Supplementary information

Table S1 Homologs of OGDC and SSADH in cyanobacteria (only identities ≥60% were

listed).

	2-Oxoglutarate		Succinic semialdehyde	
Cyanobacteria	decarboxylase (OGDC)		dehydrogenase (SSADH)	
	Accession number	ldentity (%)	Accession number	Identity (%)
Synechococcus sp. PCC	SYNPCC7002-	100	SYNPCC7002-	100
7002	A2770		A2771	
<i>Cyanothece</i> sp. ATCC 51142	ссе-4227	81.8	cce-4228	64.8
<i>Cyanothece</i> sp. PCC 8801	PCC8801-4168	81.5	PCC 8801-4169	64.6
<i>Synechocystis</i> sp. PCC 6803	sll1981	80	slr0370	61.8
<i>Cyanothece</i> sp. PCC 7424	PCC7424-0688	80	PCC7424-2737	66.5
Arthrospira platensis NIES-39	NIES39-L06130	79	NIES39-L06120	66.2
Trichodesmium erythraeum IMS101	Tery-1928	78.2	Tery-1926	64.4
Anabaena sp. PCC 7120	all3555	77.3	all3556	65.3
Anabaena variabilis ATCC 29413	Ava-3533	77.3	Ava3534	65.3
Nostoc punctiforme ATCC 29133	Npun-R4630	77.2	Npun-R4631	65.9
<i>Microcystis aeruginosa</i> NIES-843	MAE06010	77.2	MAE25340	62.3
<i>Cyanothece</i> sp. PCC 7425	Cyan7425-2710	76.1	Cyan7425-2711	61.8
<i>Acaryochloris</i> marina MBIC11017	AM1-1865	75.7	AM1-1864	65.2
Gloeobacter violaceus PCC7421	gll2804	72.4	gll2805	60

Figure Legends

Fig. S1 The sequence of *efe* from *Pseudomonas syringae sesami* with the hot spot (CGATG) silenced and the optimized codons for *Synechocystis* sp. PCC 6803.

Fig. S2 Ethylene calibration curve and the GC-MS identification of the ethylene products of *efe* transformants. (A) Calibration curve plotting the ethylene peak area based on the ethylene amount injected into the GC-FID. A serial dilution of vaporized pure ethylene standards of known concentrations was prepared. A 200 μ L sample of each standard was injected and analyzed by the GC-FID. The calibration curve was based on the amount of ethylene (nL) in the 200 μ L sample relative to the ethylene peak area from the chromatogram. (B) MS identification of the ethylene standard and headspace gas of the cultures of the *efe* transformants.

Fig. S3 Ethylene production of *Synechocystis* derivants (XX57), with *efe* controlled by P_{psbA2} of *Synechocystis* sp. PCC 6803. (A) The cell growth curve of *Synechocystis* sp. PCC 6803 wild type and XX57 under aerated cultivation with 250-mL flasks. (B) Stable ethylene production of XX57.

Fig. S4 SDS-PAGE of the purified thioredoxin (TrxA)-Sll1981 fusion protein and TrxA-Slr0370 fusion protein. (A) The gel of the purified TrxA-Sll1981. Lane 1: soluble protein; lane 2-5: the target protein eluted by Tris buffer containing 250 mM iminazole. (B) The gel of the purified TrxA-Slr0370. Lane 1: soluble protein; lane 1-5: the target protein eluted by Tris buffer containing 250 mM iminazole.

Fig. S5 The schematic diagram of construction of the recombinant *Synechocystis* strains harboring one, two or three copies of *efe* and *kgtP*.

Fig. S6 Cultivation and resuspension of XX109 recombinants in fresh 5×BG11* medium with 2-OG added or not. (A) Total ethylene production rate; (B) specific ethylene production rate; (C) growth curve of XX109 in 5×BG11* medium in the semi-continuous cultivation. Data presented are means and standard deviation of two

independent experiments, each with three replicates.

