Supporting Information

Visible-Light Initiated Copper(I)-Catalysed Oxidative C-N Coupling of Anilines with Terminal Alkynes: One-Step Synthesis of α-Ketoamides

Arunachalam Sagadevan, Ayyakkannu Ragupathi, Chun-Cheng Lin, Jih Ru Hwu, and Kuo Chu Hwang*

Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, R. O. C. E-mail: <u>kchwang@mx.nthu.edu.tw</u>

Experimental section	S2
Scheme S1: Preparative scale synthesis of epoxide hydrolase inhibitor (3sp)	S3
Table S1: Optimization studies of synthetic condition	S5
Table S2: Control experiments	S6
Table S3: Reactions of 4-methoxy-aniline and terminal alkynes	S7
Scheme S3: Mechanistic control experiments	S8
EPR spectra	S9
Excitation and emission spectrum of copper(I) phenylacetylide	S18
Lifetime measurements of copper(I) phenylacetylide	S19
UV-visible spectrum of copper(I) aryl/alkylacetylides	S20
Optical picture of reaction mixture and products	S21
Isothermal titration caloriemetry (ITC) experiment	S22
Supplementary References	S23
¹ H NMR, ¹³ C NMR and HRMS data	S24
¹ H NMR and ¹³ C NMR spectra	S44
ORTEP diagram of compound 3am	S96
ORTEP diagram of compound 3sp	S102

Table of contents

Experimental section

General procedures. All reactions were conducted under an oxygen atmosphere and oven-dried glassware was used. All reactions were conducted using a blue light-emitting diode (LED) as the visible-light source (30 lamps, power density: 40 mW/cm² at 460 nm). All solvents were dried and distilled prior to use according to known methods. Starting materials (including for the synthesis of epoxide hydrolase inhibitors) were commercially available (Sigma-Aldrich or Alfa-Aesar or TCI-chemicals) and used as received. NMR spectra were recorded ¹H NMR at 400 MHz/¹³C NMR at 100 MHz using deuterated CDCl₃ or CDCl₃-DMSO mixture. Chemical shifts (δ) were reported as parts per million (ppm) and the following abbreviations were used to identify the multiplicities: s= singlet, d= doublet, t= triplet, q= quartet, m= multiplet, b= broad and all combinations thereof can be explained by their integral parts. Unless otherwise specified, the proton/carbon signal of 2 residual solvent (at δ 7.24 and δ 77.00 ppm, respectively) was used as the internal reference. EPR spectra were recorded by a Bruker ESP-300E instrument. Isothermal titration caloriemetry (ITC) experiments were carried out at 25 °C on a high precision ITC-200 (MicroCal, LLC, and Northampton, MA).

In general, a dry test tube (20 mL) containing 5 mol% CuCl was added 8 mL of dry CH₃CN and CH₃OH (1:1 v/v) via syringe, followed by sequential addition of aniline 0.5 mmol (0.083 M). Finally terminal acetylene 0.6 mmol (0.1 M) was added, which leads to formation of a yellow suspension. The yellow suspension was then irradiated with blue LEDs (40 mW/cm² at 460 nm, The distance between the reaction vessel to LEDs light source is 6 cm) at room temperature (25-28 °C) in the presence of 1 atm oxygen gas balloon for 8-24 h until completion of the reaction (it was determined by thin layer chromatography). The reaction mixture was diluted with 40 % ethyl acetate in hexane and stirred for 10 min. The mixture was filtered through celite/silica gel pads, and washed with ethyl acetate. The filtrate was concentrated, and the residue was purified by flash column chromatography on silica gel to collect the α -ketoamide product.

Experimental procedure for the synthesis of Epoxide hydrolase inhibitors (3np & 3sp). A dry test tube (20 mL) containing 5 mol% CuCl was added 8 mL of dry CH_3CN and CH_3OH (1:1 v/v) via syringe, followed by sequential addition of 3-benzyloxyaniline (2p) 0.5 mmol (0.083 M). Finally it was added 1-ethynyl-4-(trifluoromethyl)benzene (1n) or ethynylcyclohexane (1s) 0.6 mmol (0.1 M), which results in formation of a suspension of fine yellow precipitate. (Note:

these starting materials were directly purchased from Alfa-Aesar and used as received). The yellow suspension was irradiated with blue LEDs at room temperature in presence of 1 atm. O_2 gas balloon for 12 h. Further procedure same as above mentioned.

Preparative scale synthesis of epoxide hydrolase inhibitor (3sp).

Scheme S1

A dry flask (100 mL) containing 5 mol% CuCl was added 70 mL of dry CH₃CN and CH₃OH (1:1 v/v) via syringe, and 3-benzyloxyaniline (**2p**) 0.8 g (4 mmol) and finally added ethynylcyclohexane (**1s**) 0.70 g (6.50 mmol). A yellow suspension was formed. The yellow suspension was irradiated with blue LEDs at room temperature in presence of 1 atm. O₂ (in balloon) for 12 h (it was determined by thin layer chromatography). The reaction mixture was diluted with 40% ethyl acetate in hexane and stirred for 10 min. The mixture was filtered through celite and silica gel pads and washed with ethyl acetate. The filtrate was concentrated and the residue was purified by flash column chromatography on silica gel to afford 1.15 g (86% yield) of the desired α -ketoamides product as a yellow solid (see optical picture in Figure **S15** and crystal structure in Figure **S18**).

Preparation of copper(I) phenylacetylide:^{S1} CuI (1.0 g, 5.0 mmol) was dissolved in ammonium hydroxide to form a blue solution. While stirring, this solution was added drop wise to the solution of phenylacetylene (0.5g, 5.1 mmol) in 50 mL of ethanol. The system was allowed to stand for 15 min to form a yellow precipitate suspension. The precipitate was filtered out and washed with water, ethanol, and diethyl ether, three times each. The solid was vacuum-dried, and 0.65 g (yield 75%) of a bright yellow solid was obtained. The spectroscopic data for the yellow solid are listed below: IR (KBr, cm⁻¹)^{S2}: 1931(C=C), 1596, 1568; UV-Vis $\lambda_{abs} = 476$ nm.

Preparation of Starting materials. The starting material, 2-benzyl-1-ethynyl-4-methoxybenzene (1e), was synthesized by according to known literature procedure.^{S3} The starting material, 1-ethynyl-4-methoxynaphthalene (1l), was synthesized from1-bromo-4-methoxynaphthalene by known Sonogashira reaction procedure.^{S4}

Preparation of 9-(phenylethynyl)-9H-carbazole (2r).85

Scheme S2

Procedure: To a flame-dried sealed tube was added carbazole (s-1) (350 mg, 2.09 mmol), CuSO₄·5H₂O (52.5 mg, 0.208 mmol), 1,10-phenanthroline (75.5 mg, 0.42 mmol) and K₂CO₃ (725 mg, 5.23 mmol), followed by anhydrous toluene (7 mL) and bromoalkyne (s-2) (472 mg, 2.62 mmol). The tube was filled with nitrogen by three vacuum-flush cycles, and the solution was heated to 80-85 °C in an oil bath overnight. When complete, the crude reaction mixture was cooled to RT, filtered through celite and silica gel pads and concentrated in vacuo. Purification of the crude residue using silica gel flash column chromatography (10:1 hexane/EtOAc) gave the pure ynamine **s-2r** as pale yellow solid (391 mg, 70%).

Ph— — 1a	= + H ₂ N-{ 2a	$ \frac{5 \text{ mol\% catalyst}}{CH_3CN-CH_3OH} $ $ O_2 (1 \text{ atm}), 10 $ RT, blue LEDs	$Ph \rightarrow Ph \rightarrow N$	
Entry	Catalyst	Base	Solvent	Yield [%] ^b
1	CuCl	Et ₃ N (1.5eq)	CH ₃ CN	35
2	CuCl	K ₂ CO ₃ (1.05 eq)	CH ₃ CN-MeOH	10
3	CuCl	KOAc (1.2 eq)	CH ₃ CN-MeOH	78
4	CuCl	NaOAc (1.2 eq)	CH ₃ CN-MeOH	80
5	CuCl	KOAc (0.25 eq)	CH ₃ CN-MeOH	84
6	CuCl	no base	CH ₃ CN-MeOH	93
7	CuCl ₂	no base	CH ₃ CN-MeOH	trace
8	CuBr	no base	CH ₃ CN-MeOH	93
9	Cul	no base	CH ₃ CN-MeOH	93
10	Cu(OAc) ₂	no base	CH ₃ CN-MeOH	n.r
11	CuCl	no base	CH ₃ CN	83
12	CuCl	no base	MeOH	77
13 ^c	CuCl	no base	CH ₃ CN-MeOH	80
14	CuCl	no base	DMF	55
15	CuCl	no base	DMSO	43

Table S1: Optimization studies on coupling reaction of (1a) and (2a) under visible light irradiation^a

^a0.6 mmol of **1a** (0.1 M), 0.5 mmol of **2a** (0.083 M), and 5 mol% of CuCl in 8 mL of solvent. The solution was irradiated with blue LEDs for 10 h in presence of 1 atm O₂ (in balloon). ^bYields were determined by the ¹H NMR integration method using mesitylene as an internal standard. ^c0.5 mL of water was added.

+ H ₂ N-	5 mol% CuCl CH ₃ CN-CH ₃ OH, C 10 h, RT, blue LEl	→ Pl D ₂ Ds	O H N O 3aa
Visible light	Catalyst (CuCl)	0 ₂	Yield (%) ^b
+	+	+	93
+	+	—	n.r
_	+	+	n.r
+	-	+	n.r
_	_	+	n.r
_	+	+	n.r
+	+	+	58
	+ H_2N 2a Visible light + + - + - + - + + - +	$\begin{array}{c} + & H_2N - & \\ \hline 2a \\ \hline 2a \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	$+ H_2N - \underbrace{2a} 2a \xrightarrow{5 \text{ mol}\% \text{ CuCl}} (CH_3CN-CH_3OH, O_2) \xrightarrow{Pl} Pl$ $\frac{10 \text{ h, RT, blue LEDs}} Visible light Catalyst (CuCl) O_2$ $+ + + + + + + + + + + + + + + + + + + $

^aReaction conditions: 0.6 mmol of **1a** (0.1 M), 0.5 mmol of **2a** (0.083 M), and 5 mol% of CuCl in 8 ml of ACN-MeOH (1:1 v/v). The solution was irradiated with blue LEDs for 10 h in presence of 1 atm O₂ (in balloon).^bYields was determined by the ¹H NMR integration method using mesitylene as an internal standard. ^cThe reaction was carried at 80 °C, using 10 mol% CuCl for 15 h. ^dThe reaction was irradiated under ambient household white light (power density: 8 mW/cm² at 460 nm) for 24 h

^aReaction conditions: 0.6 mmol of **1** (0.1 M), 0.5 mmol of **2d** (0.083 M), and 5 mol% of CuCl in 8 ml dry CH₃CN and CH₃OH (1:1). The solution was irradiated with blue LEDs in the presence of 1 atm. O_2 (in balloon). Isolated yield after purification by column chromatography on Silica gel.

Scheme S3: Mechanistic control experiments.

Dark condition (eq. s2-s3): To a flame-dried sealed tube was added 9-(phenylethynyl)-9Hcarbazole (2r) 0.187 mmol, 5 mol% of CuCl and added anhydrous CH_3CN (5 mL), the tube was stirring at 30 °C or 80 °C for 24 h under 1 atm. O₂. The crude reaction mixture was filtered through celite and silica gel pads and concentrated in vacuo. Purification of the crude residue using silica gel flash column chromatography (10:1 hexane/EtOAc) gave the yellow solid, 15% for reaction 30 °C and 36% for reaction at 80 °C.

Visible light condition (eq. s4): the above reaction was conducted in blue LEDs under 1 atm. O_2 at room temperature, reaction was monitored by TLC. The resulting reaction provides 75 % yield after 5 h irradiation.

