyl acetate).

¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.24 (m, 2H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.54 (m, 3H), 7.40 (s, 1H), 7.18 (d, *J* = 8.0 Hz, 1H), 2.52 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 162.6, 151.1, 140.0, 135.5, 131.2, 128.8, 127.5, 127.4, 125.8, 119.4, 110.7, 21.8; MS (EI) m/z (%): 209 (100), 180, 105, 78, 51.

6-Ethyl-2-phenylbenzoxazole (3c)

The reaction was conducted with benzamide (**1a**, 36.3 mg, 0.3 mmol) and 4-ethylcyclohexanone (**2c**, 29 μ L, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 100:2) to give **3c** as yellow solid; yield: 62% (27.7 mg), mp 42-44 °C. R_f = 0.42 (100:2 petroleum ether/ethyl acetate).

¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.24 (m, 2H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.53 (m, 3H), 7.43 (s, 1H), 7.21 (d, *J* = 8.0 Hz, 1H), 2.84-2.78 (q, *J* = 7.3 Hz, 2H), 1.32 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 162.7, 151.2, 142.2, 140.2, 131.2, 128.8, 127.6, 127.5, 124.8, 119.5, 109.5, 29.2, 15.9; MS (EI) m/z (%): 223, 208 (100), 180, 77, 51; HRMS (ESI) calcd. for: C₁₅H₁₄ON [M+H]⁺ 224.1069, found 224.1070.

6-Isopropyl-2-phenylbenzoxazole (3d)

The reaction was conducted with benzamide (**1a**, 36.3 mg, 0.3 mmol) and 4-isopropylcyclohexanone (**2d**, 31 μ L, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 100:2) to give **3d** as yellow liquid; yield: 64% (30.3 mg). R_f = 0.41 (100:2 petroleum ether/ethyl acetate).

¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.25-8.24 (m, 2H), 7.68 (d, J = 8.0 Hz, 1H), 7.53 (m, 3H), 7.46 (s, 1H), 7.24 (s, 1H), 3.11-3.04 (m, 1H), 1.33 (d, J = 6.9 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 162.8, 151.2, 145.0, 140.3, 131.2, 128.9, 127.6, 127.5, 123.5, 119.5, 108.0, 34.5, 24.3; MS (EI) m/z (%): 237, 222 (100), 119, 91, 77, 65; HRMS (ESI) calcd. for: C₁₆H₁₆ON [M+H]⁺ 238.1225, found 238.1226.

6-Pentyl-2-phenylbenzoxazole (3e)

The reaction was conducted with benzamide (**1a**, 36.3 mg, 0.3 mmol) and 4-pentylcyclohexanone (**2e**, 38 μ L, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 100:2) to give **3e** as yellow liquid; yield: 74% (39.2 mg). R_f = 0.41 (100:2 petroleum ether/ethyl acetate).

¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.27-8.26 (m, 2H), 7.68 (d, J = 8.1 Hz, 1H), 7.54-7.53 (m, 3H), 7.41 (s, 1H), 7.20 (d, J = 7.9 Hz, 1H), 2.76 (t, J = 7.7 Hz, 2H), 1.70-1.68 (m, 2H), 1.35 (m, 4H), 0.91 (t, J = 2.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 162.6, 151.2, 140.8, 140.2, 131.2, 128.8, 127.7, 127.5, 125.2, 119.4, 110.1, 36.2, 31.4, 29.7, 22.5, 13.9; MS (EI) m/z (%): 265, 208 (100), 180, 77, 51; HRMS (ESI) calcd. for: C₁₈H₂₀ON [M+H]⁺ 266.1538, found 266.1539.

6-tert-pentyl-2-phenylbenzoxazole (3f)

The reaction was conducted with benzamide (**1a**, 36.3 mg, 0.3 mmol) and 4-*tert*-pentylcyclohexanone (**2f**, 38 μ L, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 100:2) to give **3f** as yellow liquid; yield: 76% (40.2 mg). R_f = 0.43 (100:2 petroleum ether/ethyl acetate).

¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.27-8.26 (m, 2H), 7.71 (d, J = 8.4Hz, 1H), 7.57-7.53 (m, 4H), 7.37 (d, J = 8.4 Hz, 1H), 1.75-1.70 (q, J = 7.3 Hz, 2H), 1.37 (s, 6H), 0.70 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 162.9, 151.2, 147.7, 139.8, 131.2, 128.9, 127.5, 122.8, 119.4, 119.1, 108.1, 38.5, 37.2, 28.9, 9.1; MS (EI) m/z (%): 265, 250, 236 (100), 208, 105, 77; HRMS (ESI) calcd. for: $C_{18}H_{20}ON[M+H]^+$ 266.1539, found 266.1539.