Fig. S7 A modified CO₂ diffusion-based gaseous/aqueous two-phase photobioreactor. The modified gaseous/aqueous two-phase photobioreactor was developed according to Bentley and Melis¹ in order to harvest ethylene continuously. The new gas collection section of the instrument was based on the water gas-displacing principle. *Synechocystis* cells of the stationary phase were spun down and resuspended in $5\times$ BG11* medium to OD₇₃₀~2.5, and 800 mL culture was then grown in the photobioreactor while being constantly bubbled with 100% CO₂ at a rate slower than 2 mL min⁻¹ and a high light intensity of 200 µmol photons m⁻² s⁻¹. An experimental period of 16 days was set up, wherein a fed-bath was performed every 4 days to restore the cell density to OD₇₃₀~2.5, and approximately 500 mL of the gas mixture was collected every 8 hours from the gas collection section.

Fig. S8 Continuous cultivation of XX109 and XX110 and ethylene production in the modified gaseous/aqueous two-phase bioreactor. XX109 and XX110 of $OD_{730}\sim 2.5$ were cultured in the bioreactor under constant irradiance (~200 µmol photons m⁻² s⁻¹) with continual sparging with 100% CO₂ at a rate slower than 2 mL min⁻¹. Cultures were diluted with fresh 5×BG11* medium (2-OG of 1 mM was contained for XX110) every 4 days to recover $OD_{730}\sim 2.5$ in order to maintain stable and efficient ethylene production. The assay was conducted for 16 days. The daily ethylene productivity was shown as the sum of the ethylene amount in the 3 bottles collected every 8 hours from the water gas displacing gas collection section. (A) Cell growth of each 4-day dilution during the continuous cultivation in the bioreactor. (B) Ethylene accumulated over the time course of the continuous cultivation.

ATGACTAACTTACAAACCTTCGAACTGCCAACCGAAGTAACTGGCTGTGCCGCTGACAT TTCCCTGGGCCGCGCGCTCATTCAAGCCTGGCAAAAAGACGGTATTTTTCAAATTAAAA GTAAAGAGCCGCTAACCTTTAAAAGTTCCTGTGTGTCCGACCTGACCTATTCTGGTTAC GTCGCCAGTGGCGAGGAAGTTACGGCCGGCAAACCCGATTTTCCTGAGATTTTTACAG ACCGGTGCCCTGGCCGAACAACACCTATCAAAAAAGCATGAAAACTTTTATGGAAGAG TTAGGGTTAGCTGGAGAAAGGTTGCTCAAGTTGACAGCCTTGGGATTCGAGTTACCCA TCAATACTTTTACCGATTTAACCAGGGATGGCTGGCATCACATGCGAGTGCTACGGTTC CCTCCACAAACCAGTACCTTGTCTCGGGGGAATCGGCGCCCATACCGATTATGGTTTGCT CGTGATTGCTGCGCAGGATGACGTGGGCGGGCTGTACATTCGTCCCCCTGTTGAAGGG GAAAAGCGTAATCGTAACTGGTTGCCCGGAGAAAGTTCTGCTGGGATGTTTGAACATG ATGAACCCTGGACATTTGTTACCCCTACTCCCGGTGTATGGACCGTTTTTCCCGGTGAC ATCTTACAGTTTATGACCGGGGGGGCAGTTGCTGAGTACGCCCCATAAGGTCAAACTGA ATACGCGGGAACGATTTGCATGCGCGTACTTCCACGAACCAAATTTTGAAGCCTCTGCG TATCCTCTCTTTGAACCCTCCGCAAATGAACGCATCCATTATGGCGAACACTTTACAAAT ATGTTTATGCGGTGCTACCCCGACCGCATTACCACTCAGTCCATTAATAAAGAAAATCGT CTAGCCCACTTGGAAGATTTAAAAAAGTATAGTGATACGCGCGCCACCGGTTCCCACCA CCACCACCACCACTAA

water-gas displacing device

Reference

1. F. K. Bentley and A. Melis, *Biotechnol. Bioeng.*, 2012, **109**, 100-109.