EPR measurements: EPR spectra were recorded at room temperature on a Bruker ESP-300E (X band, 9.8 GHz) with parameters setting as shown below: receiver gain= 30n; receiver phase= 0 deg; receiver harmonic= 1; field modulation frequency= 100000 Hz; microwave frequency [Hz]= 9.660469 e⁺⁰⁹; field modulation amplitude [T]= 0.00016 ;receiver time constant[S] = 0.32768; microwave power= 0.015 W; receiver offset [%FS]=0; DMPO (5-,5-dimethyl-1-pyrroline N-oxide) was employed as a radical trap for superoxide.

The reaction under standard condition (**1a**, **2a**, CuCl, 1 atm. O_2) in CH₃CN-CH₃OH mixture was irradiated with blue LEDs for 30 min in the presence of DMPO in an EPR chamber while recording the EPR spectra. The EPR signals shown in Figure S1 is corresponding to DMPO-OO(H). The EPR signals were suppressed upon addition of superoxide dismutase (SOD) (Fig. **S2**). This result indicates that superoxide free radical was formed in the reaction solution. No superoxide EPR signals were observed from the reaction solution under standard condition without CuCl (Fig. S3). Reaction under standard condition without **1a** and **2a** also produces no superoxide EPR signals (Fig. **S4**). Copper(I) phenylacetylide alone was irradiated with blue LEDs in presence of O_2 in CH₃CN-CH₃OH mixture for 30 min in the presence of DMPO in an EPR chamber while recording the EPR spectra. The EPR signals shown in Figure S5 are corresponding to DMPO-OO(H). No EPR signals were observed when copper(I) phenylacetylide alone was stirred in dark condition in presence of O_2 in CH₃CN-CH₃OH (see Fig. **S6**). These results indicate that copper(I) phenylacetylide undergoes single electron transfer to O_2 and generate superoxide free radical upon blue LEDs irradiation.

Finally, the reaction solution was stirred for 30 min in the dark and the presence of DMPO under standard condition (aniline, CuCl, O_2) in CH₃CN-CH₃OH mixture (without phenylacetylene, **1a**) and the EPR spectra were recorded. The EPR signals are corresponding to DMPO-OO(H) (Fig. **S7**). The same reaction was repeated (in the dark) with 4-cyano-aniline (**2m**) instead of aniline (**1a**), no EPR signal was detected (Fig. **S8**). However, the reaction under standard condition containing 4-cyano-aniline (**2m**) phenylacetylene (**1a**), CuCl, O_2 in CH₃CN-CH₃OH mixture was irradiated with blue LEDs for 30 min and DMPO-OO(H) adduct EPR signals were detected (Fig. **S9**). These three results indicates that, electron rich and electron neutral anilines could be produced superoxide compound in presence of CuCl and O_2 in the dark condition (at room temperature), which produces azo compounds products through coupling of

aniline radical-cation.^{S6} The electron poor anilines (e.g.,4-cyano-aniline) alone in dark or blue LEDs irradiation do not produce any EPR signals (Fig. **S8**). However, when phenylacetylene was added to the same solution and 30 min blue LEDs irradiation was provided, the DMPO-superoxide adducts EPR signals were generated (see Fig. **S9**). Therefore superoxide free radical is clearly generated in the presence of both copper(I) phenylacetylide and O_2 under blue LEDs irradiation.

EPR spectra of the reaction mixture after blue LEDs irradiation

Figure S1: EPR spectra of the reaction mixture: phenylacetylene(**1a**) (0.01 M), aniline (**2a**) (0.0083 M) and 5 mol% of CuCl in CH₃CN: CH₃OH (1:1 v/v), 0.5 mL of this reaction solution was taken out into a small vial, followed by the addition of 0.01 mL of DMPO (5 x 10^{-2} M). The mixture was irradiated with blue LEDs at room temperature under an oxygen atmosphere for 30 minutes. The reaction mixture was then analysed by EPR spectra. There are 6 classical peaks, which are corresponding to the signal from (DMPO-OO(H)). The measured g-values are 2.0162, 2.0113, 2.0083, 2.0035, 2.0004 & 1.9957.

EPR spectra of the reaction mixture + SOD after blue LEDs irradiation

Figure S2: EPR spectra of the reaction mixture: phenylacetylene (**1a**) (0.01 M), aniline (**2a**) (0.0083 M) and 5 mol% of CuCl in CH₃CN: CH₃OH (1:1 v/v). 0.5 ml of this reaction solution was taken out into a small vial, mixed well with 0.01 mL of SOD in CH₃CN solvent ($1x10^{-2}$ M) followed by the addition of 0.01 mL of DMPO (5 x 10^{-2} M). The mixture was irradiated with blue LEDs at room temperature under an oxygen atmosphere for 30 minutes. The reaction mixtures was analysed by EPR spectra. Signals were suppressed.

Figure S3: EPR spectra of the reaction mixture: phenylacetylene (**1a**) (0.01 M), aniline (**2a**) (0.0083 M) in CH₃CN: CH₃OH (1:1 v/v). 0.5 mL of this reaction solution was taken out into a small vial, followed by the addition of 0.01 mL of DMPO (5 x 10^{-2} M). The mixture was irradiated with blue LEDs at room temperature under an oxygen atmosphere for 30 minutes. The reaction mixtures was analysed by EPR spectra. No signals were observed.

EPR spectra of the reaction with CuCl and O₂ in ACN-MeOH

Figure S4: EPR spectra of the reaction mixture: 10 mg of CuCl in 10 mL of CH₃CN-CH₃OH mixture (1:1 v/v). 0.5 ml of this reaction solution was taken out into a small vial, followed by the addition of 0.01 mL of DMPO (5 x 10^{-2} M). The mixture was irradiated with blue LEDs at room temperature under an oxygen atmosphere for 30 minutes. The reaction mixtures was analysed by EPR spectra. No signals were observed.

EPR spectra of the reaction with copper(I) phenylacetylide + blue LEDs

Figure S5: EPR spectra of the reaction mixture: 10 mg of copper(I) phenylacetylide in 8 mL of CH₃CN: CH₃OH (1:1 v/v). 0.5 ml of this reaction solution was taken out into a small vial, followed by the addition of 0.01 ml of DMPO (5 x 10^{-2} M). The mixture was irradiated with blue LEDs at room temperature under an oxygen atmosphere for 30 minutes. The reaction mixtures was analysed by EPR spectra. There are 6 classical peaks, which are corresponding to the signals (DMPO-OO(H)). The calculated g-values are 2.0160, 2.0114, 2.0082, 2.0037, 2.0005 and 1.9959.

EPR spectra of the reaction with copper(I) phenylacetylide in dark

Figure S6: EPR spectra of the reaction mixture: 10 mg of copper(I) phenylacetylide in 8 mL of CH₃CN: CH₃OH (1:1 v/v). 0.5 ml of this reaction solution was taken out into a small vial, followed by the addition of 0.01 mL of DMPO (5 x 10^{-2} M). The mixture was stirred in dark condition (without any light) at room temperature under an oxygen atmosphere for 30 minutes. The reaction mixtures was analysed by EPR spectra. No signals were observed.

EPR spectra of the reaction with aniline + CuCl, without (1a) in dark

Figure S7: EPR spectra of the reaction mixture: aniline (**2a**) (0.0083 M) and 5 mol% of CuCl in CH₃CN: CH₃OH (1:1 v/v). 0.5 ml of this reaction solution was taken out into a small vial, followed by the addition of 0.01 ml of DMPO (5 x 10^{-2} M). The mixture was stirred in dark condition (without any light) at room temperature under an oxygen atmosphere for 30 minutes. The reaction mixtures was analysed by EPR spectra. There are 6 classical peaks, which are corresponding to the signals from (DMPO-OO(H)). The calculated g-values are 2.0158, 2.0112, 2.0080, 2.0034, 2.0003& 1.9956.

EPR spectra of the reaction with 4-cyano-aniline + CuCl, without (1a) in dark

Figure S8: EPR spectra of the reaction mixture: 4-cyano-aniline (**2m**) (0.0083 M) and 5 mol% of CuCl in CH₃CN: CH₃OH (1:1 v/v). 0.5 ml of this reaction solution was taken out into a small vial, followed by the addition of 0.01 ml of DMPO (5 x 10^{-2} M). The mixture was stirred in dark condition (without any light) at room temperature under an oxygen atmosphere for 30 minutes. The reaction mixtures was analysed by EPR spectra. No signals were observed.

Figure S9: EPR spectra of the reaction mixture: 4-cyano-aniline (**2m**) (0.0083 M), phenylacetylene (**1a**) (0.01 M) and 5 mol% of CuCl in CH₃CN: CH₃OH (1:1 v/v). 0.5 mL of this reaction solution was taken out into a small vial, followed by the addition of 0.01 mL of DMPO (5 x 10^{-2} M). The mixture was irradiated with blue LEDs at room temperature under an oxygen atmosphere for 30 minutes. The reaction mixtures was analysed by EPR spectra. There are 6 classical peaks, which are corresponding to signals from (DMPO-OO(H)). The calculated g-values are 2.0157, 2.0113, 2.0081, 2.0034, 2.0003 and 1.9957.

Excitation and emission spectra of copper(I) phenylacetylide:

Figure S10: Excitation and emission spectra of in-situ generated copper(I) phenylacetylide in a reaction solution.

Figure S11: Photoluminescence spectra of copper(I) phenylacetylide (in-situ isolated from a reaction mixture) in the absence (top) and the presence (bottom) of air/oxygen.

Lifetime measurement of in-situ prepared copper(I) phenylacetylide in CH₃CN

Figure S12: Excited state lifetime measurements of in-situ prepared copper(I) phenylacetylide at 524 nm emission (λ_{ex} = 466 nm) in acetonitrile solution in the absence and presence of oxygen.

b)

Figure S13: UV-visible spectrum of a) Cu(I)-arylacetylides and b) Cu(I)-alkyl/arylacetylides in CH_3CN and CH_3OH (1:1 v/v).

a) Reaction mixture before addition of phenylacetylene

b) Reaction mixture after addition of phenylacetylene with 10 min stirred

c) Optical picture of the reaction setup with blue-LEDs

Figure S14: Optical pictures of reaction solution containing aniline (**2a**) (0.083 M), 5 mol% CuCl in CH₃CN-CH₃OH mixture, stirred for 10 min at room temperature (dark condition) (a) before, (b) after addition of phenyl acetylene (**1a**) (0.1 M) in CH₃CN-CH₃OH mixture, and c) Optical picture of the reaction setup with blue-LEDs

Figure S15: Optical pictures of the large scale prepared 1.15 g (86.0% yield) of *Epoxide hydrolase inhibitor* (3sp).

Estimation of association constant using isothermal titration caloriemetry (ITC). Isothermal titration caloriemetry experiments were carried out at 25 °C on a high precision ITC-200 (MicroCal, LLC, and Northampton, MA). The solution of copper(I) phenylacetylide (1 mM) and CuCl (2 mM) were prepared by using CH₃CN-CH₃OH mixture (1:1). Before measurements, the samples were degassed for at least 7 minutes. The calorimeter was initially calibrated using water-water titration, in which the reference power of 5 µcal/s was applied. As a set of control experiment, solvent-to-solvent titration was also performed. Then, copper(I) phenylacetylide (1a') was loaded into the cell and CuCl was taken in the syringe. 20 injections were performed with an each titration volume of 2 µL. The reference power of 5µcal/s was applied while the sample contents were stirred at 1000 rpm (rotations per minute).

Figure S16. Isothermal titration caloriemetry (ITC) data for the determination of the association constant values. The inset of the bottom panel indicates the peak fitting results of one set of binding sites obtained from the inbuilt Origin Pro software of the Mircrocal ITC-200.

Experimental Results: The binding curve is obtained from a plot of the heat change from each injection against the molar ratio of CuCl (in syringe) and binding partner **1a'** in the cell (Fig.