2,6-Diphenylbenzoxazole (3g, CAS: 59005-65-1)^[1]

The reaction was conducted with benzamide (**1a**, 36.3 mg, 0.3 mmol) and 4-phenylcyclohexanone (**2g**, 34.8 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 100:2) to give **3g** as white solid; yield: 82% (44.4 mg), mp 108-110 °C. $R_f = 0.37$ (100:2 petroleum ether/ethyl acetate).

¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.33-8.31 (m, 2H), 7.86-7.82 (m, 2H), 7.67-7.65(m, 2H), 7.62 (m, 1H), 7.57-7.56 (m, 3H), 7.51-7.48 (m, 2H), 7.42-7.38 (m, 1H) ; ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 163.5, 151.5, 141.6, 140.9, 139.1, 131.5, 129.0, 128.9, 127.7, 127.5, 127.4, 127.3, 124.2, 120.0, 109.1; MS (EI) m/z (%): 271(100), 243, 189, 139, 121, 77.

Ethyl 2-phenylbenzoxazole-6-carboxylate (3h, CAS: 1094201-00-9)^[2]

The reaction was conducted with benzamide (**1a**, 36.3 mg, 0.3 mmol) and ethyl 4-oxocyclohexanecarboxylate (**2h**, 32 μ L, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 60:2) to give **3h** as white solid; yield: 68% (36.3 mg), mp 79-81 °C. R_f = 0.26 (60:2 petroleum ether/ethyl acetate).

¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.30 (m, 3H), 8.12 (d, J = 8.1 Hz, 1H), 7.80 (d, J = 8.3 Hz, 1H), 7.58-7.56 (m, 3H), 4.46-4.41 (q, J = 6.9 Hz, 2H), 1.45 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 166.1, 165.5, 150.5, 146.0, 140.9, 132.1, 129.0, 128.0, 127.8, 126.4, 119.5, 112.2, 61.3, 14.4; MS (EI) m/z (%): 267, 239, 222 (100), 166, 139, 63.

8-Methyl-2-Phenylbenzoxazole (3i)

The reaction was conducted with benzamide (**1a**, 36.3 mg, 0.3 mmol) and 2-methylcyclohexanone (**2i**, 25 μ L, 0.2 mmol). The residue was purified by GC, yield: 5%.

2-Phenylbenzoxazole (3a, CAS: 833-50-1) [1]

¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.28-8.26 (m, 2H), 7.80-7.78 (m, 1H), 7.61-7.54 (m, 4H), 7.38-7.35 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 163.1, 150.8, 142.2, 131.5, 128.9, 127.7, 127.3, 125.1, 124.6, 120.1, 110.6; MS (EI) m/z (%): 95 (100), 167, 92, 77, 63, 51.

The reaction was conducted with benzamide (**1a**, 36.3 mg, 0.3 mmol) and 2-chlorocyclohexanone (**2j**, 23 μ L, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 100:2) to give **3a** as white solid; yield: 52% (20.3 mg), mp 104-105 °C. R_f = 0.40 (100:2 petroleum ether/ethyl acetate).

7-Methyl-2-Phenylbenzoxazole (3k) and 5-Methyl-2-Phenylbenzoxazole (3k')

The reaction was conducted with benzamide (**1a**, 36.3 mg, 0.3 mmol) and 3-methylcyclohexanone (**2k**, 25 μ L, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 100:2) to give **3k** and **3k**' (2 : 1)as yellow solid; yield: 80% (33.4 mg). R_f = 0.46 (100:2 petroleum ether/ethyl acetate).

2-(4-Methylphenyl)benzoxazole (3l, CAS: 835-71-2)^[3]

The reaction was conducted with 4-methylbenzamide (**1b**, 40.5 mg, 0.3 mmol) and cyclohexanone (**2a**, 21 μ L, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 100:2) to give **3l** as white solid; yield: 75% (31.4 mg), mp 112-114 °C. R_f = 0.47 (100:2 petroleum ether/ethyl acetate).

¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.18 (d, *J* = 8.0 Hz, 2H), 7.80-7.78 (m, 1H), 7.60-7.58 (m, 1H), 7.38-7.34 (m, 4H), 2.45 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 163.3, 150.7, 142.2, 142.1, 129.7, 127.6, 124.9, 124.5, 124.4, 119.9, 110.5, 21.7; MS (EI) m/z (%): 209 (100), 180, 116, 91, 63.

2-(4-tert-Butylphenyl)benzoxazole (3m, CAS: 5998-50-5)^[4]

The reaction was conducted with 4-(*tert*-butyl)benzamide (**1c**, 53.1 mg, 0.3 mmol) and cyclohexanone (**2a**, 21 μ L, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 100:2) to give **3m** as white solid; yield: 77% (38.7 mg), mp 102-104 °C. R_f = 0.42 (100:2 petroleum ether/ethyl acetate).

¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.22 (d, J = 8.3 Hz, 2H), 7.81-7.79 (m, 1H), 7.61-7.55 (m, 4H), 7.38-7.36 (m, 1H), 1.38 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 163.3, 155.1, 150.8, 142.3, 127.5, 125.9, 124.9, 124.5, 124.4, 119.9, 110.5, 35.1, 31.2; MS (EI) m/z (%): 251, 236 (100), 208, 104, 63.

2-(4-Methoxylphenyl)benzoxazole (3n, CAS: 838-34-6)^[4]

The reaction was conducted with 4-methoxybenzamide (**1d**, 45.3 mg, 0.3 mmol) and cyclohexanone (**2a**, 21 μ L, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 100:2) to give **3n** as white solid; yield: 71% (32.0 mg), mp 97-99 °C. R_f = 0.20 (100:2 petroleum ether/ethyl acetate).

¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.21 (d, J = 7.8 Hz, 2H), 7.75-7.74 (m, 1H), 7.56 (m, 1H), 7.34-7.33 (m, 2H), 7.04 (d, J = 7.7 Hz, 2H), 3.90 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 163.2, 162.4, 150.7, 142.4, 129.4, 124.6, 124.4, 119.8, 119.7, 114.4, 110.4, 55.4; MS (EI) m/z (%): 225 (100), 210, 182, 113, 63.

2-(4-Fluorophenyl)benzoxazole (30, CAS: 397-54-6)^[3]

The reaction was conducted with 4-fluorobenzamide (1e, 41.7 mg, 0.3 mmol) and cyclohexanone (2a, 21 μ L, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 100:2) to give 3o as white solid; yield: 82% (34.9 mg), mp 101-103 °C. R_f = 0.41 (100:2 petroleum ether/ethyl acetate).

¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.31-8.28 (m, 2H), 7.80-7.78 (m, 1H), 7.61-7.58 (m, 1H), 7.39-7.37 (m, 2H), 7.25-7.21 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 164.8 (d, $J_{C-F} = 251.3 \text{ Hz}$), 162.2, 150.8, 142.1, 129.8 (d, $J_{C-F} = 8.8 \text{ Hz}$), 125.1, 124.6, 123.6 (d, $J_{C-F} = 3.2 \text{ Hz}$), 120.0, 116.2 (d, $J_{C-F} = 22.1 \text{ Hz}$), 110.5; MS (EI) m/z (%): 213 (100), 185, 121, 92, 63.

2-(4-Chlorophenyl)benzoxazole (3p, CAS: 1141-35-1)^[3]

The reaction was conducted with 4-chlorobenzamide (**1f**, 46.7 mg, 0.3 mmol) and cyclohexanone (**2a**, 21 μ L, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 100:2) to give **3p** as white solid; yield: 83% (38.0 mg), mp 150-152 °C. R_f = 0.47 (100:2 petroleum ether/ethyl acetate).

¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.20 (d, J = 8.4 Hz, 2H), 7.79-7.77 (m, 1H), 7.60-7.58 (m, 1H), 7.51 (d, J = 8.3 Hz, 2H) 7.39-7.36 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 162.1, 150.8, 142.1, 137.8, 129.3, 128.9, 125.7, 125.3, 124.7, 120.1, 110.6; MS (EI) m/z (%): 229 (100), 201, 166, 92, 63.

2-(4-Bromophenyl)benzoxazole (3q, CAS: 3164-13-4)^[5]

The reaction was conducted with 4-bromobenzamide (**1g**, 59.7 mg, 0.3 mmol) and cyclohexanone (**2a**, 21 μ L, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 100:2) to give **3q** as white solid; yield: 76% (41.6 mg), mp 160-162 °C. R_f =

0.47 (100:2 petroleum ether/ethyl acetate).

¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.12 (d, *J* = 8.3 Hz, 2H), 7.79-7.77 (m, 1H), 7.67 (d, *J* = 8.3 Hz, 2H), 7.60-7.58 (m, 1H) 7.39-7.36 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 162.1, 150.8, 142.1, 138.1, 132.2, 129.0, 126.2, 125.4, 124.7, 120.1, 110.6; MS (EI) m/z (%): 273 (100), 245, 194, 92, 63.

2-(3-Methylphenyl)benzoxazole (3r, CAS: 14625-58-2) [5]

The reaction was conducted with 3-methylbenzamide (**1h**, 40.5 mg, 0.3 mmol) and cyclohexanone (**2a**, 21 μ L, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 100:2) to give **3r** as white solid; yield: 64% (26.8 mg), mp 75-77 °C. R_f = 0.53 (100:2 petroleum ether/ethyl acetate).

¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.12 (s, 1H), 8.07 (d, J = 7.2 Hz, 1H), 7.80-7.79 (m, 1H), 7.60-7.59 (m, 1H), 7.45-7.43 (m, 1H) 7.38-7.36 (m, 3H), 2.47 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 163.3, 150.8, 142.2, 138.7, 132.3, 128.8, 128.2, 127.1, 125.0, 124.8, 124.4, 120.0, 110.6, 21.3; MS (EI) m/z (%): 209 (100), 180, 116, 91, 63.

2-(2-Hydroxyphenyl)benzoxazole (3s, CAS: 835-64-3)^[4]

The reaction was conducted with 2-hydroxybenzamide (**1i**, 41.1 mg, 0.3 mmol) and cyclohexanone (**2a**, 21 μ L, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 100:2) to give **3s** as white solid; yield: 67% (28.3 mg), mp 122-124 °C. R_f = 0.26 (100:2 petroleum ether/ethyl acetate).

¹H NMR (CDCl₃, 400 MHz, ppm): δ 11.5 (s, 1H), 8.03 (d, J = 7.6 Hz, 1H), 7.75-7.73 (m, 1H), 7.63-7.61 (m, 1H), 7.47-7.38 (m, 3H), 7.13 (d, J = 8.3 Hz, 1H), 7.02 (t, J = 7.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 163.0, 158.8, 149.2, 140.1, 133.5, 127.1, 125.5, 125.4, 125.0, 119.5, 119.3, 117.5, 110.6; MS (EI) m/z (%): 211 (100), 183, 154, 91, 63.

2-(2,6-Difluorophenyl)benzoxazole (3t)

The reaction was conducted with 2,6-difluorobenzamide (**1j**, 47.1 mg, 0.3 mmol) and cyclohexanone (**2a**, 21 μ L, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 100:2) to give **3t** as white solid; yield: 51% (23.6 mg), mp 74-76 °C. R_f = 0.50 (100:2 petroleum ether/ethyl acetate).

¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.90-7.88 (m, 1H), 7.66-7.64 (m, 1H), 7.55-7.48 (m, 1H), 7.43-7.39 (m, 2H), 7.11(t, *J* = 8.6 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 161.2 (dd, *J*₁ C-F = 257.2, *J*₂ = 5.4 Hz), 154.8, 150.5, 141.4, 132.9 (t, *J* C-F = 10.6 Hz), 125.8, 124.7, 120.6, 112.5-112.3 (m), 110.9, 106.5 (t, *J* C-F = 15.7 Hz); MS (EI) m/z (%): 231 (100), 203, 139, 92, 63; HRMS (ESI) calcd. for: C₁₃H₈ONF₂ [M+H]⁺ 232.0566, found 232.0569.

2-Phenyl-4,5,6,7-tetrahydrobenzoxazole (4a, CAS: 61766-91-4)^[6]

A 25 mL oven-dried reaction vessel was charged with benzamide (**1a**, 36.3 mg, 0.3 mmol), cyclohexanone (**2a**, 21 μ L, 0.2 mmol), KI (39.8 mg, 0.24 mmol) and *p*-TsOH (34.2 mg, 0.2 mmol), DMSO (15 μ L, 0.2 mmol). The reaction vessel was flushed with oxygen three times and then sealed. Toluene/*o*-dichlorobenzene (0.8 mL / 0.2 mL) were added by syringe and the resulting solution was stirred at 160 °C for 2 h. After cooling to room temperature, the volatiles were removed under vacuum and the residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 100:2) to give **4a** as white solid; mp 73-75 °C. R_f = 0.43 (100:2 petroleum ether/ethyl acetate).

¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.01-7.99 (m, 2H), 7.43-7.41 (m, 3H), 2.70-2.61 (m, 4H), 1.91-1.85 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 159.8, 146.9, 135.2, 129.6, 128.6, 128.2, 125.9, 23.2, 23.0, 23.0, 22.0; MS (EI) m/z (%): 199 (100), 171, 103, 77, 51.

References:

- [1] S. Ueda, H, Nagasawa, Angew. Chem. Int. Ed. 2008, 47, 6411.
- [2] Mitsubishi Tanabe Pharma Corporation, Patent; EP2172450 A1 English, 2010.
- [3] L. Wang, X. Ren, J. Yu, Y. Jiang, J. Cheng, J. Org. Chem. 2013, 78, 12076.
- [4] Y. Cho, C. Y. Lee, D. C. Ha, C. H. Cheon, Adv. Synth. Catal. 2012, 354, 2992.
- [5] X. W. Li, B. S. Wan, X. Z. Yu, Org. Biomol. Chem. 2012, 10, 7479.
- [6] A. O'Brate, W. Brenzovich, D. Chen, P. Giannakakou, N. Giuseppone, J. Hao, X. Huang, P. Rao, G. Rassias, M. Reddy, S. Snyder, J. Am. Chem. Soc. 2004, 126, 12897.

¹H and ¹³C NMR spectra of product

HRMS (ESI) spectra of new products