S18). The binding curve is analyzed with an appropriate binding model to determine the value of K (binding affinity). The isothermal titration reveals the association constant, $K_a \sim 6550 \ \mu M^{-1}$ and this affinity value suggests a moderate interaction.^{S7}

References:

- S1. W. Shi, Y. Luo, X. Luo, L. Chao, H. Zhang, J. Wang, A. Lei, J. Am. Chem. Soc. 2008, 130, 14713-14720.
- S2. Y. Okamoto and S. K. Kundu, J. Phys. Chem. 1973, 77, 2677-2680.
- S3. A. Odedra, S. Datta, and R.-S. Liu, J. Org. Chem. 2007, 72, 3289.
- S4. D. Vasu, H.-H. Hung, S. Bhunia, S. A. Gawade, A. Das, R.-S. Liu, Angew. Chem. Int. Ed. 2011, 50, 6911-6914.
- S5. K. A. DeKorver, R. P. Hsung, A. G. Lohse, Y. Zhang, Org. Lett. 2010, 12, 1840-1843.
- S6. C. Zhang and N. Jiao, Angew. Chem. Int. Ed. 2010, 49, 6174-6177.
- S7. http://www.huck.psu.edu/facilities/calorimetry-up/guides/itc.

Spectroscopic Data:

2-oxo-N, 2-diphenylacetamide (3aa)

Pale yellow solid; m.p. 62-66° C; ¹H NMR (400 MHz, CDCl₃): δ 8.97 (b, 1 H), 8.40-8.38 (m, 2 H), 7.70-7.62 (m, 3 H), 7.49 (t, *J* = 8.0 Hz, 2 H), 7.38 (t, *J* = 8.0 Hz, 2 H), 7.18 (t, *J* = 8.0 Hz, 1 H) ; ¹³CNMR (100 MHz, CDCl₃): δ 187.4, 158.8, 136.6, 134.5, 133.0, 131.4, 129.1, 128.5, 125.2, 119.9; IR (neat): 3330, 2928, 1691, 1665.0, 1598, 1283 cm⁻¹; HRMS calcd for C₁₄H₁₁NO₂: 225.0790, found: 225.0793.

2-oxo-2-phenyl-N-(o-tolyl)acetamidel (3ab)

Pale orange solid; m.p. 91-93° C; ¹H NMR (400 MHz, CDCl₃): δ 8.91 (b, 1 H), 8.42 (d, *J* = 8.0 Hz, 2 H), 8.10 (d, *J* = 8.0 Hz, 1 H), 7.67-7.63 (m, 1 H), 7.52-7.48 (m, 2 H), 7.29-7.22 (m, 2 H), 7.12 (t, *J* = 8.0 Hz, 1 H), 2.36 (s, 1 H) ; ¹³CNMR (100 MHz, CDCl₃): δ 187.5, 158.8, 134.6, 133.1, 131.4, 130.8, 130.6, 128.6, 128.5, 126.9, 125.6, 121.7, 17.5; IR (neat): 3230, 2910, 1672, 1641, 1590, 1280, cm⁻¹; HRMS calcd for C₁₅H₁₃NO₂: 239.0946, found: 239.0944.

2-oxo-2-phenyl-N-(p-tolyl)acetamide (3ac)

Pale yellow solid; m.p. 112-113° C; ¹H NMR (400 MHz, CDCl₃): δ 8.90(b, 1 H), 8.39 (d, J = 4.0 Hz, 2 H), 7.65-7.62 (m, 1 H), 7.57 (d, J = 8.0 Hz, 2 H), 7.51-7.47 (m, 2 H), 7.18 (d, J = 8.0 Hz, 2 H), 2.33 (s, 1 H); ¹³CNMR (100 MHz, CDCl₃): δ 187.5, 158.7, 135.0, 134.5, 134.0, 133.1, 131.4, 129.7, 128.5, 119.8, 20.9; IR (neat): 3310, 2929, 1673,1646, 1586, 1276 cm⁻¹; HRMS calcd for C₁₅H₁₃NO₂: 239.0946, found: 239.0951.

N-(4-methoxyphenyl)-2-oxo-2-phenylacetamide (3ad)

Yellow solid; m.p. 95-97° C; ¹H NMR (400 MHz, CDCl₃): δ 8.87(b, 1 H), 8.40-8.38 (m, 2 H), 7.64-7.60 (m, 3 H), 7.49 (t, *J* = 8.0 Hz, 2 H), 6.91 (d, *J* = 8.0 Hz, 2 H), 3.80 (s, 3 H); ¹³CNMR (100 MHz, CDCl₃): δ 187.5, 158.6, 157.0, 134.5, 133.1, 131.4, 129.7, 128.5, 121.4, 114.3, 55.4; IR (neat): 3346, 2929, 1667, 1634, 1538, 1245 cm⁻¹; HRMS calcd for C₁₅H₁₃NO₃: 255.0895, found: 255.0891.

N-(2-methoxyphenyl)-2-oxo-2-phenylacetamide (3ae)

Yellow solid; m.p. 83-85° C; ¹**H NMR** (400 MHz, CDCl₃): δ 9.51(b, 1 H), 8.48 (dd, J = 8.0 Hz, 4.0 Hz, 1 H), 8.38 (dd, J = 8.0 Hz, 4.0 Hz, 2 H), 7.65-7.61 (m, 1 H), 7.51-7.47(m, 2 H), 7.14-7.10 (m, 1 H), 7.02-6.98 (m, 1 H), 6.92 (d, J = 8.0 Hz, 1 H), 3.92 (s, 3 H); ¹³**CNMR** (100 MHz, CDCl₃): δ 187.4, 158.9, 148.7, 134.4, 133.2, 131.3, 128.4, 126.3, 125.0, 120.9, 119.7, 110.1, 55.7; IR (neat): 3345, 2943, 1672.0, 1645, 1542, 1249 cm⁻¹; **HRMS** calcd for C₁₅H₁₃NO₃: 255.0895, found: 255.0895.

N-(4-(tert-butyl)phenyl)-2-oxo-2-phenylacetamide (3af)

Yellow solid; m.p. 92-93° C; ¹H NMR (400 MHz, CDCl₃): δ 8.92 (b, 1 H), 8.40 (d, *J* = 8.0 Hz, 2 H), 7.83(d, *J* = 8.0 Hz, 1 H), 7.64-7.60 (m, 2 H), 7.53-7.47(m, 2 H), 7.41-7.39 (m, 2 H); ¹³CNMR (100 MHz, CDCl₃): δ 187.5, 158.8, 154.1, 148.3, 134.5, 133.9, 131.4, 128.5, 126.0, 119.6, 31.2, 34.48, 31.30; IR (neat): 3339, 2924, 1663, 1642, 1537, 1242 cm⁻¹; HRMS calcd for C₁₈H₁₉NO₂: 281.1416, found: 281.1421.

N-(3,4-dimethoxyphenyl)-2-oxo-2-phenylacetamide (3ag)

Yellow solid; m.p. 102-104° C; ¹H NMR (400 MHz, CDCl₃): δ 8.93(b, 1 H), 8.38-8.35 (m, 2 H), 7.63-7.59 (m, 1 H), 7.47 (d, *J* = 4.0 Hz, 3 H), 7.10-7.07 (m, 1 H), 6.83 (d, *J* = 8.0 Hz, 1 H), 3.88 (s, 3 H), 3.85 (s, 3 H); ¹³CNMR (100 MHz, CDCl₃): δ 187.4, 158.6, 149.1, 146.5, 134.4, 133.1, 131.3, 130.2, 128.4, 111.9, 111.3, 104.36, 55.9, 55.8; IR (neat): 3334, 2921, 1695, 1615, 1180 cm-1; HRMS calcd for C₁₆H₁₅NO₄: 285.1001, found: 285.0991.

N-(4-bromophenyl)-2-oxo-2-phenylacetamide (3ah)

Yellow solid; m.p. 175-177° C; ¹H NMR (400 MHz, CDCl₃): δ 8.99 (b, 1 H), 8.37 (d, J = 8.0 Hz, 2 H), 7.66-7.58 (m, 3 H), 7.51-7.47 (m, 4 H); ¹³CNMR (100 MHz, CDCl₃): δ 187.0, 158.7, 135.7, 134.7, 132.8, 132.2, 131.4, 128.5, 121.4, 118.0; IR (neat): 3342, 2928, 1699, 1663, 1279, 1069 cm⁻¹; HRMS calcd for C₁₄H₁₀BrNO₂: 302.9895, found: 302.9899.

N-(4-iodophenyl)-2-oxo-2-phenylacetamide (3ai)

Yellow solid; m.p. 170-172° C; ¹**H** NMR (400 MHz, CDCl₃): δ 8.96 (b, 1 H), 8.37 (d, J = 8.0 Hz, 2 H), 7.69-7.62 (m, 3 H), 7.51-7.45 (m, 4 H); ¹³CNMR (100 MHz, CDCl₃): δ 186.9, 158.7, 138.1, 136.3, 134.7, 132.8, 131.4, 128.5, 121.6, 88.8; IR (neat): 3344, 2933, 1698, 1666, 1280 cm⁻¹; **HRMS** calcd for C₁₄H₁₀INO₂: 350.9756, found: 350.9760.

N-(3-bromophenyl)-2-oxo-2-phenylacetamide (3aj)

Yellow solid; m.p. 168-170° C; ¹**H** NMR (400 MHz, CDCl₃): δ 9.05 (b, 1 H), 8.36 (d, J = 8.0 Hz, 2 H), 7.97 (s, 1 H), 7.64 (t, J = 4.0 Hz, 2 H), 7.61-7.55 (m, 1 H), 7.47 (t, J = 8.0 Hz, 2 H), 7.29 (t, J = 4.0 Hz, 1 H), 7.21 (t, J = 8.0 Hz, 1 H); ¹³CNMR (100 MHz, CDCl₃): δ 186.9, 158.8, 137.7, 132.7, 131.4, 130.3, 128.5, 128.1, 122.8, 122.7, 118.3; IR (neat): 3340, 2923,1694, 1659, 1275cm⁻¹; **HRMS** calcd for C₁₄H₁₀BrNO₂: 302.9895, found: 302.9892.

2-oxo-2-phenyl-N-(4-(trifluoromethyl)phenyl)acetamide (3ak)

Yellow solid; m.p. 149-152° C; ¹H NMR (400 MHz, CDCl₃): δ 9.10 (b, 1 H), 8.40 (d, J = 4.0 Hz, 2 H), 7.82 (d, J = 8.0 Hz, 2 H), 7.67-7.64 (m, 2 H), 7.53-7.50 (m, 2 H), 7.33 (t, J = 4.0 Hz, 1 H); ¹³CNMR (100 MHz, CDCl₃): δ 186.7, 158.9, 139.6, 134.9, 132.6 (d, $J_{C-F} = 27.0$ Hz), 131.5, 129.7, 129.1, 128.1, 128.5 (d, $J_{C-F} = 24.0$ Hz), 126.3 (d, $J_{C-F} = 3.0$ Hz), 119.6; IR (neat): 3339, 1709, 1668, 1543, 1330, 1115 cm⁻¹; HRMS calcd for C₁₅H₁₀F₃NO₂: 293.0664, found: 293.0666.

N-(3,5-bis(trifluoromethyl)phenyl)-2-oxo-2-phenylacetamide (3al)

Yellow solid; m.p.146-148° C; ¹**H NMR** (400 MHz, CDCl₃): δ 9.26 (b, 1 H), 8.42 (d, *J* = 8.0 Hz, 2 H), 8.21 (s, 2 H), 7.67 (d, *J* = 8.0 Hz, 2 H), 7.54-7.51 (m, 3 H); ¹³CNMR (100 MHz, CDCl₃): δ 186.0, 158.9, 138.0, 135.1, 132.6 (d, J_{C-F} = 27.0 Hz), 131.5, 130.8, 128.7 (d, J_{C-F} = 1.0 Hz), 119.6 (d, J_{C-F} = 2.0 Hz), 118.5; IR (neat): 3340, 1702, 1666, 1540, 1110 cm⁻¹; **HRMS** calcd for C₁₅H₉F₆NO₂: 361.0537, found: 361.0544.

N-(4-cyanophenyl)-2-oxo-2-phenylacetamide (3am)

Yellow solid; m.p 143-145° C; ¹**H** NMR (400 MHz, CDCl₃): δ 9.19 (b, 1 H), 8.39 (d, *J* = 8.0 Hz, 2 H), 8.09 (d, *J* = 8.0 Hz, 1 H), 7.83 (d, *J* = 8.0 Hz, 2 H), 7.68 (d, *J* = 8.0 Hz, 2 H), 7.53-7.44 (m, 3 H); ¹³CNMR (100 MHz, CDCl₃): δ 186.4, 158.9, 140.5, 135.0, 133.4, 132.6, 131.5, 128.7, 119.9, 118.5, 108.4; IR (neat): 3335, 2224, 1708, 1659.2, 1243.2 cm⁻¹; **HRMS** calcd for C₁₅H₁₀N₂O₂: 250.0742, found: 250.0739.

N-(4-benzoylphenyl)-2-oxo-2-phenylacetamide (3an)

Yellow solid; m.p. 164-166° C; ¹**H** NMR (400 MHz, CDCl₃): δ 9.15 (b, 1 H), 8.41 (d, J = 4.0 Hz, 2 H), 7.88 (d, J = 8.0 Hz, 2 H), 7.82 (d, J = 8.0 Hz, 2 H), 7.79-7.77 (m, 2 H), 7.67(t, J = 4.0 Hz, 1 H), 7.58 (t, J = 8.0 Hz, 1 H), 7.53-7.47 (m, 4 H); ¹³CNMR (100 MHz, CDCl₃): δ 195.4, 186.7, 158.8, 140.3, 137.6, 134.9, 134.0, 132.3, 131.6, 131.5, 129.9, 128.6, 128.3, 119.1; IR (neat): 3339, 1707, 1698, 1665, 1549, 1328 cm⁻¹; **HRMS** calcd for C₂₁H₁₅NO₃: 329.1052, found: 329.1055.

N-(4-chloro-3-(trifluoromethyl)phenyl)-2-oxo-2-phenylacetamide (3ao)

Yellow solid; m.p. 159-161° C; ¹**H** NMR (400 MHz, CDCl₃): δ 9.14 (b, 1 H), 8.38 (d, J = 8.0 Hz, 2 H), 8.08 (s, 1 H), 7.84 (d, J = 8.0 Hz, 1 H), 7.67 (q, J = 8.0 Hz, 1 H), 7.50 (t, J = 8.0 Hz, 3 H); ¹³CNMR (100 MHz, CDCl₃): δ 186.4, 158.8, 135.4, 135.0, 132.4(d, J_{C-F} = 41.0 Hz), 131.5, 129.1 (d, J_{C-F} = 25.0 Hz), 128.6, 128.0, 123.7, 123.4, 121.3, 118.9 (d, J_{C-F} = 4.0 Hz); IR (neat): 3345, 1691, 1663, 1520, 1112 cm⁻¹; **HRMS** calcd for C₁₅H₉ClF₃NO₂: 327.0274, found: 327.0265.

2-(4-ethylphenyl)-2-oxo-N-phenylacetamide (3ba)

Yellow solid; m.p. 136-138° C; ¹**H** NMR (400 MHz, CDCl₃): δ 8.94(b, 1 H), 8.35 (d, J = 8.0 Hz, 2 H), 7.68 (d, J = 8.0 Hz, 2 H), 7.38 (t, J = 8.0 Hz, 2 H), 7.32 (d, J = 8.0 Hz, 2 H), 7.18 (t, J = 4.0 Hz, 1 H), 2.72 (q, J = 8.0 Hz, 2 H), 1.25 (t, J = 8.0 Hz, 3 H); ¹³CNMR (100 MHz, CDCl₃): δ 186.8, 159.1, 152.0, 136.6, 131.7, 130.7, 129.2, 128.1, 125.2, 119.8, 29.1, 15.0; IR (neat): 3331, 1691, 1660, 1589, 1525, 1280 cm⁻¹; **HRMS** calcd for C₁₆ H₁₅NO₂: 253.1103 found:253.1107.

2-(4-(tert-butyl)phenyl)-2-oxo-N-phenylacetamide(3ca)

Yellow solid; m.p. 101-103° C; ¹**H** NMR (400 MHz, CDCl₃): δ 8.97 (b, 1 H), 8.35 (d, J = 8.0 Hz, 2 H), 7.69 (d, J = 8.0 Hz, 2 H), 7.52-7.50 (m, 2 H), 7.40-7.36 (m, 2 H), 7.18 (t, J = 8Hz, 1 H), 1.34 (s, 9 H); ¹³CNMR (100 MHz, CDCl₃): δ 186.9, 159.1, 158.7, 136.7, 131.4, 130.4, 129.1, 125.5, 125.1, 119.9, 35.3, 30.9; IR (neat): 3329, 1687, 1657, 1584, 1521, 1273 cm⁻¹; HRMS calcd for C₁₈H₁₉NO₂: 281.1416 found: 281.1418.

2-oxo-N-phenyl-2-(p-tolyl)acetamide (3da)

Yellow solid; m.p. 114-116° C; ¹**H** NMR (400 MHz, CDCl₃): δ 8.96 (b, 1 H), 8.33 (d, J = 8.0 Hz, 2 H), 7.68 (d, J = 8.0 Hz, 2 H), 7.38 (t, J = 8.0 Hz, 2 H), 7.29 (d, J = 8.0 Hz, 2 H), 7.17 (t, J = 8.0 Hz, 1 H), 2.42 (s, 3 H); ¹³CNMR (100 MHz, CDCl₃): δ 186.8, 159.1, 145.9, 136.6, 131.6, 130.5, 129.2, 129.1, 125.1, 119.8, 21.8; IR (neat): 3328, 1691, 1660, 1604, 1589, 1525, 1280 cm⁻¹; **HRMS** calcd for C₁₅H₁₃NO₂: 239.0946 found: 239.0946.

2-(2-benzyl-4-methoxyphenyl)-2-oxo-N-phenylacetamide (3ea)

Yellow solid; m.p.128-130° C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.87 (b, 1 H), 8.24 (d, J = 8.0 Hz, 1 H), 7.66 (d, J = 8.0 Hz, 2 H), 7.38 (t, J = 8.0 Hz, 2 H), 7.28 (t, J = 8.0 Hz, 2 H), 7.20-7.15 (m, 4 H), 6.85 (d, J = 8.0 Hz, 1 H), 6.78 (s, 1 H), 4.32 (s, 2 H), 3.84 (s, 3 H); ¹³**CNMR** (100 MHz, CDCl₃): δ 188.5, 163.3, 159.5, 146.3, 140.2, 136.7, 135.8, 129.1, 128.9, 128.3, 126.1, 125.0, 124.9, 119.7, 118.0, 110.5, 55.3, 39.6; IR (neat): 3338, 1692, 1663, 1608, 1586, 1287 cm⁻¹; **HRMS** calcd for C₂₂H₁₉NO₃: 345.1365 found: 345.1371.

2-(3-methoxyphenyl)-2-oxo-N-phenylacetamide (3fa)

Yellow solid; m.p.117-119° C; ¹H NMR (400 MHz, CDCl₃): δ 8.92 (b, 1 H), 8.05 (d, *J* = 8.0 Hz, 1 H), 7.89 (t, *J* = 8.0 Hz, 1 H), 7.68 (d, *J* = 8.0 Hz, 2 H), 7.42-7.36 (m, 2 H), 7.20-7.16 (m, 2 H), 3.86 (s, 3 H); ¹³CNMR (100 MHz, CDCl₃): δ 187.1, 159.5, 158.8, 136.5, 134.1, 129.5, 129.2, 125.3, 124.3, 121.6, 119.9, 114.9, 55.48; IR (neat): 3341, 1694, 1668, 1606, 1583, 1285 cm⁻¹; HRMS calcd for C₁₅H₁₃NO₃: 255.0895 found: 255.0897.

2-(4-fluorophenyl)-2-oxo-N-phenylacetamide (3ga)

Yellow solid; m.p. 128-130° C; ¹H NMR (400 MHz, CDCl₃): δ 8.95 (b, 1 H), 8.53-8.50 (m, 2 H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.39 (t, *J* = 4.0 Hz, 2H), 7.20-7.15 (m, 3 H); ¹³CNMR (100 MHz, CDCl₃): δ 185.5, 167.7, 165.7, 158.6, 136.4, 134.6 (d, J_{C-F} = 7.0 Hz), 129.4 (d, J_{C-F} = 24.0 Hz), 125.4, 119.9, 115.9 (d, J_{C-F} = 17.0 Hz); IR (neat): 3342, 1697,1666, 1590, 1277 cm⁻¹; HRMS calcd for C₁₄H₁₀FNO₂: 243.0696 found: 243.0700.

2-(4-chlorophenyl)-2-oxo-N-phenylacetamide (3ha)

Yellow solid; m.p. 131-133° C; ¹**H** NMR (400 MHz, CDCl₃): δ 8.94 (b, 1 H), 8.39 (d, J = 8.0 Hz, 2 H), 7.67 (d, J = 8.0 Hz, 2 H), 7.47 (d, J = 8.0 Hz, 2 H), 7.38 (t, J = 8.0 Hz, 2 H), 7.19 (t, J = 8.0 Hz, 1 H); ¹³CNMR (100 MHz, CDCl₃): δ 186.0, 158.5, 141.4, 136.4, 132.9, 131.3, 129.2, 128.9, 125.4, 119.9; IR (neat): 3340, 1691,1660, 1535, 1277 cm⁻¹; HRMS calcd for C₁₄H₁₀ClNO₂: 259.0400 found: 259.0410.

2-(4-bromophenyl)-2-oxo-N-phenylacetamide (3ia)

Yellow solid; m.p. 177-179° C; ¹H NMR (400 MHz, CDCl₃): δ 8.93 (b, 1 H), 8.31 (d, J = 8.0 Hz, 2 H), 7.68-7.63 (m, 4 H), 7.39 (t, J = 8.0 Hz, 2 H), 7.19 (t, J = 8.0 Hz, 1 H); ¹³CNMR (100 MHz, CDCl₃): δ 186.2, 158.4, 136.4, 132.9, 131.9, 131.7, 130.4, 129.2, 125.4, 119.9; IR (neat): v = 3297.7, 1687.9, 1652.8, 1607.9, 1282.3, 815.3 cm-1; IR (neat): 3342, 1697,1665, 1538, 1279 cm⁻¹; HRMS calcd for C₁₄H₁₀BrNO₂: 302.9895 found: 302.9899.

2-(naphthalen-2-yl)-2-oxo-N-phenylacetamide (3ja)

Yellow solid; m.p. 114-116° C; ¹H NMR (400 MHz, CDCl₃): δ 9.28 (s, 1 H), 9.03 (b, 1 H), 8.24 (d, *J* = 8.0 Hz, 1 H), 8.01 (d, *J* = 8.0 Hz, 1 H), 7.92-7.86 (m, 2 H), 7.71 (d, *J* = 4.0 Hz, 2 H), 7.64 (t, *J* = 4.0 Hz, 1H), 7.56 (t, *J* = 4.0 Hz, 1 H), 7.41 (t, *J* = 4.0 Hz, 2 H), 7.20 (t, *J* = 8.0 Hz, 1 H); ¹³CNMR (100 MHz, CDCl₃): δ 186.9, 159.0, 136.6, 136.1, 135.3, 132.3, 130.4, 130.2, 129.5, 129.28, 129.26, 129.25, 129.23, 128.45, 128.43, 127.77, 127.75, 126.92, 126.9, 125.43, 125.41, 125.3, 119.9; IR (neat): 3340, 1690, 1665, 1534, 1274 cm⁻¹; HRMS calcd for C₁₈H₁₃NO₂: 275.0946 found: 275.0946.

2-(naphthalen-1-yl)-2-oxo-N-phenylacetamide (3ka)

Yellow solid; m.p. 162-164° C; ¹**H NMR** (400 MHz, CDCl₃): δ 9.08 (b, 1 H), 8.55 (d, *J* = 4.0 Hz, 1 H), 8.37 (t, *J* = 8.0 Hz, 1 H), 8.09 (d, *J* = 8.0 Hz, 1 H), 7.91 (d, *J* = 8.0 Hz, 1 H), 7.73 (d, *J* = 8.0 Hz, 2 H), 7.65-7.61 (m, 1 H), 7.55 (t, *J* = 4.0 Hz, 2 H), 7.40 (t, *J* = 8.0 Hz, 2 H), 7.19 (t, *J* = 8.0 Hz, 1 H); ¹³CNMR (100 MHz, CDCl₃): δ 190.0, 159.1, 136.7, 134.7, 133.8, 133.2, 131.2,

129.3, 129.2, 128.7, 128.4, 126.6, 125.3, 125.2, 124.2, 119.8; IR (neat): 3339, 1693, 1668, 1536, 1273, cm⁻¹; **HRMS** calcd for C₁₈H₁₃NO₂: 275.0946 found: 275.0949.

2-(4-methoxynaphthalen-1-yl)-2-oxo-N-phenylacetamide (3la)

Yellow solid; m.p. 168-170° C; ¹H NMR (400 MHz, CDCl₃): δ 9.23 (s, 1 H), 9.04 (b, 1 H), 8.23 (d, *J* = 4.0 Hz, 1 H), 7.89 (d *J* = 4.0 Hz, 1 H), 7.77 (d, *J* = 8.0 Hz, 1 H), 7.72 (d, *J* = 8.0 Hz, 2 H), 7.39 (t, *J* = 8.0 Hz, 2 H), 7.21-7.18 (m, 2 H), 7.14 (s, 1 H), 3.95 (s, 1 H); ¹³CNMR (100 MHz, CDCl₃): δ 186.3, 160.6, 159.4, 138.1, 136.7, 135.2, 132.7, 132.1, 129.2, 128.3, 127.7, 127.1, 126.3, 125.2, 119.9, 119.7, 105.8, 55.4; IR (neat): 3337, 1682, 1660, 1529, 1266 cm⁻¹; HRMS calcd for C₁₉ H₁₅NO₃: 305.1052 found: 305.1055.

2-oxo-N-phenyl-2-(2-(trifluoromethyl)phenyl)acetamide (3ma)

Yellow solid; m.p. 148-150° C; ¹H NMR (400 MHz, CDCl₃): δ 8.89 (b, 1 H), 7.80-7.78 (m, 2 H), 7.70-7.68 (m, 4 H), 7.40 (t, J = 8.0 Hz, 2 H), 7.21 (t, J = 8.0 Hz, 1 H); ¹³CNMR (100 MHz, CDCl₃): δ 191.0, 157.0, 136.2, 133.4, 131.5, 131.3, 129.4, 129.3, 126.8 (d, $J_{C-F} = 4.0$ Hz), 125.5, 124.5, 119.7 (d, $J_{C-F} = 3.0$ Hz); IR (neat): 3345, 1702, 1668, 1544, 1335, 1068 cm⁻¹; HRMS calcd for C₁₅H₁₀F₃NO₂: 293.0664 found: 293.0664.

2-(4-acetylphenyl)-2-oxo-N-phenylacetamide (3na)

Yellow solid; m.p. 153-156° C; ¹H NMR (400 MHz, CDCl₃): δ 8.95 (b, 1 H), 8.50 (d, J = 8.0 Hz, 2 H), 7.75-7.67 (m, 4 H), 7.41-7.37 (m, 2 H), 7.20 (t, J = 8.0 Hz, 1 H); ¹³CNMR (100 MHz, CDCl₃): δ 186.5, 158.1, 136.2, 135.7, 135.2, 131.7, 129.2, 125.5 (d, $J_{C-F} = 6.0$ Hz), 125.45 (d, $J_{C-F} = 3.0$ Hz), 125.40, 119.9 (d, $J_{C-F} = 1.0$ Hz); IR (neat): 3345, 1704, 1670, 1545, 1337, 1065 cm⁻¹; HRMS calcd for C₁₅H₁₀F₃NO₂: 293.0664 found: 293.0663.

2-(4-cyanophenyl)-2-oxo-N-phenylacetamide (3oa)

Yellow solid; m.p. 146-148° C; ¹H NMR (400 MHz, CDCl₃): δ 8.92 (b, 1 H), 8.49 (d, *J* = 4.0 Hz, 2 H), 7.78 (d, *J* = 8.0 Hz, 2 H), 7.67 (d, *J* = 8.0 Hz, 2 H), 7.39 (t, *J* = 8.0 Hz, 2 H), 7.20 (t, *J* = 4.0 Hz, 1 H); ¹³CNMR (100 MHz, CDCl₃): δ 186.1, 157.8, 136.15, 136.11, 132.1, 131.7, 129.3, 125.6, 119.9, 117.7, 117.5; IR (neat): 3342, 2253, 1702, 1669, 1545, 1337, 1065 cm⁻¹; HRMS calcd for C₁₅H₁₀N₂O₂: 250.0742 found: 250.0745.

methyl 4-(2-oxo-2-(phenylamino)acetyl)benzoate (3pa)

Yellow solid; m.p. 167-169° C; ¹H NMR (400 MHz, CDCl₃): δ 8.93 (b, 1 H), 8.44 (d, J = 8.0 Hz, 2 H), 8.13 (d, J = 8.0 Hz, 2 H), 7.68 (d, J = 8.0 Hz, 2 H), 7.38 (t, J = 8.0 Hz, 2 H), 7.19 (t, J = 8.0 Hz, 1 H), 3.94 (s, 3 H); ¹³CNMR (100 MHz, CDCl₃): δ 186.9, 166.0, 158.2, 136.3, 136.2, 134.9, 131.3, 129.5, 129.2, 125.4, 119.9; IR (neat): 3330, 2982, 1712, 1701, 1527, 1279 cm⁻¹; HRMS calcd for C₁₆H₁₃NO₄: 283.0845 found: 283.0848.

2-(3-nitrophenyl)-2-oxo-N-phenylacetamide (3qa)

Yellow solid; m.p. 158-160° C; ¹H NMR (400 MHz, CDCl₃): δ 9.25 (s, 1 H), 8.95 (b, 1 H), 8.78-8.76 (m, 1 H), 8.49-8.46 (m, 1 H), 7.70-7.67 (m, 3 H), 7.41-7.37 (m, 2 H), 7.22-7.19 (m, 1 H); ¹³CNMR (100 MHz, CDCl₃): δ 185.3, 157.7, 148.2, 137.0, 136.1, 134.2, 129.8, 129.3, 128.5, 126.3, 125.7, 120.0; IR (neat): 3337, 2919, 1708, 1666, 1511 cm⁻¹; HRMS calcd for C₁₄ H₁₀N₂O₄: 270.0641 found: 270.0641.

2-oxo-N-phenyl-2-(thiophen-2-yl)acetamide (3ra)

Yellow solid; m.p. 133-135° C; ¹H NMR (400 MHz, CDCl₃): δ 9.11 (b, 1 H), 8.45 (d, *J* = 4.0 Hz, 1 H), 7.85 (d, *J* = 4.0 Hz, 1 H), 7.68 (t, *J* = 8.0 Hz, 2 H), 7.38 (t, *J* = 8.0 Hz, 2 H), 7.21-7.18 (m, 2 H); ¹³CNMR (100 MHz, CDCl₃): δ 178.3, 158.2, 139.2, 138.5, 136.3, 129.2, 129.1, 128.3, 125.3, 119.9; IR (neat): 3330, 1690, 1650, 1409, 1283, 1048 cm⁻¹; HRMS calcd for C₁₂H₉NO₂S: 231.0354 found: 231.0357.
2-cyclohexyl-2-oxo-N-phenylacetamide (3sa)

Yellow solid; m.p. 105-107° C; ¹**H** NMR (400 MHz, CDCl₃): δ 8.75 (b, 1 H), 7.62 (d, J = 4.0 Hz, 2 H), 7.34 (t, J = 4.0 Hz, 2 H), 7.14 (t, J = 4.0 Hz, 1 H), 3.50-3.46 (m, 1 H), 1.92 (d, J = 8.0 Hz, 2 H), 1.80 (d, J = 12.0 Hz, 2 H), 1.70 (t, J = 8.0 Hz, 1 H), 1.40-1.25 (m, 6 H); ¹³CNMR (100 MHz, CDCl₃): δ 201.6, 157.2, 136.4, 129.1, 125.1, 119.6, 43.1, 28.1, 25.7, 25.3; IR (neat): 3320, 1713, 1668, 1511,1148 cm⁻¹; **HRMS** calcd for C₁₄H₁₇NO₂: 231.1259 found: 231.1257.

2-oxo-N-phenylhexanamide (3ta)

Yellow solid; m.p. 79-82° C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.72 (b, 1 H), 7.62 (d, *J* = 8.0 Hz, 2 H), 7.35 (t, *J* = 4.0 Hz, 2 H), 7.15 (t, *J* = 4.0 Hz, 1 H), 2.99 (t, *J*= 4.0 Hz, 2 H), 1.66-1.60 (m, 2 H), 1.42-1.34 (m, 2 H), 0.92 (t, *J* = 4 Hz, 3 H); ¹³**CNMR** (100 MHz, CDCl₃): δ 199.5, 157.5, 136.3, 129.2, 125.2, 119.7, 36.0, 25.4, 22.2, 13.8; IR (neat): 3325, 2936, 1714, 1670, 1239 cm⁻¹; **HRMS** calcd for C₁₂H₁₅NO₂: 205.1103 found: 205.1098.

2-oxo-N-phenylheptanamide (3ua)

Yellow solid; m.p. 90-92° C; ¹H NMR (400 MHz, CDCl₃): δ 8.72 (b, 1 H), 7.62 (d, J = 8.0 Hz, 2 H), 7.35 (t, J = 4.0 Hz, 2 H), 7.15 (t, J = 4.0 Hz, 1 H), 2.98 (t, J = 8.0 Hz, 2 H), 1.68-1.62 (m, 2 H), 1.34-1.32 (m, 4 H), 0.89 (t, J = 4 Hz, 3 H); ¹³CNMR (100 MHz, CDCl₃): δ 199.5, 157.5, 136.3, 129.2, 125.2, 119.7, 36.3, 31.2, 23.0, 22.3, 13.8; IR (neat): 3325, 2936, 1713, 1667, 1237 cm⁻¹; HRMS calcd for C₁₃H₁₇NO₂: 219.1259 found: 219.1260.

2-oxo-N-phenyloctanamide (3va)

Yellow solid; m.p. 108-111° C; ¹**H** NMR (400 MHz, CDCl₃): δ 8.73 (b, 1 H), 7.62 (d, J = 8.0 Hz, 2 H), 7.35 (t, J = 8.0 Hz, 2 H), 7.15 (t, J = 4.0 Hz, 1 H), 2.98(t, J = 4.0 Hz, 2 H), 1.67-1.61 (m, 2 H), 1.36-1.30 (m, 7 H), 0.87 (t, J = 8 Hz, 3 H); ³CNMR (100 MHz, CDCl₃): δ 199.5, 157.5, 136.3, 129.2, 125.2, 119.6, 36.3, 31.4, 23.0, 28.7, 23.2, 22.4, 14.0; IR (neat): 3321, 2939, 1715, 1669, 1529, 1235, 1054 cm⁻¹; **HRMS** calcd for C₁₄H₁₉NO₂: 233.1416 found: 233.1416.

N-(3-(benzyloxy)phenyl)-2-oxo-2-(4-(trifluoromethyl)phenyl)acetamide (3np)

Yellow solid; m.p. 157-160° C; ¹H NMR (400 MHz, CDCl₃): δ 8.91 (b, 1 H), 8.51 (d, J = 8.0 Hz, 2 H), 7.76 (d, J = 8.0 Hz, 2 H), 7.53 (s, 1 H), 7.44 (d, J = 8.0 Hz, 2 H), 7.40-7.37 (m, 2 H), 7.34-7.27 (m, 2 H), 7.16 (d, J = 4.0 Hz, 1 H), 6.83 (t, J = 4.0 Hz, 1 H), 5.09 (s, 2 H); ¹³CNMR (100 MHz, CDCl₃): δ 186.4, 159.4, 158.0, 137.4, 136.6, 135.8, 135.7 (d, $J_{C-F} = 11.0$ Hz), 135.1, 132.7, 131.7, 130.0, 28.6, 128.0, 127.5, 125.5 (d, $J_{C-F} = 3.0$ Hz), 112.4 (d, $J_{C-F} = 17.0$ Hz), 106.5, 70.0; IR (neat): 3340, 2929,1702, 1680, 1598 cm⁻¹; HRMS calcd for C₂₂H₁₆F₃NO₃: 399.1082 found: 399.1087.

N-(3-(benzyloxy)phenyl)-2-cyclohexyl-2-oxoacetamide (3sp)

Yellow solid; m.p. 148-152° C; ¹H NMR (400 MHz, CDCl₃): δ 8.78 (b, 1 H), 7.54 (s, 1 H), 7.45-7.33 (m, 5 H), 7.27 (d, J = 8.0 Hz, 1 H), 7.13 (d, J = 8.0 Hz, 1 H), 6.80 (d, J = 8.0 Hz, 1 H), 5.08(s, 2 H), 3.51-3.47 (m, 1 H), 1.96-1.72 (m, 5 H), 1.46-1.22 (m, 6 H); ¹³CNMR (100 MHz, CDCl₃): δ 201.5, 159.3, 157.2, 137.6, 136.6, 129.8, 128.5, 127.9, 127.4, 112.1, 112.0, 106.0, 43.1, 28.1, 25.7, 25.3; IR (neat): 3329, 2933, 1717, 1670, 1539, 1235, 1054 cm⁻¹; HRMS calcd for C₂₁H₂₃NO₃: 337.1678 found: 337.1679.

N,2-bis(4-methoxyphenyl)-2-oxoacetamide (3wd)

Yellow solid; m.p. 118-120° C; ¹H NMR (400 MHz, CDCl₃): δ 8.93 (b, 1 H), 8.48 (d, J = 8.0 Hz, 2 H), 7.59 (d, J = 8.0 Hz, 2 H), 6.96-6.89 (m, 4 H), 3.88 (s, 3 H), 3.79 (s, 3 H); ¹³CNMR (100 MHz, CDCl₃): δ 185.3, 164.8, 159.2, 156.9, 134.2, 129.9, 126.2, 121.4, 114.3, 113.8, 55.5, 55.4; IR (neat): 3333, 1689, 1668, 1587, 1258 cm⁻¹; HRMS calcd for C₁₆H₁₅NO₄: 285.1001, found: 285.1005.

2-(4-ethylphenyl)-N-(4-methoxyphenyl)-2-oxoacetamide (3bd)

Yellow solid; m.p. 132-134° C; ¹**H** NMR (400 MHz, CDCl₃): δ 8.89 (b, 1 H), 8.34 (d, J = 8.0 Hz, 2 H), 7.60 (d, J = 4.0 Hz, 2 H), 7.30 (d, J = 8.0 Hz, 2 H), 6.90 (d, J = 8.0 Hz, 2 H), 3.80 (s, 3 H), 2.71 (q, J = 8.0 Hz, 2 H), 1.25 (t, J = 8.0 Hz, 3 H); ¹³CNMR (100 MHz, CDCl₃): δ 187.0, 158.9, 156.9, 151.9, 131.7, 130.8, 129.8, 128.0, 121.4, 114.3, 55.4, 29.1, 15.0; IR (neat): 3335, 1690, 1671, 1580, 1257 cm⁻¹; **HRMS** calcd for C₁₇H₁₇NO₃: 283.1208, found: 283.1216.

2-(4-(tert-butyl)phenyl)-N-(4-methoxyphenyl)-2-oxoacetamide (3cd)

Yellow solid; m.p. 116-118° C; ¹**H** NMR (400 MHz, CDCl₃): δ 8.87 (b, 1 H), 8.34 (d, J = 8.0 Hz, 2 H), 7.60 (d, J = 12.0 Hz, 2 H), 7.50 (d, J = 8.0 Hz, 2 H), 6.90 (d, J = 12.0 Hz, 2 H), 3.80 (s, 3 H), 1.34 (s, 9 H); ¹³CNMR (100 MHz, CDCl₃): δ 187.1, 158.9, 158.5, 156.9, 131.4, 130.5, 129.8, 125.5, 121.4, 114.3, 55.4, 35.2, 30.9; IR (neat): 3340, 1692, 1670, 1585, 1257 cm⁻¹; HRMS calcd for C₁₉H₂₁NO₃: 311.1521, found: 311.1523.

N-(4-methoxyphenyl)-2-oxo-2-(o-tolyl)acetamide (3xd)

Yellow solid; m.p. 127-129° C; ¹H NMR (400 MHz, CDCl₃): δ 8.84 (b, 1 H), 7.97 (d, J = 4.0 Hz, 1 H), 7.59 (d, J = 4.0 Hz, 2 H), 7.46-7.42 (m, 1 H), 7.30-7.24 (m, 2 H), 6.91-6.88 (m, 2 H), 3.80 (s, 3 H), 2.50 (s, 3 H); ¹³CNMR (100 MHz, CDCl₃): δ 191.2, 158.6, 157.0, 140.0, 131.9, 131.6, 129.8, 125.3, 121.3, 114.3, 55.4, 20.7; IR (neat): 3340, 1694, 1670, 1584, 1258 cm⁻¹; HRMS calcd for C₁₆ H₁₅NO₃: 269.1052 found: 269.1039.

N-(4-methoxyphenyl)-2-oxo-2-(p-tolyl)acetamide (3dd)

Pale yellow solid; m.p. 129-131° C; ¹H NMR (400 MHz, CDCl₃): δ 8.87 (b, 1 H), 8.32 (d, J = 8.0 Hz, 2 H), 7.61-7.59 (m, 2 H), 7.28 (d, J = 8.0 Hz, 2 H), 6.90 (d, J = 8.0 Hz, 2 H), 3.80 (s, 3 H), 2.42 (s, 3 H); ¹³CNMR (100 MHz, CDCl₃): δ 187.0, 158.9, 157.0, 145.84 145.82, 131.6 130.7, 129.8, 129.2, 121.4, 114.3, 55.4, 21.8; IR (neat): 3338, 1689, 1670, 1583, 1256 cm⁻¹; HRMS calcd for C₁₆ H₁₅NO₃: 269.1052 found: 269.1058.

2-(3-methoxyphenyl)-N-(4-methoxyphenyl)-2-oxoacetamide (3fd)

Yellow solid; m.p. 119-122° C; ¹**H** NMR (400 MHz, CDCl₃): δ 8.91 (b, 1 H), 8.01 (d, J = 8.0 Hz, 1 H), 7.86 (s, 1 H), 7.59 (d, J = 8.0 Hz, 2 H), 7.37 (t, J = 8.0 Hz, 1 H), 7.18-7.15 (m, 1 H), 6.88 (d, J = 8.0 Hz, 2 H), 3.83 (s, 3 H), 3.78 (s, 3 H); ¹³CNMR (100 MHz, CDCl₃): δ 187.3, 159.4, 158.7, 157.0, 134.2, 129.7, 129.4, 124.2, 121.5, 121.4, 114.9, 114.2, 55.4, 55.3; IR (neat): 3340, 1693, 1673, 1589, 1263 cm⁻¹; **HRMS** calcd for C₁₆H₁₅NO₄: 285.1001, found: 285.1010.

2-(4-fluorophenyl)-N-(4-methoxyphenyl)-2-oxoacetamide (3gd)

Yellow solid; m.p. 132-136° C; ¹**H** NMR (400 MHz, CDCl₃): δ 8.89 (b, 1 H), 8.50 (d, J = 8.0 Hz, 2 H), 7.59 (d, J = 12.0 Hz, 2 H), 7.15 (t, J = 12.0 Hz, 2 H), 6.91 (d, J = 8.0 Hz, 2 H), 3.80 (s, 3 H); ¹³CNMR (100 MHz, CDCl₃): δ 185.7, 167.9, 165.4, 158.4, 157.1, 134.5 (d, $J_{C-F} = 10.0$ Hz), 129.6, 121.5, 115.8 (d, $J_{C-F} = 22.0$ Hz), 114.3, 55.4; IR (neat): 3338, 1688, 1667, 1585, 1253 cm⁻¹; **HRMS** calcd for C₁₅H₁₂FNO₃: 273.0801, found: 273.0795.

N-(4-methoxyphenyl)-2-(naphthalen-2-yl)-2-oxoacetamide (3jd)

Yellow solid; m.p. 166-168° C; ¹H NMR (400 MHz, CDCl₃): δ 9.27 (s, 1 H), 8.97 (b, 1 H), 8.24-8.21 (m, 1 H), 8.00 (d, J = 8.0 Hz, 1 H), 7.90-7.85 (m, 2 H), 7.65-7.63 (m, 3 H), 7.56-7.52 (m, 1 H), 6.92 (d, J = 8.0 Hz, 2 H), 3.81 (s, 3 H); ¹³CNMR (100 MHz, CDCl₃): δ 187.1, 158.9, 157.0, 136.1, 135.26, 135.24, 132.3, 130.3, 129.8, 129.4, 128.3, 127.7, 126.8, 125.4, 121.5, 114.3, 55.4; IR (neat): 3340, 1692, 1666, 1580, 1274 cm⁻¹; HRMS calcd for C₁₉H₁₅NO₃: 305.1052, found: 305.1050.

N-(4-methoxyphenyl)-2-oxo-2-(2-(trifluoromethyl)phenyl)acetamide (3md)

Yellow solid; m.p. 156-159° C; ¹H NMR (400 MHz, CDCl₃): δ 8.82 (b, 1 H), 7.76 (t, J = 4.0 Hz, 1 H), 7.65-7.58 (m, 5 H), 6.89 (d, J = 12.0 Hz, 2 H), 3.79 (s, 3 H); ¹³CNMR (100 MHz, CDCl₃): δ 191.1, 157.2, 156.8, 131.4, 131.3, 129.4 (d, $J_{C-F} = 4.0$ Hz), 126.9, 126.8 (d, $J_{C-F} = 5.0$ Hz), 124.8, 122.1, 121.3, 114.4, 55.4; IR (neat): 3345, 1705, 1672, 1548, 1335 cm⁻¹; HRMS calcd for C₁₆H₁₂F₃NO₃: 323.0769, found: 323.0771.

9-(phenylethynyl)-9H-carbazole (s-2r)

Pale yellow solid; m.p. 127-130° C; ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, , J = 4.0 Hz, 2H), 7.71 (d, J = 4.0 Hz, 2 H), 7.61 (d, J = 4.0 Hz, 2 H), 7.53-7.51 (m, 2 H), 7.39-7.33 (m, 5 H); ¹³CNMR (100 MHz, CDCl₃): δ 140.4, 131.4, 128.4, 127.9, 126.7, 123.5, 122.9, 122.0, 120.3, 111.2, 78.8, 74.5; IR (neat): 3054, 2984, 2305, 2178, 1274, cm⁻¹; HRMS calcd for C₂₀H₁₃N: 267.1048, found: 267.1051.

1-(9H-carbazol-9-yl)-2-phenylethane-1,2-dione (s-3r)

Yellow solid; m.p. 139-142° C; ¹**H** NMR (400 MHz, CDCl₃): δ 8.76 (d, J = 5.6 Hz, 1 H), 8.09 (d, J = 4.8 Hz, 2 H) 7.98 (q, J = 5.4 Hz, 2 H) 7.72 (t, J = 4.8 Hz, 1 H), 7.56 (t, J = 4.8 Hz, 3 H) 7.48 (t, J = 4.8 Hz, 1 H) 7.33 (t, J = 4.4 Hz, 1 H), 7.22 (q, J = 8.8 Hz, 1 H), 7.16 (d, J = 5.2 Hz, 1 H); ¹³CNMR (100 MHz, CDCl₃): δ 188.8, 165.6, 138.0, 136.1, 135.6, 131.9, 130.2, 129.4, 128.0, 127.1, 126.8, 126.4, 125.2, 124.4, 120.5, 119.7, 117.8, 113.5; IR (neat): 3012, 2937, 2635, 2413, 1680, 1628, 1392, 1029 cm⁻¹; **HRMS** calcd for C₂₀H₁₃NO₂: 299.0946, found: 299.0950.

S50

S65

Figure S17. ORTEP diagram of compound 3am.

Table S4. Crystal data and structure refinement for 130832.

Identification code	130832	
Empirical formula	C15 H10 N2 O2	
Formula weight	250.25	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 6.3094(4) Å	$\Box = 80.486(3)^{\circ}.$
	b = 7.4430(5) Å	$\Box = 79.734(3)^{\circ}.$
	c = 13.8773(8) Å	$\Box = 72.162(2)^{\circ}.$
Volume	606.15(7) Å ³	
Z	2	
Density (calculated)	1.371 Mg/m ³	
Absorption coefficient	0.093 mm ⁻¹	
F(000)	260	
Crystal size	$0.12 \ge 0.07 \ge 0.02 \text{ mm}^3$	
Theta range for data collection	1.50 to 26.42°.	
Index ranges	-7<=h<=7, -9<=k<=9, -1	7<=1<=14
Reflections collected	9021	
Independent reflections	2464 [R(int) = 0.0563]	
Completeness to theta = 26.42°	99.0 %	

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9486 and 0.8382
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2464 / 0 / 172
Goodness-of-fit on F ²	0.996
Final R indices [I>2sigma(I)]	R1 = 0.0537, wR2 = 0.1395
R indices (all data)	R1 = 0.1396, wR2 = 0.1932
Largest diff. peak and hole	0.298 and -0.281 e.Å ⁻³

Table S5. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10³) for 130832. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)	
C(1)	1240(6)	2910(5)	1739(2)	58(1)	
C(2)	2477(5)	2738(4)	2538(2)	47(1)	
C(3)	1360(5)	3322(4)	3432(2)	52(1)	
C(4)	2529(5)	3110(4)	4216(2)	49(1)	
C(5)	4820(5)	2311(4)	4106(2)	40(1)	
C(6)	5946(5)	1756(4)	3201(2)	54(1)	
C(7)	4787(5)	1966(4)	2429(2)	54(1)	
C(8)	5512(5)	2639(4)	5767(2)	46(1)	
C(9)	7478(5)	1962(4)	6389(2)	44(1)	
C(10)	7149(5)	2325(4)	7426(2)	44(1)	
C(11)	5071(5)	2850(5)	7994(2)	63(1)	
C(12)	4948(6)	3059(6)	8985(2)	82(1)	
C(13)	6857(7)	2769(5)	9393(2)	76(1)	
C(14)	8922(6)	2260(5)	8835(2)	68(1)	
C(15)	9056(5)	2050(4)	7860(2)	57(1)	
N(1)	236(5)	2999(5)	1113(2)	86(1)	
N(2)	6122(4)	1981(3)	4878(2)	47(1)	
O(1)	3682(4)	3654(3)	6047(2)	70(1)	
O(2)	9311(3)	1134(3)	5981(2)	61(1)	

C(1)-N(1)	1.146(4)
C(1)-C(2)	1.435(5)
C(2)-C(3)	1.380(4)
C(2)-C(7)	1.383(4)
C(3)-C(4)	1.382(4)
C(3)-H(3)	0.9300
C(4)-C(5)	1.375(4)
C(4)-H(4)	0.9300
C(5)-C(6)	1.388(4)
C(5)-N(2)	1.409(3)
C(6)-C(7)	1.364(4)
C(6)-H(6)	0.9300
C(7)-H(7)	0.9300
C(8)-O(1)	1.208(3)
C(8)-N(2)	1.351(3)
C(8)-C(9)	1.547(4)
C(9)-O(2)	1.218(3)
C(9)-C(10)	1.474(4)
C(10)-C(11)	1.383(4)
C(10)-C(15)	1.385(4)
C(11)-C(12)	1.395(4)
C(11)-H(11)	0.9300
C(12)-C(13)	1.364(5)
C(12)-H(12)	0.9300
C(13)-C(14)	1.369(5)
C(13)-H(13)	0.9300
C(14)-C(15)	1.373(4)
C(14)-H(14)	0.9300
C(15)-H(15)	0.9300
N(2)-H(2)	0.8600
N(1)-C(1)-C(2)	177.9(4)
C(3)-C(2)-C(7)	119.3(3)
C(3)-C(2)-C(1)	120.0(3)

Table S6. Bond lengths [Å] and angles [°] for 130832.

C(7)-C(2)-C(1)	120.7(3)
C(2)-C(3)-C(4)	120.4(3)
C(2)-C(3)-H(3)	119.8
C(4)-C(3)-H(3)	119.8
C(5)-C(4)-C(3)	119.9(3)
C(5)-C(4)-H(4)	120.0
C(3)-C(4)-H(4)	120.0
C(4)-C(5)-C(6)	119.6(3)
C(4)-C(5)-N(2)	123.4(2)
C(6)-C(5)-N(2)	117.0(3)
C(7)-C(6)-C(5)	120.4(3)
C(7)-C(6)-H(6)	119.8
C(5)-C(6)-H(6)	119.8
C(6)-C(7)-C(2)	120.4(3)
C(6)-C(7)-H(7)	119.8
C(2)-C(7)-H(7)	119.8
O(1)-C(8)-N(2)	125.1(3)
O(1)-C(8)-C(9)	123.4(3)
N(2)-C(8)-C(9)	111.5(3)
O(2)-C(9)-C(10)	121.6(3)
O(2)-C(9)-C(8)	117.0(3)
C(10)-C(9)-C(8)	121.4(3)
C(11)-C(10)-C(15)	118.5(3)
C(11)-C(10)-C(9)	124.1(3)
C(15)-C(10)-C(9)	117.3(3)
C(10)-C(11)-C(12)	119.6(3)
С(10)-С(11)-Н(11)	120.2
С(12)-С(11)-Н(11)	120.2
C(13)-C(12)-C(11)	120.5(3)
С(13)-С(12)-Н(12)	119.8
С(11)-С(12)-Н(12)	119.8
C(12)-C(13)-C(14)	120.4(3)
С(12)-С(13)-Н(13)	119.8
С(14)-С(13)-Н(13)	119.8
C(13)-C(14)-C(15)	119.4(3)
C(13)-C(14)-H(14)	120.3

C(15)-C(14)-H(14)	120.3
C(14)-C(15)-C(10)	121.5(3)
C(14)-C(15)-H(15)	119.2
C(10)-C(15)-H(15)	119.2
C(8)-N(2)-C(5)	128.3(3)
C(8)-N(2)-H(2)	115.8
C(5)-N(2)-H(2)	115.8

Symmetry transformations used to generate equivalent atoms:

Table S7. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 130832. The anisotropic displacement factor exponent takes the form: $-2\Box^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^{*} \ b^{*} \ U^{12}]$

	U ¹¹	U22	U33	U23	U13	U12	
C(1)	64(2)	60(2)	53(2)	-6(2)	-15(2)	-16(2)	
C(2)	54(2)	43(2)	46(2)	-1(1)	-15(2)	-14(2)	
C(3)	41(2)	59(2)	55(2)	-8(2)	-11(2)	-8(2)	
C(4)	45(2)	56(2)	44(2)	-10(1)	-5(1)	-10(2)	
C(5)	40(2)	38(2)	41(2)	-4(1)	-10(1)	-7(1)	
C(6)	43(2)	65(2)	45(2)	-13(2)	-6(1)	0(2)	
C(7)	53(2)	65(2)	41(2)	-12(2)	-7(2)	-7(2)	
C(8)	46(2)	46(2)	43(2)	-7(1)	-7(1)	-9(2)	
C(9)	46(2)	40(2)	44(2)	-5(1)	-8(1)	-8(1)	
C(10)	51(2)	44(2)	41(2)	-7(1)	-11(1)	-13(1)	
C(11)	54(2)	89(3)	50(2)	-18(2)	-6(2)	-22(2)	
C(12)	70(3)	126(4)	54(2)	-27(2)	7(2)	-33(2)	
C(13)	90(3)	101(3)	46(2)	-18(2)	-11(2)	-36(3)	
C(14)	69(2)	81(3)	61(2)	-16(2)	-24(2)	-16(2)	
C(15)	54(2)	65(2)	52(2)	-16(2)	-10(2)	-11(2)	
N(1)	91(2)	102(3)	73(2)	-12(2)	-36(2)	-24(2)	
N(2)	39(1)	52(2)	42(1)	-10(1)	-8(1)	0(1)	
O(1)	48(1)	89(2)	62(1)	-34(1)	-13(1)	11(1)	
O(2)	47(1)	75(2)	53(1)	-18(1)	-10(1)	2(1)	

	Х	У	Z	U(eq)	
H(3)	-190	3862	3508	63	
H(4)	1768	3508	4817	59	
H(6)	7499	1237	3121	65	
H(7)	5554	1589	1825	65	
H(11)	3765	3063	7718	75	
H(12)	3553	3399	9370	98	
H(13)	6755	2917	10053	91	
H(14)	10222	2058	9115	82	
H(15)	10460	1715	7482	68	
H(2)	7480	1268	4769	56	

Table S8. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³)

for 130832.

Figure S18. ORTEP diagram of compound 3sp.

130958lt_0m		
C21 H23 N O3		
337.40		
100(2) K		
0.71073 Å		
Monoclinic		
P 1 21/c 1		
a = 16.806(3) Å	a= 90°.	
b = 5.5338(9) Å	b= 95.944(6)°.	
c = 18.763(3) Å	g = 90°.	
1735.7(5) Å ³		
4		
1.291 Mg/m ³		
0.086 mm ⁻¹		
720		
0.30 x 0.05 x 0.03 mm ³		
1.22 to 26.41°.		
-20<=h<=21, -6<=k<=4, -	-23<=1<=23	
13422		
3544 [R(int) = 0.0705]		
99.8 %		
Semi-empirical from equi	valents	
	130958lt_0m C21 H23 N O3 337.40 100(2) K 0.71073 Å Monoclinic P 1 21/c 1 a = 16.806(3) Å b = 5.5338(9) Å c = 18.763(3) Å 1735.7(5) Å ³ 4 1.291 Mg/m ³ 0.086 mm ⁻¹ 720 0.30 x 0.05 x 0.03 mm ³ 1.22 to 26.41°. -20<=h<=21, -6<=k<=4, -13422 3544 [R(int) = 0.0705] 99.8 %	

Table S9. Crystal data and structure refinement for 130958lt_0m.

Max. and min. transmission	0.9486 and 0.7137
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3544 / 0 / 226
Goodness-of-fit on F ²	0.983
Final R indices [I>2sigma(I)]	R1 = 0.0587, wR2 = 0.1466
R indices (all data)	R1 = 0.1038, wR2 = 0.2059
Largest diff. peak and hole	0.372 and -0.420 e.Å ⁻³

Table S10. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³)

for 130958lt_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)	
O(1)	-1975(1)	9807(3)	2868(1)	27(1)	
O(2)	1657(1)	10360(3)	4524(1)	31(1)	
O(3)	950(1)	5176(3)	5299(1)	25(1)	
N(1)	418(1)	8561(4)	4361(1)	21(1)	
C(1)	-4482(2)	6671(5)	1583(1)	29(1)	
C(2)	-4551(2)	8797(5)	1959(1)	27(1)	
C(3)	-3872(2)	10144(5)	2176(1)	25(1)	
C(4)	-3122(2)	9392(5)	2024(1)	24(1)	
C(5)	-2398(2)	10908(5)	2245(1)	29(1)	
C(6)	-1236(2)	10770(5)	3093(1)	22(1)	
C(7)	-784(2)	9381(5)	3604(1)	20(1)	
C(8)	-18(2)	10119(4)	3858(1)	20(1)	
C(9)	1186(2)	8761(5)	4647(1)	22(1)	
C(10)	1445(2)	6652(5)	5158(1)	20(1)	
C(11)	2321(1)	6516(5)	5423(1)	22(1)	
C(12)	2496(2)	4667(5)	6019(1)	26(1)	
C(13)	3395(2)	4498(5)	6248(1)	30(1)	
C(14)	3855(2)	3843(5)	5618(2)	30(1)	
C(15)	-3732(2)	5893(5)	1429(2)	30(1)	
C(16)	-3056(2)	7244(5)	1651(1)	28(1)	
C(17)	-939(2)	12922(5)	2855(1)	22(1)	
C(18)	-176(2)	13637(5)	3121(1)	22(1)	

C(19)	294(2)	12267(4)	3618(1)	23(1)
C(20)	3687(2)	5673(5)	5011(1)	26(1)
C(21)	2793(2)	5889(5)	4781(1)	25(1)

 Table S11.
 Bond lengths [Å] and angles [°] for 130958lt_0m.

O(1)-C(6)	1.377(3)
O(1)-C(5)	1.439(3)
O(2)-C(9)	1.224(3)
O(3)-C(10)	1.214(3)
N(1)-C(9)	1.351(3)
N(1)-C(8)	1.424(3)
N(1)-H(1)	0.8800
C(1)-C(2)	1.383(4)
C(1)-C(15)	1.390(4)
C(1)-H(1A)	0.9500
C(2)-C(3)	1.389(4)
C(2)-H(2)	0.9500
C(3)-C(4)	1.384(4)
C(3)-H(3)	0.9500
C(4)-C(16)	1.391(4)
C(4)-C(5)	1.500(4)
C(5)-H(5A)	0.9900
C(5)-H(5B)	0.9900
C(6)-C(17)	1.383(4)
C(6)-C(7)	1.391(3)
C(7)-C(8)	1.386(3)
C(7)-H(7)	0.9500
C(8)-C(19)	1.393(4)
C(9)-C(10)	1.545(3)
C(10)-C(11)	1.506(3)
C(11)-C(12)	1.521(3)
C(11)-C(21)	1.548(4)
C(11)-H(11)	1.0000

C(12)-C(13)	1.530(3)
C(12)-H(12A)	0.9900
C(12)-H(12B)	0.9900
C(13)-C(14)	1.522(4)
C(13)-H(13A)	0.9900
C(13)-H(13B)	0.9900
C(14)-C(20)	1.528(4)
C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900
C(15)-C(16)	1.387(4)
C(15)-H(15)	0.9500
C(16)-H(16)	0.9500
C(17)-C(18)	1.384(3)
C(17)-H(17)	0.9500
C(18)-C(19)	1.386(4)
C(18)-H(18)	0.9500
C(19)-H(19)	0.9500
C(20)-C(21)	1.525(3)
C(20)-H(20A)	0.9900
C(20)-H(20B)	0.9900
C(21)-H(21A)	0.9900
C(21)-H(21B)	0.9900
C(6)-O(1)-C(5)	116.1(2)
C(9)-N(1)-C(8)	128.2(2)
C(9)-N(1)-H(1)	115.9
C(8)-N(1)-H(1)	115.9
C(2)-C(1)-C(15)	119.7(3)
C(2)-C(1)-H(1A)	120.1
C(15)-C(1)-H(1A)	120.1
C(1)-C(2)-C(3)	119.7(3)
C(1)-C(2)-H(2)	120.1
C(3)-C(2)-H(2)	120.1
C(4)-C(3)-C(2)	121.1(3)
C(4)-C(3)-H(3)	119.4
C(2)-C(3)-H(3)	119.4

C(3)-C(4)-C(16)	118.9(3)
C(3)-C(4)-C(5)	120.3(3)
C(16)-C(4)-C(5)	120.8(3)
O(1)-C(5)-C(4)	107.8(2)
O(1)-C(5)-H(5A)	110.1
C(4)-C(5)-H(5A)	110.1
O(1)-C(5)-H(5B)	110.1
C(4)-C(5)-H(5B)	110.1
H(5A)-C(5)-H(5B)	108.5
O(1)-C(6)-C(17)	125.3(2)
O(1)-C(6)-C(7)	114.1(2)
C(17)-C(6)-C(7)	120.6(2)
C(8)-C(7)-C(6)	119.7(2)
C(8)-C(7)-H(7)	120.2
C(6)-C(7)-H(7)	120.2
C(7)-C(8)-C(19)	120.6(2)
C(7)-C(8)-N(1)	116.4(2)
C(19)-C(8)-N(1)	123.0(2)
O(2)-C(9)-N(1)	126.4(2)
O(2)-C(9)-C(10)	121.2(2)
N(1)-C(9)-C(10)	112.4(2)
O(3)-C(10)-C(11)	124.3(2)
O(3)-C(10)-C(9)	119.2(2)
C(11)-C(10)-C(9)	116.4(2)
C(10)-C(11)-C(12)	112.6(2)
C(10)-C(11)-C(21)	108.5(2)
C(12)-C(11)-C(21)	110.2(2)
C(10)-C(11)-H(11)	108.5
C(12)-C(11)-H(11)	108.5
C(21)-C(11)-H(11)	108.5
C(11)-C(12)-C(13)	111.0(2)
C(11)-C(12)-H(12A)	109.4
C(13)-C(12)-H(12A)	109.4
C(11)-C(12)-H(12B)	109.4
C(13)-C(12)-H(12B)	109.4
H(12A)-C(12)-H(12B)	108.0

C(14)-C(13)-C(12)	111.2(2)
C(14)-C(13)-H(13A)	109.4
C(12)-C(13)-H(13A)	109.4
C(14)-C(13)-H(13B)	109.4
С(12)-С(13)-Н(13В)	109.4
H(13A)-C(13)-H(13B)	108.0
C(13)-C(14)-C(20)	110.6(2)
C(13)-C(14)-H(14A)	109.5
C(20)-C(14)-H(14A)	109.5
C(13)-C(14)-H(14B)	109.5
C(20)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	108.1
C(16)-C(15)-C(1)	120.2(3)
C(16)-C(15)-H(15)	119.9
C(1)-C(15)-H(15)	119.9
C(15)-C(16)-C(4)	120.4(3)
C(15)-C(16)-H(16)	119.8
C(4)-C(16)-H(16)	119.8
C(6)-C(17)-C(18)	118.7(2)
C(6)-C(17)-H(17)	120.6
C(18)-C(17)-H(17)	120.6
C(17)-C(18)-C(19)	122.0(2)
C(17)-C(18)-H(18)	119.0
C(19)-C(18)-H(18)	119.0
C(18)-C(19)-C(8)	118.4(2)
C(18)-C(19)-H(19)	120.8
C(8)-C(19)-H(19)	120.8
C(21)-C(20)-C(14)	111.3(2)
C(21)-C(20)-H(20A)	109.4
C(14)-C(20)-H(20A)	109.4
C(21)-C(20)-H(20B)	109.4
C(14)-C(20)-H(20B)	109.4
H(20A)-C(20)-H(20B)	108.0
C(20)-C(21)-C(11)	111.5(2)
C(20)-C(21)-H(21A)	109.3
C(11)-C(21)-H(21A)	109.3

C(20)-C(21)-H(21B)	109.3
C(11)-C(21)-H(21B)	109.3
H(21A)-C(21)-H(21B)	108.0

Symmetry transformations used to generate equivalent atoms:

Table S12. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for $130958lt_0m$. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	U11	U22	U33	U23	U13	U12	
$\overline{O(1)}$	22(1)	29(1)	27(1)	10(1)	-9(1)	-5(1)	
O(1)	22(1) 27(1)	23(1)	$\frac{2}{(1)}$	9(1)	-9(1)	-5(1) -6(1)	
O(2)	27(1) 25(1)	23(1) 22(1)	27(1)	3(1)	-3(1)	-2(1)	
N(1)	23(1) 22(1)	17(1)	27(1) 24(1)	$\frac{J(1)}{4(1)}$	-4(1)	-2(1)	
C(1)	22(1) 32(2)	$\frac{1}{(1)}$ 27(2)	24(1) 26(1)	7(1)		-2(1)	
C(1)	$\frac{32(2)}{24(2)}$	$\frac{27(2)}{32(2)}$	26(1)	2(1) 3(1)	-0(1)	-4(1)	
C(2)	24(2) 30(2)	32(2) 21(2)	20(1) 22(1)	0(1)	-2(1)	2(1) 2(1)	
C(3)	30(2)	21(2) 22(2)	22(1) 22(1)	0(1) 9(1)	-4(1) 5(1)	2(1) 1(1)	
C(4)	20(2)	23(2)	22(1)	0(1) 12(1)	-3(1)	I(1)	
C(5)	20(2)	32(2)	27(2)	12(1)	-10(1)	0(1)	
C(6)	22(1)	24(2)	22(1)	0(1)	0(1)	0(1)	
C(7)	22(1)	18(1)	21(1)	2(1)	l(1)	0(1)	
C(8)	22(1)	18(1)	19(1)	-1(1)	-2(1)	4(1)	
C(9)	22(1)	19(1)	23(1)	0(1)	-2(1)	2(1)	
C(10)	25(1)	17(1)	17(1)	-1(1)	-2(1)	0(1)	
C(11)	22(1)	18(1)	25(1)	-3(1)	-6(1)	-1(1)	
C(12)	27(2)	26(2)	24(1)	3(1)	-1(1)	2(1)	
C(13)	27(2)	35(2)	26(1)	7(1)	-6(1)	5(1)	
C(14)	24(2)	27(2)	37(2)	2(1)	-4(1)	2(1)	
C(15)	40(2)	22(2)	28(1)	2(1)	2(1)	1(1)	
C(16)	29(2)	25(2)	28(1)	8(1)	1(1)	6(1)	
C(17)	26(1)	20(1)	21(1)	2(1)	-2(1)	6(1)	
C(18)	24(1)	17(1)	25(1)	2(1)	2(1)	-1(1)	
C(19)	24(1)	17(1)	26(1)	-3(1)	-2(1)	0(1)	
C(20)	$\frac{-1}{23(1)}$	29(2)	-5(1)	-1(1)	-1(1)	-2(1)	
C(20)	23(1)	2)(2)	20(1)	1(1)	1(1)	-(1)	
C(21)	25(2)	26(2)	24(1)	-1(1)	-2(1)	0(1)	
-------	-------	-------	-------	-------	-------	------	

U(eq) Х у Z H(1) H(1A) -4944 H(2) -5062 H(3) -3923 H(5A) -2050 H(5B) -2561 H(7) -998 H(11) H(12A) H(12B) H(13A) H(13B) H(14A) H(14B) H(15) -3682 H(16) -2545 H(17) -1252 H(18) H(19) H(20A) H(20B) H(21A) H(21B)

Table S13. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for 130958lt_0m.